Solution of assignment 11, ST2304

Problem 1 1. R code:

```
recomb<-function(r,n){
    n.draw=0
    for(i in 1:n)
    {
        X<-rpois(1,r)
        if(X%%%) {
            n.draw=n.draw+1
            }
    }
    n.draw/n
    }
    recomb (r=0.01,n=10000)
```

 Alt.
 $\mathrm{n}<-10000$
$\mathrm{r}<-5$
$\mathrm{X}<-\mathrm{rpois}(\mathrm{n}, \mathrm{r})$
sumX<-sum($\mathrm{X} \% \%$) \#\# summarized over all the
\#\#odd numbers because these are 1's and even
sumX/n\#\#probability of odd number/recombinations

r	0.01	0.1	0.5	5
P(recombination)	0.0111	0.0855	0.3146	0.5067

This indicates that larger physical distance between the loci increases the probability of recombinations.
2. To make the graph we include r in a function as a variables.

The limiting values of the probability of recombinations seems to be 0.5 when r goes to infinity. This is resonable as only an odd number of crossover events (a $50-50$ chance between even and odd number of crossover events) would result in a recombination.

```
R code:
recomb2<-function(n){
        r<-seq(0.01,6,by=0.1)
        prob<-rep(NA,length(r))
            for(i in 1:length(r))
    {
        n.draw=0
            for(j in 1:n)
            {
X<-rpois(1,r[i])
if (X%%2)
    {
        n.draw=n.draw+1
            }
```

```
}
prob[i]=n.draw/n
}
prob
plot(x=r,y=prob,xlab="Physical distance, r",ylab="Probability of recombination",typ
}
recomb2(n=10000)
Alt.
        r<-seq(0.01,6,by=0.1)
            prob<-rep(NA,length(r))
            for(i in 1:length(r))
                {
X<-rpois(n,r[i])
sumX<-sum(X%%2)
prob[i]=sumX/n
}
```


Figure 1: Probability of recombination against physcial distance, r, on the chromosome.

Problem 2

S^{2} is the unbiased estimate of the variance, σ^{2}, based on the sample $X_{1}, X_{2}, \ldots X_{n}$, from the unknown/true population. The distrbution of S^{2} is chisquare distributed with $n-1$ degrees of freedom.

$$
\begin{equation*}
Y=X_{1}^{2}+X_{2}^{2}+\ldots+X_{n}^{2}=\frac{(n-1) S^{2}}{\sigma^{2}} \tag{1}
\end{equation*}
$$

where $X_{1}+X_{2}+\ldots+X_{n}$ is independent normally distributed variables. The chisquare distribution is not symmetrical, but the quantiles, that is dependent on the degrees of freedom, is defined as

$$
\begin{equation*}
P\left(\chi_{1-\alpha / 2}<Y<\chi_{\alpha / 2}\right)=1-\alpha \tag{2}
\end{equation*}
$$

setting in for Y and rearrange the equalities, we get the confidence interval for S^{2} Thus we can find the confidence interval for the true variance σ^{2} in the distribution from a sample. Here we see that the confidence interval $(0.91,1.08)$ contains σ^{2}, choosen to be $1^{2}(\mathrm{sd}=1)$.

```
n=1000
Xnorm=rnorm(n, mean=0 ,sd=1)
S=(1/(n-1))*sum((Xnorm-mean(Xnorm)) - 2)
confS=list(lower=(S*(n-1))/qchisq(0.025,df=n-1,lower.tail=F),
    upper=(S*(n-1))/qchisq(0.975,df=n-1,lower.tail=F))
> confS
$lower
[1] 0.9074894
```

\$upper
[1] 1.081561

Problem 3 1. Under the full model, all $n p_{i}$'s are free parameters (no relationship $p_{i}=$ $q \phi\left(\beta_{0}+\beta_{1}\right.$ time $\left._{i}\right)$ is imposed) and the MLEs are $\hat{p}_{i}=x_{i} / n$ which can be computed as follows in R .

```
> phat <- x/n
phat
```

 [1] 0.00000000 .00000000 .00000000 .00000000 .18750000 .11904760 .2000000
 [8] 0.18518520 .40000000 .31818180 .28571430 .46153850 .00000000 .5000000
 [15] 0.62500000 .80555560 .72727270 .66666670 .65517240 .69696970 .8214286
 [22] 0.85714290 .93333330 .80000000 .91666670 .78260870 .78571430 .7826087
 [29] 0.84615381 .00000000 .80000000 .92857140 .66666671 .00000000 .7500000
 [36] 0.90000000 .90000000 .77777780 .75000001 .00000000 .85714291 .0000000
 [43] 1.00000001 .00000000 .50000001 .00000000 .00000001 .00000001 .0000000
 2. The maximum \log likelihood under the full model is the \log likelihood at the point $\left(\hat{p}_{1}, \hat{p}_{2}, \ldots, \hat{p}_{n}\right)$ in the parameter space. At this point the \log likelihood $\ln L\left(p_{1}, p_{2}, \ldots, p_{n}\right)=$ $\sum \ln f\left(x_{i}\right)$ is
```
> sum(dbinom(x,size=n,prob=phat,log=T))
```

[1] -47.56002
3. From the solution to assignment 10, the maximum log likelihood of the model $p_{i}=q \phi\left(\beta_{0}+\right.$ β_{1} time $_{i}$) is -68.21 (the maximum negative log likelihood is in the \$value component of the list returned by optim).
4. The observed deviance is two times the difference between the maximum log likelihoods, that is,
$>2 *((-47.56)-(-68.21))$
[1] 41.3
5. Under the null hypothesis that the fitted model is correct the deviance D is chi-square distributed with $n-p=49-3=46$ degrees of freedom. We reject this null hypothesis if D is larger than the upper 0.05 -quantile of the chi-square distribution,

```
> qchisq(.05,df=46,lower=F)
[1] 62.82962
```

that is, $\chi_{4} 6^{2}=62.83$ so we can not reject the hypothesis that the model is correct. The P-value becomes

```
> pchisq(41.3,df=46,lower=F)
[1] 0.6691562
```

6. The expected value of a chi-square distributed variable is equal to it's degrees of freedom, that is, in our case 46. The fact that the observed value of D is slightly smaller than this indicates that the is some (statistically non-significant) under-dispersion in the data.
