TFY4205 Quantum Mechanics II Problemset mandatory exercise 2 fall 2022

Problem 1 (method of partial waves and Born approximation)

When particles with mass m are scattered by the repulsive potential

$$
\begin{equation*}
V(r)=\frac{\hbar^{2} g}{2 m} \frac{1}{r^{2}}, \tag{1}
\end{equation*}
$$

where g is a dimensionless positive constant, then the scattering phase shifts are given by

$$
\begin{equation*}
\delta_{l}=\frac{\pi}{2}\left(l+\frac{1}{2}-\sqrt{\left(l+\frac{1}{2}\right)^{2}+g}\right) . \tag{2}
\end{equation*}
$$

1. What is the energy dependence of the differential scattering cross-section?
2. Find an expression for δ_{l} when g is small $(g \ll 1)$. Use this to calculate the differential scattering cross section for small g by summing over all l. If you need relations for Legendre polynomials, you can certainly look them up.
3. Calculate the scattering cross-section for this potential in the first Born approximation and compare the result with point 2 . (Hint: $\int_{0}^{\infty} \frac{\sin x}{x} d x=\pi / 2$).
4. Derive the expression for the scattering phase shifts δ_{l} given above. Note that you can merge the interaction into the centrifugal potential by introducing an effective quantum number \tilde{l} (instead of l) and that the solution of the radial equation without potential then has the form:

$$
\begin{equation*}
R_{l}(r) \propto \frac{\sin (k r-\tilde{l} \pi / 2)}{r} \tag{3}
\end{equation*}
$$

for large r.

Problem 2

Consider scattering by a potential $V(r)=\alpha \delta(r-a)$ where α, a are both positive, real constants. The incident particle has very low energy so that we may set $k a \ll 1$ where k is the wavevector of the incident particle.

For such low energies, only the zeroth partial wave $l=0$ should contribute to scattering. Define $a_{0}=\left(\mathrm{e}^{\mathrm{i} \delta_{0}} / k\right) \sin \delta_{0}$ where δ_{0} is the $l=0$ scattering phase.

It can then be shown that the solution for the wavefunction in the region $r \geq a$ may be written as:

$$
\begin{equation*}
\psi=\frac{A}{k r}\left(\sin k r+k a_{0} \mathrm{e}^{\mathrm{i} k r}\right) \tag{4}
\end{equation*}
$$

where A is a coefficient to be determined by matching the above wavefunction to the wavefunction in the region $r \leq a$. In this inner region, the general solution of the wavefunction is

$$
\begin{equation*}
\psi=B \frac{\sin k r}{r}+C \frac{\cos k r}{r} . \tag{5}
\end{equation*}
$$

Here, B, C are two additional coefficients to determined.
a) The quantity $a_{0}=a_{0}\left(\delta_{0}\right)$ determines the differential scattering cross section in the low-energy limit. Derive an explicit expression for a_{0} for the system described. Note that the expression may be simplified by using $k a \ll 1$.
b) Compute the total scattering cross section in the low-energy limit. Comment on the result you get when $\alpha \rightarrow \infty$. In particular, which physical scenario is it equivalent to?

