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1. Classial mehanis

As a starter we review in this hapter those onepts of lassial mehanis whih are es-

sential for progressing towards quantum theory. We reall �rst briey the Lagrangian and

Hamiltonian formulation of lassial mehanis and their derivation from an ation priniple.

We illustrate also the Green funtion method using as example the driven harmoni osillator

and reall the ation of a relativisti point partile.

1.1. Ation priniple

Variational priniples Fundamental laws of Nature as Newton's axioms or Maxwell's equa-

tions were disovered in the form of di�erential equations. Starting from Leibniz and Euler,

it was realised that one an re-express di�erential equations in the form of variational prin-

iples: In this approah, the evolution of a physial system is desribed by the extremum of

an appropriately hosen funtional. Various versions of suh variational priniples exist, but

they have in ommon that the funtionals used have the dimension of \energy � time", i.e.

the funtionals have the same dimension as Plank's onstant ~. A quantity with this dimen-

sion is alled ation S. An advantage of using the ation as main tool to desribe dynamial

systems is that this allows us to implement easily both spae-time and internal symmetries.

For instane, hoosing as ingredients of the ation loal funtions that transform as salars

under Lorentz transformations leads automatially to relativistially invariant �eld equations.

Moreover, the ation S summarises eonomially the information ontained typially in a set

of various oupled di�erential equations.

If the variational priniple is formulated as an integral priniple, then the funtional S will

depend on the whole path q(t) desribed by the system between the onsidered initial and �nal

time. In the formulation of quantum theory we will pursue, we will look for a diret onnetion

from the lassial ation S[q℄ of the path [q(t): q

0

(t

0

)℄ to the transition amplitude hq

0

; t

0

jq; ti.

Thus the use of the ation priniple will not only simplify the disussion of symmetries of a

physial system, but lies also at the heart of the approah to quantum theory we will follow.

1.1.1. Hamilton's priniple and Lagrange's equations

A funtional F [f(x)℄ is a map from a ertain spae of funtions f(x) into the real or omplex

numbers. We will onsider mainly funtionals from the spae of (at least) twie di�eren-

tiable funtions between �xed points a and b. More spei�ally, Hamilton's priniple uses as

funtional the ation S de�ned by

S[q

i

℄ =

Z

b

a

dt L(q

i

; _q

i

; t) ; (1.1)

where L is a funtion of the 2n independent funtions q

i

and _q

i

= dq

i

=dt as well as of the

parameter t. In lassial mehanis, we all L the Lagrange funtion of the system, q

i

are its

1



1. Classial mehanis

n generalised oordinates, _q

i

the orresponding veloities and t is the time. The extrema of

this ation give those paths q(t) from a to b whih are solutions of the equations of motion

for the system desribed by L.

How do we �nd those paths that extremize the ation S? First of all, we have to presribe

whih variables are kept onstant, whih are varied and whih onstraints the variations have

to obey. Depending on the variation priniple we hoose, these onditions and the funtional

form of the ation will di�er. Hamilton's priniple orresponds to a smooth variation of the

path,

q

i

(t; ") = q

i

(t; 0) + "�

i

(t) ;

that keeps the endpoints �xed, �

i

(a) = �

i

(b) = 0, but is otherwise arbitrary. The sale fator

" determines the magnitude of the variation for the one-parameter family of paths "�

i

(t). The

notation S[q

i

℄ stresses that we onsider the ation as a funtional only of the oordinates q

i

:

The veloities _q

i

are not varied independently beause " is time-independent. Sine the time

t is not varied in Hamilton's priniple, varying the path q

i

(t; ") requires only to alulate the

resulting hange of the Lagrangian L. Following this presription, the ation has an extremum

if

0 =

�S[q

i

(t; ")℄

�"

�

�

�

�

"=0

=

Z

b

a

dt

�

�L

�q

i

�q

i

�"

+

�L

� _q

i

� _q

i

�"

�

=

Z

b

a

dt

�

�L

�q

i

�

i

+

�L

� _q

i

_�

i

�

: (1.2)

Here we applied|as always in the following|Einstein's onvention to sum over a repeated

index pair. Thus e.g. the �rst term in the braket equals

�L

�q

i

�

i

�

n

X

i=1

�L

�q

i

�

i

for a system desribed by n generalised oordinates. We an eliminate _�

i

in favour of �

i

,

integrating the seond term by parts, arriving at

�S[q

i

(t; ")℄

�"

�

�

�

�

"=0

=

Z

b

a

dt

�

�L

�q

i

�

d

dt

�

�L

� _q

i

��

�

i

+

�

�L

� _q

i

�

i

�

b

a

: (1.3)

The boundary term [: : :℄

b

a

vanishes, beause we required that the funtions �

i

are zero at the

endpoints a and b. Sine these funtions are otherwise arbitrary, eah individual term in the

�rst braket has to vanish for an extremal urve. The n equations resulting from the ondition

�S[q

i

(t; ")℄=�" = 0 are alled the (Euler-) Lagrange equations of the ation S,

�L

�q

i

�

d

dt

�L

� _q

i

= 0 ; (1.4)

and give the equations of motion for the system spei�ed by L. In the future, we will use a

more onise notation, alling

Æq

i

� lim

"!0

q

i

(t; ") � q

i

(t; 0)

"

=

�q

i

(t; ")

�"

�

�

�

�

"=0

(1.5)

the variation of q

i

, and similarly for funtions and funtionals of q

i

. Thus we an re-write e.g.

Eq. (1.2) in a more evident form as

0 = ÆS[q

i

℄ =

Z

b

a

dt ÆL(q

i

; _q

i

; t) =

Z

b

a

dt

�

�L

�q

i

Æq

i

+

�L

� _q

i

Æ _q

i

�

: (1.6)
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1.1. Ation priniple

We lose this paragraph with three remarks. First, we note that Hamilton's priniple is often

alled the priniple of least ation. This name is somewhat misleading, sine the extremum

of the ation an be also a maximum or a saddle point. Seond, observe that the Lagrangian

L is not uniquely �xed: Adding a total time-derivative, L ! L

0

= L + df(q; t)=dt, does not

hange the resulting Lagrange equations,

S

0

= S +

Z

b

a

dt

df

dt

= S + f(q(b); t

b

)� f(q(a); t

a

) ; (1.7)

sine the last two terms vanish varying the ation with the restrition of �xed endpoints a and

b. Finally, note that we used a Lagrangian that depends only on the oordinates and their

�rst derivatives. Suh a Lagrangian leads to seond-order equations of motion and thus to

a mehanial system spei�ed by the 2n piees of information fq

i

; _q

i

g. Ostrogradsky showed

1850 that a stable ground-state is impossible, if the Lagrangian ontains higher derivatives

�q; q

(3)

; : : :, f. problem 1.??. Therefore suh theories ontradit our experiene that the va-

uum is stable. Construting Lagrangians for the fundamental theories desribing Nature, we

should restrit ourselves thus to Lagrangians that lead to seond-order equations of motion.

Lagrange funtion We illustrate now how one an use symmetries to onstrain the possible

form of a Lagrangian L. As example, we onsider the ase of a free non-relativisti partile

with mass m subjet to the Galilean priniple of relativity. More preisely, we use that the

homogeneity of spae and time forbids that L depends on x and t, while the isotropy of spae

implies that L depends only on the norm of the veloity vetor v, but not on its diretion.

Thus the Lagrange funtion of a free partile an be only a funtion of v

2

, L = L(v

2

).

Let us onsider two inertial frames moving with the in�nitesimal veloity " relative to eah

other. (Reall that an inertial frame is de�ned as a oordinate system where a fore-free

partile moves along a straight line.) Then a Galilean transformation onnets the veloities

measured in the two frames as v

0

= v+". The Galilean priniple of relativity requires that the

laws of motion have the same form in both frames, and thus the Lagrangians an di�er only

by a total time-derivative. Expanding the di�erene ÆL in " gives with Æv

2

= 2v � "+O("

2

)

ÆL =

�L

�v

2

Æv

2

= 2v � "

�L

�v

2

: (1.8)

Sine v

i

= dx

i

=dt, the term �L=�v

2

has to be independent of v suh that the di�erene ÆL

is a total time-derivative. Hene, the Lagrangian of a free partile has the form L = av

2

+ b.

The onstant b drops out of the equations of motion, and we an set it therefore to zero. To

be onsistent with usual notation, we all the proportionality onstant m=2, and the total

expression kineti energy T ,

L = T =

1

2

mv

2

: (1.9)

For a system of non-interating partiles, the Lagrange funtion L is additive, L =

P

a

1

2

m

a

v

2

a

.

If there are interations (assumed for simpliity to depend only on the oordinates), then we

subtrat a funtion V (x

1

;x

2

; : : :) alled potential energy. One on�rms readily that this

hoie for L reprodues Newton's law of motion.

3



1. Classial mehanis

Energy The Lagrangian of a losed system does not depend on time beause of the homo-

geneity of time. Its total time derivative is

dL

dt

=

�L

�q

i

_q

i

+

�L

� _q

i

�q

i

: (1.10)

Using the equations of motion and replaing �L=�q

i

by (d=dt)�L=� _q

i

, it follows

dL

dt

= _q

i

d

dt

�L

� _q

i

+

�L

� _q

i

�q

i

=

d

dt

�

_q

i

�L

� _q

i

�

: (1.11)

Hene the quantity

E � _q

i

�L

� _q

i

� L (1.12)

remains onstant during the evolution of a losed system. This holds also more generally, e.g.

in the presene of stati external �elds, as long as the Lagrangian is not time-dependent.

We have still to show that E oinides indeed with the usual de�nition of energy. Using

as Lagrange funtion L = T (q; _q) � V (q), where the kineti energy T is quadrati in the

veloities, we have

_q

i

�L

� _q

i

= _q

i

�T

� _q

i

= 2T (1.13)

and thus E = 2T � L = T + V .

