Solution of assignment 9, ST2304

Problem 1 The Ricker model

1. We see that when $N_{t}=K$ or $r=0$, the expression $e^{r\left(1-N_{t} / K\right)}$ becomes 1 and N_{t+1} equals N_{t}. This indicates that the population size does not change from time t to $t+1$.
For N_{t} much smaller than K , the population size N_{t} changes with factor e^{r} each timestep ($\left(1-N_{t} / K\right)$ will approach 1). This will give an exponential growth of the populations size (no restriction of carrying capacity, K).
2.

$$
\begin{aligned}
\Delta N_{t} & =N_{t-1}-N_{t} \\
& =N_{t}\left(e^{r\left(1-\frac{N_{t}}{K}\right)}-1\right)
\end{aligned}
$$

We choose $r=0.1$ and $K=100$, and make a graph of ΔN_{t} using the curve function. Notice that ΔN_{t} has its largest value when $N_{t}=K / 2$ and equals 0 when $N_{t}=K$.

```
r<-. 1
```

$K<-100$

```
curve(x*(exp(r*(1-x/K))-1),from=0,to=120,
xlab=expression(N[t]),ylab=expression(N [t+1]-N[t]))
```

3. Writing a function which computes the population size from time $t=2$ to tmax, given the start population size N_{1}, the intrinsic growth rate r and the carrying capacity K.
```
N<-100 ##starting value N_1
tmax<-10
K<-150
r<-0.5
for(t in 2:tmax)
N[t]<-N[t-1]*exp(r* (1-(N[t-1]/K)))
plot(1:tmax,N, ylab="Population size", xlab="Time")
or
Nfunc=function(r,N1,K,tmax)
{
    N=rep(NA,tmax)
    N[1]=N1
        for(i in 2:tmax)
        {
        N[i]=N[i-1]*exp(r*(1-(N[i-1]/K)))
        }
```


Figure 1: The change in population size as a function of last years population size, with parameter values $r=0.1$ and $K=100$

```
plot(1:tmax,N, ylab="Population size", xlab="Time")
    return(N)
    }
Nt= Nfunc(r=0.5,N1=100,K=150,tmax=10)
```


Figure 2: Population size against time, for parameter values $r=0.5, K=150, N_{1}=100, \operatorname{tmax}=10$

Problem 2 Solving the Euler-Lotka equation using Newtons method.

$$
\begin{aligned}
& f(\lambda)=\sum \lambda^{-i} l_{i} m_{i}=1 \\
& f(\lambda)=\sum \lambda^{-i} l_{i} m_{i}-1=0
\end{aligned}
$$

We first find the derivate of $f(\lambda)$

$$
f^{\prime}(\lambda)=\sum-i \lambda^{(-i-1)} l_{i} m_{i}
$$

and the iteration equation becomes

$$
\begin{aligned}
\lambda_{t+1} & =\lambda_{t}-f\left(\lambda_{t}\right) / f^{\prime}\left(\lambda_{t}\right) \\
& =\lambda_{t}-\left(\sum \lambda_{t}^{-i} l_{i} m_{i}-1\right) /\left(\sum-i \lambda_{t}^{(-i-1)} l_{i} m_{i}\right)
\end{aligned}
$$

which can be solved by a function in R.

```
eulerlotka <- function(m,l) {
    n <- length(m)
    i <- 1:n
    lambda <- 1
    while (abs(sum(lambda^(-i)*l*m)-1)>1e-8) {
        lambda <- lambda-(sum(lambda^(-i)*l*m)-1)/sum(-i*lambda^(-i-1)*l*m)
    }
    lambda
}
eulerlotka(c(.9,.8,.25),c(0,0,32))
```

The function can be written in many ways, for instance using repeated for-loop and stop the iterations when the $\lambda_{t+1^{-}} \lambda_{t}$ is sufficiently small (but then you have to save all values of λ).

We run R code with the given parameter values, and find that the growth rate λ seems to approach 2.

