Solution of assignment 6, ST2304

Problem 1 1. The inverse of the logit function is the $\operatorname{logistic}$ function. If $\operatorname{logit}(\mathrm{p})=\mathrm{z}$, then

$$
\begin{equation*}
p=\frac{1}{1+e^{-\eta}} \tag{1}
\end{equation*}
$$

in this case

$$
\begin{equation*}
\eta=\beta_{0}+\beta_{\text {age age }}+\beta_{\log _{10} \mathrm{ab}} \log _{10} \mathrm{ab} \tag{2}
\end{equation*}
$$

which means that we get

$$
\begin{equation*}
p=\frac{1}{1+e^{-\left(\beta_{0}+\beta_{\text {age }}{ }^{\text {age }+\beta_{\log _{10}} \text { ab }^{\left.\log _{10} \text { ab }\right)}}\right.} \text {. }} \tag{3}
\end{equation*}
$$

We set in for age $=15$ and antibody level $=1000$ and β s from the summary () of the logistic regression:

$$
\begin{equation*}
p=\frac{1}{1+e^{-\left(\beta_{0}+\beta \text { age age }+\beta_{\log _{10}} \mathrm{ab}^{\left.\log _{10} \mathrm{ab}\right)}\right.}} \tag{4}
\end{equation*}
$$

The estimated probability of developing malaria is then: 0.04216440

```
> summary(malreg)
Call:
glm(formula = mal ~ age + log10(ab), family = binomial("logit"))
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-1.8492 & -0.7536 & -0.4838 & 0.8809 & 2.5796
\end{tabular}
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.57234 0.95184 2.702 0.006883 **
age -0.06546 0.06772 -0.967 0.333703
log10(ab) -1.57118 0.45019 -3.490 0.000483 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 116.652 on 99 degrees of freedom
Residual deviance: 98.017 on 97 degrees of freedom
AIC: 104.02
Number of Fisher Scoring iterations: 5
```

Rcode:

```
malaria <- read.table("http://www.math.ntnu.no/~jarlet/statmod/malaria.dat")
attach(malaria)
malreg=glm(mal~age+log10(ab),family=binomial("logit"))
summary(malreg)
probmal=1/( 1+exp (-( 2.57234+ (-0.06546*15)+(-1.57118*log10(1000)) ) )
```

2. We see that age is non-significant. We fit a reduced model, and inspect the output
```
malreg2=glm(mal~log10(ab),family=binomial("logit"))
> summary(malreg2)
Call:
glm(formula = mal ~ log10(ab), family = binomial("logit"))
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-1.9159 & -0.7339 & -0.4854 & 0.8813 & 2.4722
\end{tabular}
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.1552 0.8401 2.565 0.010305 *
log10(ab) -1.6399 0.4449 -3.686 0.000228 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 116.652 on 99 degrees of freedom
Residual deviance: 98.968 on 98 degrees of freedom
AIC: 102.97
Number of Fisher Scoring iterations: 4
```

3. Probability of malaria (wihtout age):

$$
\begin{equation*}
p=\frac{1}{1+e^{-\left(2.1552+\left(-1.6399 \log _{10} \mathrm{ab}\right)\right)}} \tag{5}
\end{equation*}
$$

Plotting p against antibody level (ab):
R code:

Figure 1: Probablity of malaria against antibody level (on $\log 10$ scale) in black and observed data of antibody level againts malaria in red

```
probmal=1/(1+exp(-(2.1552+ (-1.6399*log10(ab)))))
#Plotting the probability againts ab
plot(log10(ab),probmal,ylab="Probability of malaria", xlab="Antibody level, log10(a
#adding a curve
curve(1/(1+exp(-(2.1552+ (-1.6399*x)))),ylab="Probability of malaria", xlab="Antibo
##add observed values of ab
points(x=log10(ab), y=mal, col="RED")
#saving the plot (in the current directory)
dev.copy2pdf(file="plot1oving6.pdf")
```

4. The regression coefficient β for \log antibody level represents the the increase in $\operatorname{logit}(\mathrm{p})$ (or log odds) for a unit change in $\log _{10}$ antibody level equivalent to a 10 -fold increase in antibody level. The odds thus change by an oddsratio equal to $\exp (\beta)$. Based on the estimate of β, the estimate of the oddsratio becomes $\exp (-1.6399)=0.1940$.
5. Using confint on the fitted model:
```
##CI for the regression coefficients of the fitted model
    10^(confint(malreg2))
Waiting for profiling to be done...
    2.5% 97.5 %
(Intercept) 3.797791202 8029.6355942
log10(ab) 0.002567519 0.1483947
##CI for the odds ratio of the fitted model
> exp(confint(malreg2))
Waiting for profiling to be done...
    2.5% 97.5 %
(Intercept) 1.78520113 49.6349805
log10(ab) 0.07498356 0.4366682
```

We see that the confidence interval contains the estimate.