Conservation laws In a general way, we an derive the onnetion between a symmetry of

the Lagrangian and a orresponding onservation law as follows: Let us assume that under a

hange of oordinates q

i

! q

i

+Æq

i

, the Lagrangian hanges at most by a total time derivative,

L! L+ ÆL = L+

dÆF

dt

: (1.14)

In this ase, the equation of motions are unhanged and the oordinate hange q

i

! q

i

+ Æq

i

is a symmetry of the Lagrangian. But the hange dÆF=dt has to equal ÆL indued by the

variation Æq

i

,

�L

�q

i

Æq

i

+

�L

� _q

i

Æ _q

i

�

dÆF

dt

= 0 : (1.15)

Replaing again �L=�q

i

by (d=dt)�L=� _q

i

and applying the produt rule gives as onserved

quantity

Q =

�L

� _q

i

Æq

i

� ÆF : (1.16)

Thus any ontinuous symmetry of a Lagrangian system results in a onserved quantity. In

partiular, energy onservation follows for a system invariant under time-translations with

Æq

i

= _q

i

Æt. Other onservation laws are disussed in problem 1.??.

1.1.2. Palatini's priniple and Hamilton's equations

Legendre transformation and the Hamilton funtion In the Lagrange formalism, we de-

sribe a system speifying its generalised oordinates and veloities using the Lagrangian,

4



1.1. Ation priniple

L = L(q

i

; _q

i

; t). An alternative is to use generalised oordinates and their anonially onju-

gated momenta p

i

de�ned as

p

i

=

�L

� _q

i

: (1.17)

The passage from fq

i

; _q

i

g to fq

i

; p

i

g is a speial ase of a Legendre transformation

1

: Starting

from the Lagrangian L we de�ne a new funtion H(q

i

; p

i

; t) alled Hamiltonian or Hamilton

funtion via

H(q

i

; p

i

; t) =

�L

� _q

i

_q

i

� L(q

i

; _q

i

; t) = p

i

_q

i

� L(q

i

; _q

i

; t) : (1.18)

Here we assume that we an invert the de�nition (1.17) and are thus able to substitute

veloities _q

i

by momenta p

i

in the Lagrangian L.

The physial meaning of the Hamiltonian H follows immediately omparing its de�ning

equation with the one for the energy E. Thus the numerial value of the Hamiltonian equals

the energy of a dynamial system; we insist however that H is expressed as funtion of

oordinates and their onjugated momenta. A oordinate q

i

that does not appear expliitly

in L is alled yli. The Lagrange equations imply then �L=� _q

i

= onst:, so that the

orresponding anonially onjugated momentum p

i

= �L=� _q

i

is onserved.

Palatini's formalism and Hamilton's equations Previously, we onsidered the ation S as a

funtional only of q

i

. Then the variation of the veloities _q

i

is not independent and we arrive

at n seond order di�erential equations for the oordinates q

i

. An alternative approah is to

allow independent variations of the oordinates q

i

and of the veloities _q

i

. We trade the latter

against the momenta p

i

= �L=� _q

i

and rewrite the ation as

S[q

i

; p

i

℄ =

Z

b

a

dt

�

p

i

_q

i

�H(q

i

; p

i

; t)

�

: (1.19)

The independent variation of oordinates q

i

and momenta p

i

gives

ÆS[q

i

; p

i

℄ =

Z

b

a

dt

�

p

i

Æ _q

i

+ _q

i

Æp

i

�

�H

�q

i

Æq

i

�

�H

�p

i

Æp

i

�

: (1.20)

The �rst term an be integrated by parts, and the resulting boundary terms vanishes by

assumption. Colleting then the Æq

i

and Æp

i

terms and requiring that the variation is zero,

we obtain

0 = ÆS[q

i

; p

i

℄ =

Z

b

a

dt

�

�

�

_p

i

+

�H

�q

i

�

Æq

i

+

�

_q

i

�

�H

�p

i

�

Æp

i

�

: (1.21)

As the variations Æq

i

and Æp

i

are independent, their oeÆients in the round brakets have to

vanish separately. Thus we obtain in this formalism diretly Hamilton's equations,

_q

i

=

�H

�p

i

; and _p

i

= �

�H

�q

i

: (1.22)

Consider now an observable O = O(q

i

; p

i

; t). Its time-dependene is given by

dO

dt

=

�O

�q

i

_q

i

+

�O

�p

i

_p

i

+

�O

�t

=

�O

�q

i

�H

�p

i

�

�O

�p

i

�H

�q

i

+

�O

�t

; (1.23)

1

The onept of a Legendre transformation may be familiar from thermodynamis, where it is used to hange

between extensive variables (e.g. the entropy S) and their onjugate intensive variables (e.g. the temperature

T ).
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1. Classial mehanis

where we used Hamilton's equations. If we de�ne the Poisson brakets fA;Bg between two

observables A and B as

fA;Bg =

�A

�q

i

�B

�p

i

�

�A

�p

i

�B

�q

i

; (1.24)

then we an rewrite Eq. (1.23) as

dO

dt

= fO;Hg+

�O

�t

: (1.25)

This equations gives us a formal orrespondene between lassial and quantum mehanis:

The time-evolution of an operator O in the Heisenberg piture is given by the same equation

as in lassial mehanis, if the Poisson braket is hanged to a ommutator. Sine the Poisson

braket is antisymmetri, we �nd

dH

dt

=

�H

�t

: (1.26)

Hene the Hamiltonian H is a onserved quantity, if and only if H is time-independent.

1.2. Green funtions and the response method

We an test the internal properties of a physial system, if we impose an external fore J(t)

on it and ompare its measured to its alulated response. If the system is desribed by

linear di�erential equations, then the superposition priniple is valid: We an reonstrut

the solution x(t) for an arbitrary applied external fore J(t), if we know the response to

a normalised delta funtion-like kik J(t) = Æ(t � t

0

). Mathematially, this orresponds to

the knowledge of the Green funtion G(t � t

0

) for the di�erential equation D(t)x(t) = J(t)

desribing the system. Even if the system is desribed by a non-linear di�erential equation,

we an often use a linear approximation in ase of a suÆiently small external fore J(t).

Therefore the Green funtion method is extremely useful and we will apply it extensively

disussing quantum �eld theories.

We illustrate this method with the example of the harmoni osillator whih is the prototype

for a quadrati, and thus exatly solvable, ation. In lassial physis, ausality implies that

the knowledge of the external fore J(t

0

) at times t

0

< t is suÆient to determine the solution

x(t) at time t. We de�ne therefore two Green funtions

e

G and G

R

by

x(t) =

Z

t

�1

dt

0

e

G(t� t

0

)J(t

0

) =

Z

1

�1

dt

0

G

R

(t� t

0

)J(t

0

) ; (1.27)

where the retarded Green funtion G

R

satis�es G

R

(t� t

0

) =

e

G(t� t

0

)#(t� t

0

). The de�nition

(1.27) is motivated by the trivial relation J(t) =

R

dt

0

Æ(t � t

0

)J(t

0

): An arbitrary fore J(t)

an be seen as a superposition of delta funtions Æ(t � t

0

) with weight J(t

0

). If the Green

funtion G

R

(t� t

0

) determines the response of the system to a delta funtion-like fore, then

we should obtain the solution x(t) integrating G

R

(t� t

0

) with the weight J(t

0

).

We onvert the equation of motion m�x +m!

2

x = J of a fored harmoni osillator into

the form D(t)x(t) = J(t) by writing

D(t)x(t) � m

�

d

2

dt

2

+ !

2

�

x(t) = J(t) : (1.28)

6



1.2. Green funtions and the response method

Im(
)

Re(
)

C

�

�! � i"

�

! � i"

�

Figure 1.1.: Poles and ontour in the omplex 
 plane used for the integration of the retarded

Green funtion.

Inserting (1.27) into (1.28) gives

Z

1

�1

dt

0

D(t)G

R

(t� t

0

)J(t

0

) = J(t) : (1.29)

For an arbitrary external fore J(t), this relation an be only valid if

D(t)G

R

(t� t

0

) = Æ(t� t

0

) : (1.30)

Thus a Green funtion G(t � t

0

) is the inverse of its de�ning di�erential operator D(t). As

we will see, Eq. (1.30) does not speify uniquely the Green funtion, and thus we will omit

the index \R" for the moment. Performing a Fourier transformation,

G(t� t

0

) =

Z

d


2�

G(
)e

�i
(t�t

0

)

and Æ(t� t

0

) =

Z

d


2�

e

�i
(t�t

0

)

; (1.31)

we obtain

Z

d


2�

G(
)D(t)e

�i
(t�t

0

)

=

Z

d


2�

e

�i
(t�t

0

)

: (1.32)

The ation of D(t) on the plane-waves e

�i
(t�t

0

)

an be evaluated easily, sine the di�erentia-

tion has beome equivalent with multipliation, d=dt! �i
. Comparing then the oeÆients

of the plane-waves on both sides of this equation, we have to invert only an algebrai equation,

arriving at

G(
) =

1

m

1

!

2

� 


2

: (1.33)

For the bak-transformation with � = t� t

0

,

G(�) =

Z

d


2�m

e

�i
�

!

2

�


2

; (1.34)

we have to speify how the poles at 


2

= !

2

are avoided. It is this hoie by whih we selet

the appropriate Green funtion. In lassial physis, we implement ausality (\ause always

preedes its e�et") seleting the retarded Green funtion.

We will use Cauhy's residue theorem,

H

dz f(z) = 2�i

P

res

z

0

f(z), to alulate the inte-

gral. Its appliation requires to lose the integration ontour adding a path whih gives a

7



1. Classial mehanis

vanishing ontribution to the integral. This is ahieved, when the integrand G(
)e

�i
�

van-

ishes fast enough along the added path. Thus we have to hoose for positive � the ontour C

�

in the lower plane, e

�i
�

= e

�j=(
)j�

! 0 for =(
)! �1, while we have to lose the ontour

in the upper plane for negative � . If we want to obtain the retarded Green funtion G

R

(�)

whih vanishes for � < 0, we have to shift therefore the poles 


1=2

= �! into the lower plane

as shown in Fig. 1.1 by adding a small negative imaginary part, 


1=2

! 


