TFY4205 Quantum Mechanics II

 Problemset mandatory exercise 1 fall 2022
Problem 1 (Berry's Phase for Harmonic Oscillator)

In this problem, we are going to calculate the geometric phase γ for a simple harmonic oscillator with the Hamiltonian

$$
\begin{equation*}
H=\frac{\hbar \omega}{2}\left[\left(P-\sqrt{2} x_{2}\right)^{2}+\left(Q-\sqrt{2} x_{1}\right)^{2}\right] \tag{1}
\end{equation*}
$$

where Q and P are the operators for position and momentum satisfying $[Q, P]=i$, and x_{1} and x_{2} are slowly varying real parameters that, over the course of a cycle, specify a closed curve in the x_{1}, x_{2} plane.
a. Make use of the identity

$$
\begin{equation*}
e^{A} B e^{-A}=B+[A, B]+\frac{1}{2!}[A,[A, B]]+\ldots \tag{2}
\end{equation*}
$$

which is a special case of the Baker-Campbell-Hausdorff formula (seehttps://en.wikipedia. org/wiki/Baker-Campbell-Hausdorff_formulafor details and proof) to show that

$$
\begin{equation*}
H=D(\alpha) H_{0} D^{\dagger}(\alpha)=\hbar \omega\left[\left(a^{\dagger}-\alpha^{*}\right)(a-\alpha)+\frac{1}{2}\right] \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
& \quad D(\alpha)=\exp \left(\alpha a^{\dagger}-\alpha^{*} a\right) \tag{4}\\
& a=\frac{1}{\sqrt{2}}(Q+i P) \quad a^{\dagger}=\frac{1}{\sqrt{2}}(Q-i P) \quad \alpha=\left(x_{1}+i x_{2}\right) \tag{5}\\
& H_{0}=\hbar \omega\left(a^{\dagger} a+\frac{1}{2}\right) \tag{6}
\end{align*}
$$

The eigenvalues and eigenstates of H_{0} are, of course, $\hbar \omega\left(n+\frac{1}{2}\right)$ and $|n\rangle$, respectively. The corresponding eigenstates of H are the coherent states $|n, \alpha\rangle=D(\alpha)|n\rangle$.
b. The geometric phase for the coherent state $|n, \alpha\rangle$ is given by the formula

$$
\begin{align*}
\gamma_{n} & =-\operatorname{Im} \oint\langle n, \alpha| \nabla|n, \alpha\rangle \cdot d \mathbf{R} \tag{7}\\
& =-\operatorname{Im} \oint\langle n| D^{\dagger}(\alpha) \nabla D(\alpha)|n\rangle \cdot d \mathbf{R} \tag{8}
\end{align*}
$$

Show that

$$
\begin{align*}
D^{\dagger} \frac{\partial D}{\partial x_{1}} & =-i x_{2}+\left(a^{\dagger}-a\right) \tag{9}\\
D^{\dagger} \frac{\partial D}{\partial x_{2}} & =i x_{1}+i\left(a^{\dagger}+a\right) \tag{10}
\end{align*}
$$

Thus, show that for any $n, 8$ yields

$$
\begin{equation*}
\gamma=\oint\left(x_{2} d x_{1}-x_{1} d x_{2}\right) \tag{11}
\end{equation*}
$$

What is the geometric interpretation of the integral on the right-hand side of 11$)$?

Problem 2 (Berry's Phase)

Assume that the time dependence of the Hamiltonian is represented by a "vector of parameters" $\mathbf{R}(t)$. That is, there exists some space in which the components of vector $\mathbf{R}(t)$ specify the Hamiltonian and change as a function of time. Therefore, we have $E_{n}(t)=E_{n}(\mathbf{R}(t))$ and $|n ; t\rangle=|n(\mathbf{R}(t))\rangle$, and also

$$
\begin{equation*}
\langle n ; t|\left[\frac{\partial}{\partial t}|n ; t\rangle\right]=\langle n ; t|\left[\nabla_{R}|n ; t\rangle\right] \cdot \frac{d \mathbf{R}}{d t} \tag{12}
\end{equation*}
$$

where ∇_{R} is simply a gradient operator in the space and direction of \mathbf{R}. The geometrical phase then becomes

$$
\begin{align*}
\gamma_{n}(T) & =i \int_{0}^{T}\langle n ; t|\left[\nabla_{R}|n ; t\rangle\right] \cdot \frac{d \mathbf{R}}{d t} d t \tag{13}\\
& =\int_{\mathbf{R}(0)}^{\mathbf{R}(T)}\langle n ; t|\left[\nabla_{R}|n ; t\rangle\right] \cdot d \mathbf{R} \tag{14}
\end{align*}
$$

In the case where T represent the periods for one full cycle, so that $\mathbf{R}(T)=\mathbf{R}(0)$, where the vector \mathbf{R} traces a curve C, we have

$$
\begin{align*}
\gamma_{n}(C) & \left.=i \oint\langle n ; t|\left[\nabla_{R}|n ; t\rangle\right] \cdot d \mathbf{R}\right] \tag{15}\\
& =\oint_{C} \mathbf{A}_{n}(\mathbf{R}) \cdot d \mathbf{R} \tag{16}\\
& =\int\left[\nabla_{R} \times \mathbf{A}_{n}(\mathbf{R})\right] \cdot d a \tag{17}
\end{align*}
$$

such that

$$
\begin{equation*}
\mathbf{A}_{n}(\mathbf{R})=i\langle n ; t|\left[\nabla_{R}|n ; t\rangle\right] \tag{18}
\end{equation*}
$$

Show that $\mathbf{A}_{n}(\mathbf{R})$ is a purely real quantity.

Problem 3 (Berry's Phase)

Consider a neutron in a magnetic field. The magnetic field is fixed at an angle θ with respect to the z-axis, but rotating slowly in the ϕ-direction. That is, the tip of the magnetic field traces out a circle on the surface of the sphere at "latitude" $\frac{\pi}{2}-\theta$. Explicitly, starting out from (18), calculate the Berry potential \mathbf{A} for the spin-up state w.r.t the magnetic field direction, take its curl, and determine Berry's Phase γ_{+}.

Hint: With a magnetic field orientated at an angle θ with respect to the z-axis, the state vector of a state parallel to this direction is

$$
\begin{equation*}
|n ; t\rangle=\cos \left(\frac{\theta}{2}\right)|+\rangle+e^{i \phi} \sin \left(\frac{\theta}{2}\right)|-\rangle \tag{19}
\end{equation*}
$$

where $| \pm\rangle$ is a state vector orientated along $\pm z$-axis

