
0.1 Additional aspects of Landau levels

0.1.1 Landau-levels behave differently in various materials
Landau-levels have different properties depending on which material you consider. We will
show this below.

A specific material is characterized by a certain crystal structure for the atoms. This consti-
tutes the "environment" in which the electrons move, since the electrons feel the electrostatic
potential generated by the atoms in the crystal lattice. To model this, one can envision electrons
hopping between different points on a lattice as shown in the figure.

Mathematically, we can model this using creation and annihilation operators: c† and c. You will
learn the formalities regarding these in courses like Many-Body Theory for Quantum Systems,
but here we will just sketch how they can be used for our purpose. A creation operator c†iσ
creates an electron at site i with spin σ. An annihilation operator ciσ destroys an electron at site
iwith spin σ. Thus, moving an electron from site j to site i can be expressed by the combination
c†iσcjσ. In other words, we describe in this way hopping from site j to i. If we now associate an
energy −t with such a hopping process (we explain the sign of t later), we can write the total
Hamiltonian for the system as

Ĥ = −t
∑
〈ij〉σ

c†iσcjσ. (1)

The brackets indicate that we should only consider hopping between nearest neighbor lattice
sites, since the probability for hopping between atoms further apart should be small.
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The operators {c†, c} describe electrons which are fermions. For this reason, these operators
obey different commutation properties than the bosonic {a, a†} operators we considered in
the harmonic oscillator case. For instance, the c-operators have to respect the Pauli principle.
Therefore, they obey for instance {c†λ, c

†
λ′} = 0, where λ and λ′ represent quantum numbers [for

instance λ = (i, σ)], which expresses both the Pauli principle (for λ = λ′) and the antisymmetry
associated with a state where two fermions have been exchanged with each other.

Let us now consider a repeating lattice structure by employing periodic boundary conditions for
the {c†, c} operators: ci = ci+N (we drop the spin subscript here) where N is the length of the
system. This periodicity ensures that we can express the fermion operators as a Fourier-series:

ci =
1√
N

∑
k

cke
ik·ri . (2)

Considering for simplicity a 1D system, we see that the only allowed k-values in the system are
k = 2πn/Na where n is an integer. This fulfills the periodic condition ci = ci+N since now
eikNa = ei2πn = 1. Inserting the Fourier-transform of ci into Ĥ , we obtain

Ĥ =
∑
k

εkc
†
kck. (3)

The quantity εk is the dispersion relation for the electrons and takes the form

εk = −2t cos(ka). (4)

This is reasonable physically: our model in real space with electrons hopping around on a lattice
can be expressed as a sum of electrons with kinetic energy εk.

In the low-energy limit ka� 1, we get εk ' ~2k2/2m∗−const where m∗ ∝ 1/t is the effective
mass. We can thus approximate our model as a free electron gas where the electrons have an
effective mass determined by the hopping parameter t. The extra constant in the dispersion
relation is not important since it simply redefines our reference level for zero energy.

The point with the above derivation was to show how the dispersion relation we use for fermions,
k2/2m, can arise in a material when considering its crystal structure. We have then seen how
to obtain the Landau-levels when using this particular dispersion relation. But what happens
when the dispersion relation in a material is fundamentally different than k2/2m? Consider for
instance graphene, which is a single layer of carbon atoms arranged in a honeycomb pattern.
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Starting with the same hopping Hamiltonian and using periodic boundary conditions precisely
as shown above, one arrives at a low-energy Hamiltonian

Ĥ = ~vFk · σ = ~vF (kxσx + kyσy). (5)

Here, σ = (σx, σy, σz) is a vector of Pauli-matrices and the Hamiltonian is thus a 2× 2 matrix.
This means that the wavefunction describing electrons in graphene has to be a two-component
vector ψ = (ψA, ψB)

T. The two components physically represent the two sublattices A and B
that make up the graphene lattice.

This dispersion is very different from k2/2m and this will affect the Landau levels. With a
magnetic field in the z-direction and using the Landau-gaugeA = (0, Bx, 0), we get (p = ~k):

Ĥ = vF [pxσx + (py − eBx)σy]. (6)

To find the Landau levels and their energies, we have to solve the Schrodinger equation Ĥψ =
Eψ. However, there is a simpler way to find the eigenvalues E: try to solve H2ψ = E2ψ!
Which result do you get for E?

0.1.2 Edge-effects on Landau levels
When computing the number of states that fit into a given Landau level (LL), we neglected the
effect that edges can have on the LL. There is a confining potential at the edges of a material
which ensures that electrons do not simply flow into vacuum. Let us see how this affects the
LLs.

At an edge (see figure A), there should exist an electric field E in order to have a "wall-force"
acting on the electrons. The electric field exists due to the potential gradient∇V at the edge.
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Let us choose E = Ex̂ and a gauge A = xBŷ (which gives B = Bẑ). The Hamiltonian then
becomes

Ĥ =
1

2m
[p̂2x + (p̂y + |e|Bx)2] + |e|Ex. (7)

The last term is the potential energy of a charge q = −|e| in an electric field E. Since Ĥ
commutes with p̂y, the wavefunction has to have the form ψ = eikyyφ(x). We can complete the
square just like we did in the case with zero electric field E, which gives the energies

En(ky) = ~ωc(n+ 1/2)− eE
(
kyl

2
B +

eE

mω2
c

)
+
m

2

E2

B2
. (8)

We defined the auxiliary quantities ωc = eB/m and lB =
√

~/eB. Unlike before, the energy
eigenvalues En now depend on ky: the massive degeneracy of the LLs has been lifted. As a
result, the LL will drift in the ŷ-direction since the group velocity of a state is obtained from
vg = (1/~)∂E/∂k, which gives vy = −E/B.

We note that the cyclotron orbits of the LLs will drift in the direction B × E in general and
not in the direction of E. This can be seen even classically. In the lab frame, the force acting
on the electrons is F = q(E + v ×B) = mdv/dt. If we shift to a different inertial frame by
letting v → (E ×B)/B2 + v′, we instead obtain mdv′/dt = qv′ ×B. This describes circular
motion in the new frame which is moving with (E ×B)/B2 relative the lab frame. In effect,
the circular orbits are drifting.

As a consequence, we should expect an edge current (see figure B) in a 2D system.

Disclaimer: first two figures taken from the web.
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