1=2

= �! � i", or

G

R

(�) = �

1

2�m

Z

d


e

�i
�

(
� ! + i")(
 + ! + i")

: (1.35)

The residue res

z

0

f(z) of a funtion f with a single pole at z

0

is given by

res

z

0

f(z) = lim

z!z

0

(z � z

0

)f(z) : (1.36)

Thus we pik up at 


1

= �! � i" the ontribution 2�i e

+i!�

=(�2!), while we obtain

2�i e

�i!�

=(2!) from 


2

= ! � i". Combining both ontributions and adding a minus sign

beause the ontour is lokwise, we arrive at

G

R

(�) =

i

2m!

�

e

�i!�

� e

i!�

�

#(�) =

1

m

sin(!�)

!

#(�) (1.37)

as result for the retarded Green funtion of the fored harmoni osillator.

We an now obtain a partiular solution solving (1.27). For instane, hoosing J(t

0

) =

Æ(t� t

0

), results in

x(t) =

1

m

sin(!t)

!

#(t) : (1.38)

Thus the osillator was at rest for t < 0, got a kik at t = 0, and osillates aording x(t)

afterwards. Note the following two points: First, the fat that the kik proeeds the movement

is the result of our hoie of the retarded (or ausal) Green funtion. Seond, the partiular

solution (1.38) for an osillator initially at rest an be generalised by adding the solution to

the homogeneous equation �x+ !

2

x = 0.

1.3. Relativisti partile

In speial relativity, we replae the Galilean transformations as symmetry group of spae

and time by Lorentz transformations. The latter are all those oordinate transformations

x

�

! ~x

�

= �

�

�

x

�

that keep the squared distane

s

2

12

� (t

1

� t

2

)

2

� (x

1

� x

2

)

2

� (y

1

� y

2

)

2

� (z

1

� z

2

)

2

(1.39)

between two spae-time events x

�

1

and x

�

2

invariant. The distane of two in�nitesimally lose

spae-time events is alled the line-element ds of the spae-time. In Minkowski spae, it is

given by

ds

2

= dt

2

� dx

2

� dy

2

� dz

2

(1.40)

using a Cartesian inertial frame. We an interpret the line-element ds

2

as a salar produt,

if we introdue the metri tensor �

��

with elements

�

��

=

0

B

B

�

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1

C

C

A

(1.41)

8



1.3. Relativisti partile

t

x

y

b

(x� y)

2

> 0 time-like

(x� y)

2

= 0 light-like

(x� y)

2

< 0 spae-like

Figure 1.2.: Light-one at the point P (y

�

) generated by light-like vetors. Contained in the

light-one are the time-like vetors, outside the spae-like ones.

and a salar produt of two vetors as

a � b � �

��

a

�

b

�

= a

�

b

�

= a

�

b

�

: (1.42)

In Minkowski spae, we all a four-vetor any four-tuple V

�

that transforms as

~

V

�

= �

�

�

V

�

.

By onvention, we assoiate three-vetors with the spatial part of four-vetors with upper

indies, e.g. we set x

�

= ft; x; y; zg or A

�

= f�;Ag. Lowering then the index by ontration

with the metri tensor result in a minus sign of the spatial omponents of a four-vetor,

x

�

= �

��

x

�

= ft;�x;�y;�zg or A

�

= f�;�Ag. Summing over an index pair, typially

one index ours in an upper and one in a lower position. Note that in the denominator,

an upper index ounts as a lower index and vie versa, f. e.g. with Eqs. (1.18) and (1.17).

Additionally to four-vetors, we will meet tensors T

�

1

����

n

of rank n whih transform as

~

T

�

1

����

n

= �

�

1

�

1

� � ��

�

n

�

n

T

�

1

����

n

.

Sine the metri �

��

is inde�nite, the norm of a vetor a

�

an be

a

�

a

�

> 0; time-like, (1.43a)

a

�

a

�

= 0; light-like or null-vetor, (1.43b)

a

�

a

�

< 0; spae-like. (1.43)

The one of all light-like vetors starting from a point P is alled light-one, f. Fig. 1.2. The

time-like region inside the light-one onsists of two parts, past and future. Only events inside

the past light-one an inuene the physis at point P , while P an inuene only the interior

of its future light-one. The proper-time � is the time displayed by a lok moving with the

observer. With our onventions|negative signature of the metri and  = 1|the proper-time

elapsed between two spae-time events equals the integrated line-element between them,

�

12

=

Z

2

1

ds =

Z

2

1

[�

��

dx

�

dx

�

℄

1=2

=

Z

2

1

dt[1� v

2

℄

1=2

< t

2

� t

1

: (1.44)

The last part of this equation, where we introdued the three-veloity v

i

= dx

i

=dt of the

lok, shows expliitly the relativisti e�et of time dilation, as well as the onnetion between

9



1. Classial mehanis

oordinate time t and the proper-time � of a moving lok, d� = (1 � v

2

)

1=2

dt � dt=. The

line desribing the position of an observer is alled world-line. Parametrising the worldline

by the parameter �, x = x(�), the proper-time is given by

� =

Z

d�

�

�

��

dx

�

d�

dx

�

d�

�

1=2

: (1.45)

Note that � is invariant under a reparameterisation ~� = f(�).

The only invariant di�erential we have at our disposal to form an ation for a free point-like

partile is the line-element, or equivalently the proper-time,

S

0

= �

Z

b

a

ds = �

Z

b

a

d�

ds

d�

(1.46)

with L = �ds=d� = �d�=d�. We hek now if this hoie whih implies the Lagrangian

L = �

d�

d�

= �

�

�

��

dx

�

d�

dx

�

d�

�

1=2

(1.47)

for a free partile is sensible: The ation has the orret non-relativisti limit,

S

0

= �

Z

b

a

ds = �

Z

b

a

dt

p

1� v

2

=

Z

b

a

dt

�

�m+

1

2

mv

2

+O(v

4

)

�

; (1.48)

if we set � = �m. The mass m orresponds to a potential energy in the non-relativisti limit

and has therefore a negative sign in the Lagrangian. Moreover, a onstant drops out of the

equations of motion, and thus the term �m an be omitted in the non-relativisti limit. The

time t enters the relativisti Lagrangian in a Lorentz invariant way as one of the dynamial

variables, x

�

= (t;x), while � assumes now t's purpose to parametrise the trajetory, x

�

(�).

Sine a moving lok goes slower than a lok at rest, solutions of this Lagrangian maximise

the ation.

Example 1.1: Relativisti dispersion relation: We extend the non-relativisti de�nition of the

momentum, p

i

= �L=� _x

i

, to four dimensions setting p

�

= ��L=� _x

�

. Note the minus sign that

reets the minus in the spatial omponents of a ovariant vetor, p

�

= (E;�p). Then

p

�

= �

�L

� _x

�

= m

dx

�

=d�

d�=d�

= m

dx

�

d�

� mu

�

: (1.49)

In the last step, we de�ned the four-veloity u

�

= dx

�

=d� . Using dt = d� , it follows u

�

u

�

= 1 and

p

�

p

�

= m

2

. The last relation expresses the relativisti dispersion relation E

2

= m

2

+ p

2

.

The Lagrange equations are

d

d�

�L

�(dx

�

=d�)

=

�L

�x

�

: (1.50)

Consider e.g. the x

1

omponent, then

d

d�

�L

�(dx

1

=d�)

=

d

d�

�

1

L

dx

1

d�

�

= 0 : (1.51)

10



1.3. Relativisti partile

Sine L = �md�=d�, Newton's law follows for the x

1

oordinate after multipliation with

d�=d� ,

d

2

x

1

d�

2

= 0 ; (1.52)

and similar for the other oordinates.

An equivalent, but often more onvenient form for the Lagrangian of a free partile is

L = �m�

��

_x

�

_x

�

; (1.53)

where we set _x

�

= dx

�

=d� . If there are no interations (exept gravity), we an neglet the

mass m of the partile and one often sets m! �1.

Next we want to add an interation term S

em

between a partile with harge q and an

eletromagneti �eld. The simplest possible ation is to integrate the potential A

�

along the

world-line x

�

(�) of the partile,

S

em

= �q

Z

dx

�

A

�

(x) = �q

Z

d�

dx

�

d�

A

�

(x) : (1.54)

Using the hoie � = � , we an view q _x

�

as the urrent j

�

indued by the partile and thus

the interation has the form L

em

= �j

�

A

�

. Any andidate for S

em

should be invariant under

a gauge transformation of the potential,

A

�

(x)! A

�

(x)� �

�

�(x) : (1.55)

This is the ase, sine the indued hange in the ation,

Æ

�

S

em

= q

Z

2

1

d�

dx

�

d�

��(x)

�x

�

= q

Z

2

1

d� = q[�(2)� �(1)℄ ; (1.56)

depends only on the endpoints. Thus Æ

�

S

em

vanishes keeping the endpoints �xed. Assuming

that the Lagrangian is additive,

L = L

0

+ L

em

= �m

�

�

��

dx

�

d�

dx

�

d�

�

1=2

� q

dx

�

d�

A

�

(x) (1.57)

the Lagrange equations give now

d

d�

�

mdx

�

=d�

[�

��

dx

�

=d� dx

�

=d�℄

1=2

+ qA

�

�

= q

dx

�

d�

�A

�

(x)

�x

�

: (1.58)

Performing then the di�erentiation of A(x(�)) with respet to � and moving it to the RHS,

we �nd

m

d

d�

�

dx

�

=d�

d�=d�

�

= q

�

dx

�

d�

�A

�

�x

�

�

dx

�

d�

�A

�

�x

�

�

= q

dx

�

d�

F

��

; (1.59)

where we introdued the eletromagneti �eld-strength tensor F

��

= �

�

A

�

��

�

A

�

. Choosing

� = � we obtain the ovariant version of the Lorentz equation,

m

d

2

x

�

d�

2

= q F

�

�

u

�

: (1.60)
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1. Classial mehanis

You should work through problem 1.??, if this equation and the ovariant formulation of the

Maxwell equations are not familiar to you.

