TFY4205 Quantum Mechanics II Problemset 4 fall 2022

Problem 1 (WKB-approximation)

Consider a particle incident from $x<0$ toward a potential which is equal to an unknown function $V(x)$ in the region $0<x<a$ while the potential is zero everywhere else. The particle has an energy E which is smaller than $V(x)$ at all points in $0<x<a$.

Set up the wavefunctions in each region of space and use appropriate boundary conditions to write down a system of linear equations for the coefficients associated with the wavefunctions (such as the transmission coefficient associated with the wavefunction in the region $x>a$). You may assume that the potential is slowly varying so that you can use the WKB-approximation.

Without solving the equations, can you say anything about which behavior you expect for one of the coefficients in the region $0<x<a$?

Problem 2 (time-dependent perturbation theory)

The transition probability from an initial state b to a final state s is given by:

$$
\begin{equation*}
P_{b \rightarrow s}=\left|a_{b \rightarrow s}(t)\right|^{2} . \tag{1}
\end{equation*}
$$

The transition amplitude, to first order in the perturbation \hat{V}, is given by

$$
\begin{equation*}
a_{b \rightarrow s}=a_{s}=\frac{1}{\mathrm{i} \hbar} \int_{t_{0}}^{t} V_{s b}(\tau) \mathrm{e}^{\mathrm{i} \omega_{s b} \tau} d \tau \tag{2}
\end{equation*}
$$

when $s \neq b$. To first order in the perturbation \hat{V}, the transition amplitude for a system to remain in its initial state b is:

$$
\begin{equation*}
a_{b \rightarrow b}=1+\frac{1}{\mathrm{i} \hbar} \int_{t_{0}}^{t} V_{b b}(\tau) d \tau . \tag{3}
\end{equation*}
$$

However, this transition amplitude gives a transition probability:

$$
\begin{equation*}
P_{b \rightarrow b}=\left|a_{b \rightarrow b}(t)\right|^{2}=1+\frac{1}{\hbar^{2}}\left|\int_{t_{0}}^{t} V_{b b} d \tau\right|^{2} . \tag{4}
\end{equation*}
$$

which is larger than 1 . Resolve this apparent paradox.

Problem 3 (time-dependent perturbation theory)

A one-dimensional harmonic oscillator is, at $t=0$, in the first excited state $|1\rangle$. Acting on the system is a potential that is exponentially damped as a function of time. The total Hamiltonian for $t \geq 0$ is given by

$$
\begin{equation*}
H=\hbar \omega\left(a^{\dagger} a+\frac{1}{2}\right)+V_{0} \mathrm{e}^{-t / \tau}\left(a+a^{\dagger}\right) \tag{5}
\end{equation*}
$$

where τ is a constant relaxation time and $V_{0} \ll \hbar \omega$.

1. What is, to first order in V_{0}, the wave function for $t \geq 0$?
2. After a long ("infinite") time, the energy of the system is measured. What results have the highest probability, and what are these probabilities? Consider only the eigenvalues with the three highest probabilities.
