TFY4205 Quantum Mechanics II Problemset 2 fall 2022

Problem 1 (harmonic oscillator)

In this problem, we consider various aspects of a 1D harmonic oscillator with mass m and angular frequency ω.

1. Calculate the average value of q^{5} in the nth energy eigenstate $|n\rangle$.
2. Calculate the average value of q^{4} in the ground state $|0\rangle$ using the raising and lowering operators.
3. Why is the average value in 2 . equal to the square of the absolute value of the vector $\hat{q}^{2}|0\rangle$?

Calculate $\hat{q}^{2}|0\rangle$ and deduce from this the average value of q^{4} in the ground state.
4. Show that the matrix elements of the position operator are

$$
\begin{equation*}
\langle k| \hat{q}|l\rangle=q_{0}\left(\sqrt{l} \delta_{k, l-1}+\sqrt{l+1} \delta_{k, l+1}\right) \tag{1}
\end{equation*}
$$

where $\delta_{n m}$ is a Kronecker delta and

$$
\begin{equation*}
q_{0} \equiv \sqrt{\hbar / 2 m \omega} . \tag{2}
\end{equation*}
$$

5. Let the state vector be in a superposition of two stationary states so that at $t=0$ it reads:

$$
\begin{equation*}
|\Psi(t=0)\rangle=\frac{1}{2}|0\rangle+\frac{\sqrt{3}}{2}|1\rangle . \tag{3}
\end{equation*}
$$

Calculate the average position $\langle q\rangle$ in this state (use the result from 4.)
6. For the oscillator which at $t=0$ was in the state given by Eq. (3), calculate the average value of q at a later time t.

Problem 2 (time-independent perturbation theory)

A harmonic oscillator with $H_{0}=p_{x}^{2} / 2 m+\frac{1}{2} m \omega^{2} x^{2}$ is perturbed by a force acting in the positive x direction. This corresponds to adding a term $H_{1}=-F x$ to the Hamiltonian, so that $H=H_{0}+H_{1}$.

1. Using time-independent perturbation theory, compute the energy eigenvalues E_{n} up to second order in the perturbation and also compute the state vector $\left|\psi_{n}\right\rangle$ to first order in the perturbation.
2. Show that by rewriting the total Hamiltonian H, it is possible to solve this problem exactly and identify what the exact energy eigenvalues $E_{n}=E_{n}(F)$ are.

Problem 3 (time-independent perturbation theory)

A nonlinear two-dimensional harmonic oscillator has the Hamiltonian:

$$
\begin{equation*}
H=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right)(1+\lambda x y), \tag{4}
\end{equation*}
$$

where λ is a small parameter.

1. Find the three lowest states when $\lambda=0$.
2. Using first order perturbation theory, calculate the energy eigenvalues for the three lowest energy states when $\lambda \neq 0$.