Summary

The Lagrange and Hamilton funtion are onneted by a Legendre transformation,

L(q

i

; _q

i

; t) = p

i

_q

i

�H(q

i

; p

i

; t). Lagrange's and Hamilton's equations follow extremizing the

ation S[q

i

℄ =

R

b

a

dt L(q

i

; _q

i

; t) and S[q

i

; p

i

℄ =

R

b

a

dt

�

p

i

_q

i

�H(q

i

; p

i

; t)

�

, respetively, keeping

the endpoints a and b in oordinate spae �xed. Knowing the Green funtion G(t � t

0

) of a

linear system, we an �nd the solution x(t) for an arbitrary external fore J(t) by integrating

G(t� t

0

) with the weight J(t).

Further reading

The series of Landau and Lifshitz on theoretial physis is a timeless resoure for everybody

studying and working in this �eld; its volume 1 [LL76℄ presents a suint treatment of

lassial mehanis.
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2. Quantum mehanis

The main purpose of this hapter is to introdue Feynman's path integral as an alternative to

the standard operator approah to quantum mehanis. Most of our disussion of quantum

�elds will be based on this approah, and thus beoming familiar with this tehnique using the

simpler ase of quantum mehanis is of entral importane. Instead of employing the path

integral diretly, we will use as basi tool the vauum persistene amplitude h0;1j0;�1i

J

:

This quantity is the probability amplitude that a system under the inuene of an external

fore J stays in its ground-state. Sine we an apply an arbitrary fore J , the amplitude

h0;1j0;�1i

J

ontains all information about the system. Moreover, it serves as a onvenient

tool to alulate Green funtions whih will beome our main target studying quantum �eld

theories.

2.1. Reminder of the operator approah

A lassial system desribed by a HamiltonianH(q

i

; p

i

; t) an be quantised promoting q

i

and p

i

to operators

1

q̂

i

and p̂

i

whih satisfy the anonial ommutation relations

�

q̂

i

; p̂

j

�

= iÆ

i

j

. The

latter are the formal expression of Heisenberg's unertainty relation. Apart from ordering

ambiguities, the Hamilton operator H(q̂

i

; p̂

i

; t) an be diretly read from the Hamiltonian

H(q

i

; p

i

; t). The basi features of any quantum theory an be synthesised into a few priniples.

General priniples A physial system in a pure state is fully desribed by a probability

amplitude

 (a; t) = haj (t)i 2 C ; (2.1)

where fag is a set of quantum numbers speifying the system and the states j (t)i form a

omplex Hilbert spae. The probability p to �nd the spei� values a

�

in a measurement is

given by p(a

�

) = j (a

�

; t)j

2

. The possible values a

�

are the eigenvalues of Hermitian operators

^

A whose eigenvetors jai form an orthogonal, omplete basis. In Dira's bra-ket notation, we

an express these statements by

^

Ajai = ajai ; haja

0

i = Æ (a� a

0

) ;

Z

da jaihaj = 1 ; (2.2)

In general, operators do not ommute. Their ommutation relations an be obtained by the

replaement fA;Bg ! i[

^

A;

^

B℄ in the de�nition (1.24) of the Poisson brakets.

The state of a partile moving in one dimension in a potential V (q) an be desribed either

by the eigenstates of the position operator q̂ or of the momentum operator p̂. Both form a

omplete, orthonormal basis, and they are onneted by a Fourier transformation whih we

1

When there is the danger of an ambiguity, operators will be written with a \hat"; otherwise we drop it.

13



2. Quantum mehanis

hoose to be asymmetri,

 (q) = hqj i =

Z

dp

2�

e

ipx

 (p) =

Z

dp

2�

hqj pi hpj i (2.3a)

 (p) = hpj i =

Z

dq e

�ikx

 (x) =

Z

dq hpj qi hqj i : (2.3b)

Choosing this normalisation has the advantage that the fator 1=(2�) in the Fourier transfor-

mation is the same as in the density of free states, dpL=(2�), whih will enter quantities like

deat rates or ross setions. From Eq. (2.3), it follows that the asymmetry in the Fourier

transformation is reeted in the ompleteness relation of the states,

Z

dq jqi hqj = 1 and

Z

dp

2�

jpi hpj = 1 : (2.4)

Time-evolution Sine the states j (t)i form a omplex Hilbert spae, the superposition

priniple is valid: If  

1

and  

2

are possible states of the system, then also

 (t) = 

1

 

1

(t) + 

2

 

2

(t) ; 

i

2 C : (2.5)

In quantum mehanis, a stronger version of this priniple holds whih states that if  

1

(t) and

 

2

(t) desribe the possible time-evolution of the system, then so does also the superposed state

 (t). This implies that the time-evolution is desribed by a linear, homogeneous di�erential

equation. Choosing it as �rst-order in time, we an write the evolution equation as

i�

t

j (t)i = Dj (t)i ; (2.6)

where the di�erential operator D on the RHS has to be still determined.

We all the operator desribing the evolution of a state from  (t) to  (t

0

) the time-evolution

operator U(t

0

; t). This operator is unitary, U

�1

= U

y

, in order to onserve probability and

forms a group, U(t

3

; t

1

) = U(t

3

; t

2

)U(t

2

; t

1

) with U(t; t) = 1. For an in�nitesimal time step

Æt,

j (t+ Æt)i = U(t+ Æt; t) j (t)i ; (2.7)

we an set with U(t; t) = 1

U(t+ Æt; t) = 1� iHÆt : (2.8)

Here we introdued the generator of in�nitesimal time-translationsH. The analogy to lassial

mehanis suggests that H is the operator version of the lassial Hamilton funtion H(q; p).

Inserting Eq. (2.8) into (2.7) results in

j (t+ Æt)i � j (t)i

Æt

= �iH j (t)i : (2.9)

Comparing then Eqs. (2.6) and (2.9) reveals that the operator D on the RHS of Eq. (2.6)

oinides with the HamiltonianH. We all a time-evolution equation of this type for arbitrary

H Shr�odinger equation.

Next we want to determine the onnetion between H and U . Plugging  (t) = U(t; 0) (0)

in the Shr�odinger equation gives

�

i

�U(t; 0)

�t

�HU(t; 0)

�

 (0) = 0 : (2.10)
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2.1. Reminder of the operator approah

Sine this equation is valid for an arbitrary state  (0), we an rewrite it as an operator

equation,

i�

t

0

U(t

0

; t) = HU(t

0

; t) : (2.11)

Integrating it, we �nd as formal solution

U(t

0

; t) = 1� i

Z

t

0

t

dt

00

H(t

00

)U(t

00

; t) (2.12)

or, if H is time-independent,

U(t; t

0

) = exp(�iH(t� t

0

)) : (2.13)

Up-to now, we have onsidered the Shr�odinger piture where operators are onstant and

the time-evolution is given by the hange in the state vetors j (t)i. In the Heisenberg piture,

the time evolution is driven ompletely by the one of the operators. States and operators in

the two pitures are onneted by

O

S

(t) = U(t; t

0

)O

H

(t)U

y

(t; t

0

) ; (2.14a)

j 

S

(t)i = U(t; t

0

) j 

H

(t)i ; (2.14b)

if they agree at the time t

0

.

Propagator We insert the solution of U for a time-independentH into j (t

0

)i = U(t

0

; t)j (t)i

and multiply from the left with hq

0

j,

 (q

0

; t

0

) = hq

0

j (t

0

)i = hq

0

j exp[�iH(t

0

� t)℄j (t)i : (2.15)

Then we insert 1 =

R

d

3

qjqihqj,

 (q

0

; t

0

) =

Z

d

3

q hq

0

j exp[�iH(t

0

� t)℄jqihqj (t)i =

Z

d

3

q K(q

0

; t

0

; q; t) (q; t) : (2.16)

In the last step we introdued the propagator or Green funtion K in its oordinate repre-

sentation,

K(q

0

; t

0

; q; t) = hq

0

j exp[�iH(t

0

� t)℄jqi : (2.17)

The Green funtion K equals the probability amplitude for the propagation between two

spae-time points; K(q

0

; t

0

; q; t) is therefore also alled more spei�ally two-point Green

funtion. We an express the propagator K by the solutions of the Shr�odinger equation,

 

n

(q; t) = hqjn(t)i = hqjni exp(�iE

n

t) as

K(q

0

; t

0

; q; t) =

X

n;n

0

hq

0

jni hnj exp(�iH(t

0

� t))jn

0

i

| {z }

Æ

n;n

0

exp(�iE

n

(t

0

�t))

hn

0

jqi

=

X

n

 

n

(q

0

) 

�

n

(q) exp(�iE

n

(t

0

� t)) ;

(2.18)

where n represents the omplete set of quantum numbers speifying the energy eigenvalues

of the system. Note that this result is very general and holds for any time-independent

Hamiltonian.
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2. Quantum mehanis

Let us ompute the propagator of a free partile in one dimension, desribed by the Hamil-

tonian H = p

2

=2m. We write with � = t

0

� t

K(q

0

; t

0

; q; t) =




q

0

�

�

e

�iH�

jqi =




q

0

�

�

e

�i� p̂

2

=2m

Z

dp

2�

jpi hpj qi

=

Z

dp

2�

e

�i�p

2

=2m




q

0

�

�

pi hpj qi =

Z

dp

2�

e

�i�p

2

=2m+i(q

0

�q)p

;

(2.19)

where we used hq

0

j pi = exp(iq

0

p) in the last step. The integral is Gaussian, if we add an

in�nitesimal fator exp(�"p

2

) to the integrand in order to ensure the onvergene of the

integral. Thus the physial value of the energy E = p

2

=(2m) seen as a omplex variable is

approahed from the negative imaginary plane, E ! E � i". Taking afterwards the limit

"! 0, we obtain

K(q

0

; t

0

; q; t) =

�

m

2�i�

�

1=2

e

im(q

0

�q)

2

=2�

: (2.20)

Knowing the propagator, we an alulate the solution  (t

0

) at any time t

0

for a given initial

state  (t) via Eq. (2.16).

Example 2.1: Calulate the integrals A =

R

dx exp(�x

2

=2), B =

R

dx exp(�ax

2

=2 + bx), and

C =

R

dx � � � dx

n

exp(�x

T

Ax=2 + J

T

x) for a symmetri n� n matrix A.

a.) We square the integral and alulate then A

2

introduing polar oordinates, r

2

= x

2

+ y

2

,

A

2

=

Z

1

�1

dx

Z

1

�1

dy exp(�(x

2

+ y

2

)=2) = 2�

Z

1

0

dr re

�r

2

=2

= 2�

Z

1

0

dt e

�t

= 2� ;

where we substituted t = r

2

=2. Thus the result for the basi Gaussian integral is A =

p

2�. All other

solvable variants of Gaussian integrals an be redued to this result.

b.) We omplete the square in the exponent,

�

a

2

�

x

2

�

2b

a

x

�

= �

a

2

�

x�

b

a

�

2

+

b

2

2a

;

and shift then the integration variable to x

0

= x� b=a. The result is

B =

Z

1

�1

dx exp(�ax

2

=2 + bx) = e

b

2

=2a

Z

1

�1

dx

0

exp(�ax

02

=2) =

r

2�

a

e

b

2

=2a

: (2.21)

.) We should omplete again the square and try X

0

= X �A

�1

J . With

(X �A

�1

J)

T

A(X �A

�1

J) = X

T

AX �X

T

AA

�1

J � J

T

A

�1

AX + J

T

A

�1

AA

�1

J

= X

T

AX � 2J

T

X + J

T

A

�1

J ;

we obtain after shifting the integration vetor,

C =

Z

dx

1

� � � dx

n

exp(�X

T

AX=2 + J

T

X) = exp(J

T

A

�1

J=2)

Z

dx

0

1

� � � dx

0

n

exp(�X

0T

AX

0

=2) :

Sine the matrix A is symmetri, we an diagonalise A via an orthogonal transformation D = OAO

T

.

This orresponds to a rotation of the integration variables, Y = OX

0

. The Jaobian of this transfor-

mation is one, and thus the result is

C = exp(J

T

A

�1

J=2)

n

Y

i=1

Z

dy

i

exp(�a

i

y

2

i

=2) =

r

(2�)

n

detA

exp

�

1

2

J

T

A

�1

J

�

: (2.22)

In the last step we expressed the produt of eigenvalues a

i

as the determinant of A.
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2.2. Path integrals in quantum mehanis

q

1

q

2

q

t

q

0

0

q

1

�

q

2

2�

q

3

3�

q

3

3�

q

N�1

N�

q

N

Figure 2.1.: Left: The double slit experiment. Right: The propagator K(q

N

; � ; q

0

; 0) ex-

pressed as a sum over all N -legged ontinuous paths.

2.2. Path integrals in quantum mehanis

In problem 2.?? you are asked to alulate the lassial ation of a free partile and of a

harmoni osillator and to ompare them to the orresponding propagators found in quantum

mehanis. Surprisingly, you will �nd that in both ases the propagator an be written as

K(q

0

; t

0

; q; t) = N exp(iS) where S is the lassial ation along the path [q(t) : q

0

(t

0

)℄ and N a

normalisation onstant. This suggests that we an reformulate quantum mehanis, replaing

the standard operator formalism used to evaluate the propagator (2.17) \somehow" by the

lassial ation.

To get an idea how to proeed, we look at the famous double-slit experiment skethed in

Fig. 2.1: Aording to the superposition priniple, the amplitude A for a partile to move

from the soure at q

1

to the detetor at q

2

is the sum of the amplitudes A

i

for the two possible

paths,

A = K(q

2

; t

2

; q

1

; t

1

) =

X

paths

A

i

: (2.23)

Clearly, we ould add in a Gedankenexperiment more and more sreens between q

1

and q

2

,

inreasing at the same time the number of holes. Although we replae in this way ontinuous

spae-time by a disrete lattie, the di�erenes between these two desriptions should vanish

for suÆiently small spaing � . Moreover, for � ! 0, we an expand U(�) = exp(�iH�) '

1� iH� . Applying then H = p̂

2

=(2m) + V (q̂) to eigenfuntions jqi of V (q̂) and jpi of p̂

2

, we

an replae the operator H by its eigenvalues. In this way, we hope to express the propagator

as a sum over paths, where the individual amplitudes A

i

ontain only lassial quantities.

We apply now this idea to a partile moving in one dimension in a potential V (q). The

transition amplitude A for the evolution from the state jq; 0i to the state jq

0

; t

0

i is

A � K(q

0

; t

0

; q; 0) =




q

0

�

�

e

�iHt

0

jqi : (2.24)

This amplitude equals the matrix-element of the propagator K for the evolution from the

initial point q(0) to the �nal point q

0

(t

0

). Let us split the time evolution into two smaller

17



2. Quantum mehanis

steps, writing e

�iHt

0

= e

�iH(t

0

�t

1

)

e

�iHt

1

. Inserting also

R

dq

1

jq

1

i hq

1

j = 1, the amplitude

beomes

A =

Z

dq

1




q

0

�

�

e

�iH(t

0

�t

1

)

jq

1

i hq

1

j e

�iHt

1

jqi =

Z

dq

1

K(q

0

; t

0

; q

1

; t

1

)K(q

1

; t

1

; q; 0): (2.25)

This formula expresses simply the group property, U(t

0

; 0) = U(t

0

; t

1

)U(t

1

; 0), of the time-

evolution operator U evaluated in the basis of the ontinuous variable q. More physially, we

an view this equation as an expression of the quantum mehanial rule for ombining ampli-

tudes: If the same initial and �nal states an be onneted by various ways, the amplitudes

for eah of these proesses should be added. A partile propagating from q to q

0

must be

somewhere at the intermediate time t

1

. Labelling this intermediate position as q

1

, we om-

pute the amplitude for propagation via the point q

1

as the produt of the two propagators in

Eq. (2.25) and integrate over all possible intermediate positions q

1

.

We ontinue to divide the time interval t

0

into a large numberN of time intervals of duration

� = t

0

=N . Then the propagator beomes

A =




q

0

�

�

e

�iH�

e

�iH�

� � � e

�iH�

| {z }

N times

jqi : (2.26)

We insert again a omplete set of states jq

i

i between eah exponential, obtaining

A =

Z

dq

1

� � � dq

N�1




q

0

�

�

e

�iH�

jq

N�1

i hq

N�1

j e

�iH�

jq

N�2

i � � � hq

1

j e

�iH�

jqi

�

Z

dq

1

� � � dq

N�1

K

q

N

;q

N�1

K

q

N�1

;q

N�2

� � �K

q

2

;q

1

K

q

1

;q

0

; (2.27)

where we have de�ned q

0

= q and q

N

= q

0

. Note that these initial and �nal positions are �xed

and therefore are not integrated over. Figure 2.1 illustrates that we an view the amplitude A

as the integral over the partial amplitudes A

path

of the individualN -legged ontinuous paths.

We ignore the problem of de�ning properly the limit N ! 1, keeping N large but �nite.

We rewrite the amplitude as sum over the amplitudes for all possible paths, A =

P

paths

A

path

;

with

X

paths

=

Z

dq

1

� � � dq

N�1

; A

path

= K

q

N

;q

N�1

K

q

N�1

;q

N�2

� � �K

q

2

;q

1

K

q

1

;q

0

:

Let us look at the last expression in detail. We an expand the exponential in eah propagator

K

q

j+1

;q

j

= hq

j+1

j e

�iH�

jq

j

i for a single sub-interval, beause � is small,

K

q

j+1

;q

j

= hq

j+1

j

�

1� iH� �

1

2

H

2

�

2

+ � � �

�

jq

j

i

= hq

j+1

j q

j

i � i� hq

j+1

jH jq

j

i+O(�

2

) :

(2.28)

In the seond term of (2.28), we insert a omplete set of momentum eigenstates between H

and jq

j

i. This gives

� i� hq

j+1

j

�

p̂

2

2m

+ V (q̂)

�

Z

dp

j

2�

jp

j

i hp

j

j q

j

i

= �i�

Z

dp

j

2�

 

p

2

j

2m

+ V (q

j+1

)

!

hq

j+1

j p

j

i hp

j

j q

j

i (2.29)

= �i�

Z

dp

j

2�

 

p

2

j

2m

+ V (q

j+1

)

!

e

ip

j

(q

j+1

�q

j

)

:
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2.2. Path integrals in quantum mehanis

The expression (2.29) is not symmetri in q

j

and q

j+1

. The reason for this asymmetry is

that we ould have inserted the fator 1 either to the right or to the left of the Hamiltonian

H. In the latter ase, we would have obtained p

j+1

and V (q

j

) in (2.29). Sine the di�erene

[V (q

j+1

) � V (q

j

)℄� ' V

0

(q

j

)(q

j+1

� q

j

)� ' V

0

(q

j

) _q

j

�

2

is of order �

2

, the ordering problem

should not matter in the ontinuum limit whih we will take eventually; we set therefore

V (q

j+1

) ' V (q

j

).

The �rst term of (2.28) gives a delta funtion, whih we an express as

hq

j+1

j q

j

i = Æ(q

j+1

� q

j

) =

Z

dp

j

2�

e

ip

j

(q

j+1

�q

j

)

: (2.30)

Now we an ombine the two terms, obtaining as propagator for the step q

j

! q

j+1

K

q

j+1

;q

j

=

Z

dp

j

2�

e

ip

j

(q

j+1

�q

j

)

�

1� i�

�

p

j

2

2m

+ V (q

j

)

�

+O(�

2

)

�

: (2.31)

Sine we work at O(�), we an exponentiate the fator in the square braket,

1� i� H(p

j

; q

j

) +O(�

2

) = e

�i�H(p

j

;q

j

)

: (2.32)

Next we rewrite the exponent in the �rst fator of Eq. (2.31) using _q

j

= (q

j+1

� q

j

)=� , suh

that we an fator out the time-interval � . The amplitude A

path

onsists of N suh fators.

Combining them, we obtain

A

path

=

N�1

Y

j=0

Z

dp

j

2�

exp i�

N�1

X

j=0

[p

j

_q

j

�H(p

j

; q

j

)℄ : (2.33)

We reognise the argument of the exponential as the disrete approximation of the ation

S[q; p℄ in the Palatini form of a path passing through the points q

0

= q; q

1

; � � � ; q

N�1

; q

N

= q

0

.

The propagator K =

R

dq

1

� � � dq

N�1

A

path

beomes then

K =

N�1

Y

j=1

Z

dq

j

N�1

Y

j=0

Z

dp

j

2�

exp i�

N�1

X

j=0

[p

j

_q

j

�H(p

j

; q

j

)℄ : (2.34)

For N !1, this expression approximates an integral over all funtions p(t), q(t) onsistent

with the boundary onditions q(0) = q, q(t

0

) = q

0

. We adopt the notation DpDq for the

funtional or path integral over all funtions p(t) and q(t),

K �

Z

Dp(t)Dq(t)e

iS[q;p℄

=

Z

Dp(t)Dq(t) exp

 

i

Z

t

0

0

dt (p _q �H(p; q))

!

: (2.35)

This result expresses the propagator as a path integral in phase-spae. It allows us to obtain

for any lassial system whih an be desribed by a Hamiltonian the orresponding quantum

dynamis.

If the Hamiltonian is of the form H = p

2

=2m+ V , as we have assumed

2

in our derivation,

we an arry out the quadrati momentum integrals in (2.34). We an rewrite this expression

as

K =

N�1

Y

j=1

Z

dq

j

exp�i�

N�1

X

j=0

V (q

j

)

N�1

Y

j=0

Z

dp

j

2�

exp i�

N�1

X

j=0

�

p

j

_q

j

� p

2

j

=2m

�

:

2

Sine we evaluated exp(�iH� ) for in�nitesimal � , the result (2.35) holds also for a time-dependent potential

V (q; t).
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2. Quantum mehanis

The p integrals are all unoupled Gaussians. One suh integral gives

Z

dp

2�

e

i�(p _q�p

2

=2m)

=

r

m

2�i�

e

i�m _q

2

=2

; (2.36)

where we added again an in�nitesimal fator exp(�"p

2

) to the integrand. Thene the propa-

gator beomes

K =

N�1

Y

j=1

Z

dq

j

exp�i�

N�1

X

j=0

V (q

j

)

N�1

Y

j=0

 

r

m

2�i�

exp i�

m _q

2

j

2

!

=

�

m

2�i�

�

N=2

N�1

Y

j=1

Z

dq

j

exp i�

N�1

X

j=0

 

m _q

2

j

2

� V (q

j

)

!

: (2.37)

The argument of the exponential is again a disrete approximation of the ation S[q℄ of a

path passing through the points q

0

= q; q

1

; � � � ; q

N�1

; q

N

= q

0

, but now seen as funtional of

only the oordinate q. As above, we an write this in a more ompat form as

K = hq

f

; t

f

jq

i

; t

i

i =

Z

Dq(t)e

iS[q℄

=

Z

Dq(t) exp

�

i

Z

t

f

t

i

dt L(q; _q)

�

; (2.38)

where the integration inludes all paths satisfying the boundary ondition q(t

i

) = q

i

and

q(t

f

) = q

f

. This is the main result of this setion, and is known as the path integral in

on�guration spae. It will serve us as starting point disussing quantum �eld theories of

bosoni �elds.

Knowing the path integral and thus the propagator is suÆient to solve sattering problems

in quantum mehanis. In a relativisti theory, the partile number during the ourse of a

sattering proess is however not �xed, sine energy an be onverted into matter. In order

to prepare us for suh more omplex problems, we will generalise in the next setion the

path integral to a generating funtional for n-point Green funtions: In this formalism, the

usual propagator giving the probability amplitude that a single partile moves from q

i

(t

i

)

to q

f

(t

f

) beomes the speial ase of a 2-point Green funtion, while Green funtions with

n > 2 desribe proesses involve more points. For instane, the 4-point Green funtion will

be the essential ingredient to alulate 2 ! 2 sattering proesses in a quantum �eld theory

(QFT). The orresponding generating funtional is the quantity whih n.th derivative returns

the n-point Green funtions.

2.3. Generating funtional for Green funtions

Having re-expressed the transition amplitude hq

f

; t

f

jq

i

; t

i

i of a quantum mehanial system as

a path integral, we want to generalise �rst this result to the matrix elements of an arbitrary

potential V (q) between the states jq

i

; t

i

i and jq

f

; t

f

i. For all pratial purposes, we an

assume that we an expand V (q) as a power-series in q; thus it is suÆient to onsider the

matrix elements hq

f

; t

f

jq

m

jq

i

; t

i

i. In a QFT, the initial and �nal states are generally free

partiles whih are desribed mathematially as harmoni osillators. In this ase, we are

able to reonstrut all exited states jni from the ground-state,

jni =

1

p

n!

(a

y

)

n

j0i :
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2.3. Generating funtional for Green funtions

Therefore it will be suÆient to study matrix elements between the ground-state j0i. With

this hoie, we are able to extend the integration limit in the path integral (2.38) to t = �1.

This will not only simplify its evaluation, but also avoid the need to hoose a spei� inertial

frame. As a result, the generating funtional will have an obviously Lorentz invariant form

in a relativisti theory.

Time-ordered produts of operators and the path integral In a �rst step, we try to inlude

the operator q

m

into the transition amplitude hq

f

; t

f

jq

i

; t

i

i. We an reinterpret our result for

the path integral as follows,

hq

f

; t

f

j1jq

i

; t

i

i =

Z

Dq(t) 1 e

iS[q℄

: (2.39)

Thus we an see the LHS as matrix element of the unit operator 1, while the RHS orresponds

to the path integral average of the lassial funtion f(q; _q) = 1. Now we want to generalise

this rather trivial statement to two operators

^

A(t

a

) and

^

B(t

b

) given in the Heisenberg piture.

In evaluating the unknown funtion f on the RHS of

Z

Dq(t) A(t

a

)B(t

b

) e

iS[q(t)℄

= hq

f

; t

f

j ffA(t

a

)B(t

b

)g jq

i

; t

i

i ; (2.40)

we go bak to Eq. (2.27) and insert

^

A(t

a

) and

^

B(t

b

) at the orret intermediate times,

=

�

R

dq

1

� � � dq

N�1

: : : hq

a+1

; t

a+1

j

^

A jq

a

; t

a

i � � � hq

b+1

; t

b+1

j

^

B jq

b

; t

b

i : : : for t

a

> t

b

;

R

dq

1

� � � dq

N�1

: : : hq

b+1

; t

b+1

j

^

B jq

b

; t

b

i � � � hq

a+1

; t

a+1

j

^

A jq

a

; t

a

i : : : for t

a

< t

b

:

(2.41)

Sine the time along a lassial path inreases, the matrix elements of the operators

^

A(t

a

)

and

^

B(t

b

) are also ordered with time inreasing from the left to the right. If we de�ne the

time-ordered produt of two operators as

Tf

^

A(t

a

)

^

B(t

b

)g =

^

A(t

a

)

^

B(t

b

)#(t

a

� t

b

) +

^

B(t

b

)

^

A(t

a

)#(t

b

� t

a

) ; (2.42)

then the path integral average of the lassial quantities A(t

a

) and B(t

b

) orresponds to the

matrix-element of the time-ordered produt of these two operators,

hq

f

; t

f

jTf

^

A(t

a

)

^

B(t

b

)gjq

i

; t

i

i =

Z

Dq(t)A(t

a

)B(t

b

) e

iS[q(t)℄

; (2.43)

and similar for more than two operators.

External soures We want to inlude next in our formalism the possibility that we an

hange the state of our system by applying an external driving fore or soure term J(t).

In quantum mehanis, we ould imagine e.g. a harmoni osillator in the ground-state j0i,

making a transition under the inuene of an external fore J to the state jni at the time

t and bak to the ground-state j0i at the time t

0

> t. Inluding suh transitions, we an

mimi the relativisti proess of partile reation and annihilation as follows: We identify the

vauum (i.e. the state ontaining zero real partiles) with the ground-state of the quantum

mehanial system, and the reation and annihilation of n partile with the (de-) exitation

of the n.th energy level by an external soure J . Shwinger realised that adding a linear

oupling to an external soure,

L! L+ J(t)q(t) ; (2.44)
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2. Quantum mehanis

leads also to an eÆient way to alulate the matrix elements of an arbitrary polynomial

of operators q(t

n

) � � � q(t

1

): If the soure J(t) would be a simple number instead of a time-

dependent funtion in the augmented path-integral

hq

f

; t

f

jq

i

; t

i

i

J

�

Z

Dq(t)e

i

R

t

f

t

i

dt(L+Jq)

; (2.45)

then we ould obtain hq

f

; t

f

jq

m

jq

i

; t

i

i

J

simply by di�erentiating hq

f

; t

f

jq

i

; t

i

i

J

m-times with

respet to J . However, the LHS is a funtional of J(t) and thus we need to perform instead

funtional derivatives with respet to J(t). By analogy with the rules for the di�erentiation

of funtions, e.g. �x

l

=�x

k

= Æ

l

k

, we de�ne

3

a funtional derivative as

Æ

ÆJ(x)

1 = 0 and

ÆJ(x)

ÆJ(x

0

)

= Æ(x� x

0

) : (2.46)

Thus we replae for a ontinuous index the Kroneker delta by a delta funtion. Moreover,

we assume that the Leibniz and the hain rule holds for suÆiently nie funtions J(x).

Now we are able to di�erentiate hq

f

; t

f

jq

i

; t

i

i

J

with respet to the soure J . Starting from

Æ

ÆJ(t

1

)

Z

Dq(t) e

i

R

1

�1

dtJ(t)q(t)

= i

Z

Dq(t) q(t

1

)e

i

R

1

�1

dtJ(t)q(t)

; (2.47)

we obtain

hq

f

; t

f

jTfq̂(t

1

) � � � q̂(t

n

)gjq

i

; t

i

i = (�i)

n

Æ

n

ÆJ(t

1

) � � � ÆJ(t

n

)

hq

f

; t

f

jq

i

; t

i

i

J

�

�

�

�

J=0

: (2.48)

Thus the soure J(t) is a onvenient tool to obtain the funtions q(t

1

) � � � q(t

n

) in front of

exp(iS). Having performed the funtional derivatives, we set the soure J(t) to zero, oming

bak to the usual path integral. Physially, the expression (2.48) orresponds to the probabil-

ity amplitude that a partiles moves from q

i

(t

i

) to q

f

(t

f

), having the intermediate positions

q(t

1

); : : : ; q(t

n

).

Vauum persistene amplitude As last step, we want to eliminate the initial and �nal states

jq

i

; t

i

i

J

and jq

f

; t

f

i in favour of the ground state or vauum, j0i. In this way, we onvert the

transition amplitude hq

f

; t

f

jq

i

; t

i

i

J

into the probability amplitude that a system whih was

in the ground-state j0i at t

i

! �1 remains in this state at t

f

! 1 despite the ation

of the soure J(t). Inserting a omplete set of energy eigenstates, 1 =

P

n

jnihnj, into the

propagator, we obtain

hq

0

; t

0

jq; ti =

X

n

 

n

(q

0

) 

�

n

(q) exp(�iE

n

(t

0

� t)) : (2.49)

We an isolate the ground-state n = 0 by adding either to the energies E

n

or to the time

di�erene � = (t

0

�t) a small negative imaginary part. In this ase, all terms are exponentially

damped in the limit � !1, and the ground-state as state with the smallest energy dominates

more and more the sum. Alternatively, we an add a term +i"q

2

to the Lagrangian.

3

As the notation suggest, the variation of a funtional de�ned in Eq. (1.5) is the speial ase of a diretional

funtional derivative, f. problem 1.??.
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2.4. Osillator as a one-dimensional �eld theory

Remark 2.1: Wik rotation and Eulidean ation:

Instead of adding the in�nitesimal small term i"q

2

to the Lagrangian, we an do a more drasti hange,

rotating in the ation the time axis lokwise by 90 degrees in the omplex plane. Inserting t

E

= it into

x

�

x

�

, we see that this proedure alled Wik rotation orresponds to the transition from Minkowski

to Eulidean spae,

x

2

= t

2

� x

2

= (�it

E

)

2

� x

2

= �[t

2

E

+ x

2

℄ = �x

2

E

:

Performing the hanges t = �it

E

and dt = �idt

E

in the ation of a partile moving in an one-

dimensional potential gives

S = �i

Z

dt

E

�

�

1

2

m _q

2

E

� V (q)

�

� iS

E

: (2.50)

Note that the Eulidean ation S

E

= T + V is bounded from below. The phase fator in the path-

integral transforms as e

iS

= e

�S

E

, and thus ontributions with large S

E

are exponentially damped in

the Eulidean path-integral.

Finally, we have only to onnet the results we obtained so far. Adding a oupling to an

external soure J(t) and a damping fator +i"q

2

to the Lagrangian gives us the ground-state

or vauum persistene amplitude

Z[J ℄ � h0;1j0;�1i

J

=

Z

Dq(t) e

i

R

1

�1

dt(L+Jq+i"q

2

)

(2.51)

in the presene of a lassial soure J . This amplitude is a funtional of J whih we denote by

Z[J ℄. Taking derivatives w.r.t. the external soures J , and setting them afterwards to zero,

we obtain

Æ

n

Z[J ℄

ÆJ(t

1

) � � � ÆJ(t

n

)

�

�

�

�

J=0

= i

n

Z

Dq(t) q(t

1

) � � � q(t

n

)e

i

R

1

�1

dt(L+i"q

2

)

: (2.52)

The RHS orresponds to the path integral in Eqs. (2.43), augmented by the fator i"q

2

. But

this fator damps in the limit of large t everything exept the ground state. Thus we found

that Z[J ℄ is the generating funtional for the vauum expetation value of the time-ordered

produt of operators q̂(t

i

),

(�i)

n

Æ

n

Z[J ℄

ÆJ(t

1

) � � � ÆJ(t

n

)

�

�

�

�

J=0

= h0;1jTfq̂(t

1

) � � � q̂(t

n

)gj0;�1i = G

F

(t

1

; : : : ; t

n

) : (2.53)

In the last step, we de�ned also the n-point Green funtion G

F

(t

1

; : : : ; t

n

). The subsript

F indiates that the i"q

2

presription selets from the set of possible Green funtions (re-

tarded, advaned, . . . ) the ones suggested by Feynman. These funtions will be the main

building blok we will use to perform alulations in quantum �eld theory, and the formula

orresponding to Eq. (2.53) will be our master formula in �eld theory.

2.4. Osillator as a one-dimensional �eld theory

Canonial quantisation A one-dimensional harmoni osillator an be viewed as a free quan-

tum �eld theory in one time and zero spae dimensions. In order to exhibit this equivalene

learer, we resale the usual Lagrangian

L(x; _x) =

1

2

m _x

2

�

1

2

m!

2

x

2

; (2.54)
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2. Quantum mehanis

where m is the mass of the osillator and ! its frequeny as

�(t) �

p

mx(t) : (2.55)

We all the variable �(t) a \salar �eld," and the Lagrangian now reads

L(�;

_

�) =

1

2

_

�

2

�

1

2

!

2

�

2

: (2.56)

After the resaling, the kineti term

_

�

2

has the dimensionless oeÆient 1=2. This hoie is

standard in �eld theory and therefore suh a �eld is alled \anonially normalised."

We derive the orresponding Hamiltonian, determining �rst the onjugate momentum � as

�(t) = �L=�

_

� =

_

�(t). Thus the lassial Hamiltonian follows as

H(�; �) =

1

2

�

2

+

1

2

!

2

�

2

: (2.57)

The transition to quantum mehanis is performed by promoting � and � to operators whih

satisfy the anonial ommutation relations [�; �℄ = i. The harmoni osillator is solved most

eÆiently introduing reation and annihilation operators, a

y

and a. They are de�ned by

� =

1

p

2!

�

a

y

+ a

�

and � = i

r

!

2

�

a

y

� a

�

; (2.58)

and satisfy

�

a; a

y

�

= 1. The Hamiltonian follows as

H =

!

2

�

aa

y

+ a

y

a

�

=

�

a

y

a+

1

2

�

! : (2.59)

We interpret N � a

y

a as the number operator, ounting the number n of quanta with energy

! in the state jni.

We now work in the Heisenberg piture where operators are time dependent. The time

evolution of the operator a(t) an be found from the Heisenberg equation,

i

da

dt

= [a;H℄ = !a ; (2.60)

from whih we dedue that

a(t) = a(0)e

�i!t

= a

0

e

�i!t

: (2.61)

As a onsequene, the �eld operator �(t) an be expressed in terms of the reation and

annihilation operators as

�(t) =

1

p

2!

�

a

0

e

�i!t

+ a

y

0

e

i!t

�

: (2.62)

If we look at �(t) as a lassial variable, then a

0

and a

y

0

have to satisfy a

0

= a

y

0

� a

�

0

in order

to make � real: Thus they are simply the Fourier oeÆients of the single eigenmode sin(!t).

This suggests that we an short-ut the quantisation proedure as follows: We write down

the �eld as sum over its eigenmodes i = 1; : : : ; k. Then we re-interpret the Fourier oeÆients

as reation and annihilation operators, requiring [a

i

; a

y

j

℄ = Æ

ij

.
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2.4. Osillator as a one-dimensional �eld theory

Path integral approah We solve now the same problem, the resaled Lagrangian (2.56),

in the path integral approah. Using this method, we have argued that it is onvenient to

inlude a oupling to an external fore J . Let us de�ne therefore the e�etive ation S

eff

as

the sum of the lassial ation S, the oupling to the external fore J and a small imaginary

part i"�

2

to make the path integral well-de�ned,

S

eff

= S +

Z

1

�1

dt

�

J�+ i"�

2

�

=

Z

1

�1

dt

�

1

2

_

�

2

�

1

2

!

2

�

2

+ J�+ i"�

2

�

: (2.63)

The funtion e

iS

eff

is the integrand of the path integral. We start our work by massaging

S

eff

into a form suh that the path integral an be easily performed. The �rst two terms in

S

eff

an be viewed as the ation of a di�erential operator D(t) on �(t), writing

1

2

�

_

�

2

� !

2

�

2

�

= �

1

2

�(t)

�

d

2

dt

2

+ !

2

�

�(t) = �

1

2

�(t)D(t)�(t) : (2.64)

Here we performed a partial integration and dropped the boundary term: This is admissible,

beause the boundary term vanishes varying the ation.

We an evaluate this operator going to Fourier spae,

�(t) =

Z

dE

2�

e

�iEt

�(E) and J(t) =

Z

dE

2�

e

�iEt

J(E) : (2.65)

To keep the ation real, we have to write all bilinear quantities as �(E)�(�E

0

), et. Sine

only the phases depend on time, the time integration gives a fator 2�Æ(E �E

0

), expressing

energy onservation,

S

eff

=

1

2

Z

dE

2�

�

�(E)(E

2

� !

2

+ i")�(�E) + J(E)�(�E) + J(�E)�(E)

�

: (2.66)

In the path integral, this expression orresponds to a Gaussian integral of the type (2.21),

where we should \omplete the square." Shifting the integration variable to

~

�(E) = �(E) +

J(E)

E

2

� !

2

+ i"

;

we obtain

S

eff

=

1

2

Z

dE

2�

�

~

�(E)(E

2

� !

2

+ i")

~

�(�E)� J(E)

1

E

2

� !

2

+ i"

J(�E)

�

: (2.67)

Here we see that the \damping rule" for the path integral makes also the integral over the

energy denominator well-de�ned. The physial interpretation of this way of shifting the

poles|whih di�ers from our treatment of the retarded Green funtion in the lassial ase|

will be postponed to the next hapter, where we will disuss this issue in detail.

We are now in the position to evaluate the generating funtional Z[J ℄. The path integral

measure is invariant under a simple shift of the integration variable, D

~

� = D�, and we omit

the tilde from now on. Furthermore, the seond term in S

eff

does not depend on � and an

be fatored out,

Z[J ℄ = exp

�

�

i

2

Z

dE

2�

J(E)

1

E

2

� !

2

+ i"

J(�E)

�

�

Z

D� exp

i

2

Z

dE

2�

�

�(E)(E

2

� !

2

+ i")�(�E)

�

:

(2.68)
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2. Quantum mehanis

Setting the external fore to zero, J = 0, the �rst fator beomes one and the generating

funtional Z[0℄ beomes equal to the path integral in the seond line. But for J = 0, the

osillator remains in the ground-state and thus Z[0℄ = h0;1j0;�1i = 1. Therefore

Z[J ℄ = exp

�

�

i

2

Z

dE

2�

J(E)

1

E

2

� !

2

+ i"

J(�E)

�

: (2.69)

Inserting the Fourier transformed quantities, we arrive at

Z[J ℄ = exp

�

�

i

2

Z

dt

0

dt J(t

0

)G

F

(t

0

� t)J(t)

�

; (2.70)

where the Feynman propagator

G

F

(t� t

0

) =

Z

dE

2�

e

�iE(t�t

0

)

1

E

2

� !

2

+ i"

(2.71)

di�ers from the retarded propagator G

R

de�ned in Eq. (1.35) by the position of its poles.

The generating funtional Z[J ℄ given by (2.70) is in the form most suitable for deriving

arbitrary n-point Green funtions using our master formula (2.53). Note that �nding Z[J ℄

required only to determine the inverse of the di�erential operator D(t), aounting for the

right boundary onditions indued by the i"�

2

term. This inverse is the Feynman propagator

or two-point funtion G

F

(t

0

� t) whih we an determine diretly solving

�D(t)G

F

(t

0

� t) = Æ(t

0

� t) : (2.72)

Going to Fourier spae, we �nd immediately

G

F

(E) =

1

E

2

� !

2

+ i"

: (2.73)

This suggests that we an short-ut the alulation of Z[J ℄ by determining the Feynman

propagator and using then diretly (2.69) or (2.70).

These results allow us also to alulate arbitrary matrix elements between osillator states.

For instane, we obtain the expetation value h0j�

2

j0i from

h0j jTf�(t

0

)�(t)g j0i = (�i)

2

Æ

2

Z[J ℄

ÆJ(t

0

)ÆJ(t)

�

�

�

�

J=0

= iG

F

(t

0

� t) =

1

2!

e

i!jt�t

0

j

: (2.74)

Here, we used in the last step the expliit expression for G

F

whih you should hek in

problem 2.??. Taking the limit t

0

& t and replaing �

2

! mx

2

, we reprodue the standard

result h0j x

2

j0i = 1=(2m!). Matrix elements between exited states jni = (n!)

�1=2

(a

y

)

n

j0i

are obtained by expressing the reation operator a

y

using �(t) =

_

�(t) as

a

y

=

r

!

2

�

1�

i

!

d

dt

�

�(t) : (2.75)

2.5. The need for quantum �elds

We have already argued that any relativisti quantum theory has to be a many-partile

theory. Suh a theory has to inlude in�nitely many degrees of freedom|as �eld theories like
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2.5. The need for quantum �elds

eletrodynamis do. Before we move on to introdue the simplest quantum �eld theory in

the next hapter, we present an argument that relativity and the single partile piture are

inompatible.

In lassial mehanis, the priniple of relativity implies that all trajetories of massive

partiles are time-like, while massless partiles move along light-like trajetories. This imple-

ments ausality, i.e. the requirement that no signal an be transmitted faster than light. How

should we translate this priniple into a quantum theory? Causality would be learly sat-

is�ed, if the relativisti propagator K(x

0

; t

0

;x; t) vanishes for spae-like distanes. Another,

less restritive translation of the priniple of relativity would be to ask that measurements

performed at spae-like separated points do not inuene eah other. This is ahieved, if all

observables O(x) ommute for spae-like distanes,

[

^

O(x; t);

^

O(x

0

; t

0

)℄ = 0 for (t� t

0

)

2

< (x� x

0

)

2

: (2.76)

In quantum mehanis, the Heisenberg operators
^
x(t) and

^
p(t) depend, however, only on

time. Therefore we an not implement the ondition (2.76) in suh a framework.

The only resue for ausality in relativisti quantum mehanis is therefore the vanishing

of the propagator K(t

0

;x

0

; t;x) outside the light-one. We evaluate the propagator as in the

non-relativisti ase,

K(x

0

; t

0

;x; t) =




x

0

�

�

e

�iH(t

0

�t)

jxi =

Z

d

3

p

(2�)

3




x

0

�

�

e

�iE

p

(t

0

�t)

jpi hpjxi (2.77)

inserting however the relativisti dispersion relation, E

p

=

p

m

2

+ p

2

. Next we use that the

momentum operator
^
p generates spae translations, exp(�i

^
px)j0i = jxi, to obtain

K(x

0

; t

0

;x; t) = K(x

0

� x) =

Z

d

3

p

(2�)

3

jh0jpij

2

e

�ip(x

0

�x)

: (2.78)

Here we introdued also the four-vetor p

�

= (E

p

;p), rewriting the plan-wave thereby in a

Lorentz-invariant way. In order that the omplete propagator is invariant, we have to hoose

as integration measure / d

3

p=E

p

, f. problem 2.??, and we set therefore jh0jpij

2

= 1=(2E

p

).

Knowing its expliit expression, it is a straight-forward exerise to show that the propagator

does not vanish outside the light-one, but goes only exponentially to zero, K(x

0

; 0;x; 0) /

exp(�mjx

0

� xj). Thus we failed to implement both versions of ausality into relativisti

quantum mehanis. Instead, we will develop quantum �eld theory with the aim to implement

ausality via the ondition (2.76).

Before starting this endeavour, we an draw still some important onlusion from Eq. (2.78).

For spae-like distanes, (x�x

0

)

2

< 0, a Lorentz boost an hange the time order of two spae-

time events, f. problem 1.??. Consisteny requires thus to inlude both time-orderings: If

a partile is reated at t and absorbed at t

0

> t, then it an be reated neessarily also at t

0

and absorbed at t > t

0

. We extend therefore the propagator as

K(x

0

� x) =

Z

d

3

p

(2�)

3

2E

p

h

#(t

0

� t)e

�ip(x

0

�x)

+ #(t� t

0

)e

ip(x

0

�x)

i

; (2.79)

where we hose the opposite sign for the plan-wave in the seond fator: In this way, the

phase of the plane-waves observed in both frames agree, �E

p

�#(�) < 0 and +E

p

�#(��) <

0, and similarly for the momenta. If we imagine that the propagating partile arries a
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2. Quantum mehanis

onserved harge, then we an assoiate the positive frequenies to the propagation of a

partile (with harge q) and the negative frequenies to the propagation of an antipartile

(with harge �q). Then the resulting urrent is frame-independent, if the antipartile has the

same mass but the opposite additive harges. This predition of relativisti quantum �eld

theory is experimentally on�rmed with extreme auray: For instane, the limits on the

mass and harge di�erene of eletrons and positrons are smaller than 8� 10

�9

and 4� 10

�8

,

respetively [O

+

14℄.

Finally, we should mention an alternative way to implement ausality: Instead of de�n-

ing quantum �elds

^

�(x

�

) on lassial spae-time, we ould promote time t to an operator,

parametrising the world-line x̂

�

(�) of a partile e.g. by its proper-time � . Considering then

the surfae x̂

�

(�; �) generated by a set of world-lines is the starting point of string theory.

Summary

Using Feynman's path integral approah, we an express a transition amplitude as a sum

over all paths weighted by a phase whih is determined by the lassial ation, hq

f

; t

f

jq

i

; t

i

i =

R

Dq(t) exp(iS[q℄). Adding a linear oupling to an external soure J and a damping term

to the Lagrangian, we obtain the ground-state persistene amplitude h0;1j0;�1i

J

. This

quantity serves as the generating funtional Z[J ℄ for n-point Green funtions G(t

1

; : : : ; t

n

)

whih are the time-ordered vauum expetation values of the operators q̂(t

1

); : : : ; q̂(t

n

).

Further reading

For additional examples for the use of the path integral and Green funtions in quantum

mehanis see e.g. [Ma00℄ or [Das06℄. [Sh05℄ skethes the historial development that lead

to Shwinger's Green funtions, inluding his quantum ation priniple.
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3. Free salar �eld

We extend in this hapter the path integral approah from quantum mehanis to the simplest

�eld theory, ontaining a single real salar �eld �(x). Suh a �eld may either represent

an elementary partile like the Higgs salar, a bound-state like a salar meson, or a salar

parameter desribing a spei� property of a more omplex theory. Proeeding similar to our

approah in quantum mehanis, we will introdue the generating funtional Z[J ℄ = h0+j0�i

J

of n-point Green funtions as our main tool to alulate the time-ordered vauum expetation

value of a produt of �elds �(x

1

) � � � �(x

n

). Calulating the vauum energy of the salar �eld,

we will enounter for the �rst time that many alulations in quantum �eld theories return a

formally in�nite result. In order to extrat sensible preditions, we have to introdue therefore

the onepts of regularisation and renormalisation.

3.1. Lagrange formalism and path integrals for �elds

A �eld is a map whih assoiates to eah spae-time point x a k-tupel of values �

a

(x), a =

1; : : : ; k. The spae of �eld values �

a

(x) an be haraterised by its transformation properties

under Poinar�e transformations, i.e. the group of translations and Lorentz transformations,

and internal symmetry groups. The latter are in pratially all physial appliations Lie

groups like U(1), SU(n) or SO(n). Exept for a real salar �eld �, these �elds have several

omponents. Thus we have to generalise Hamilton's priniple to a olletion of �elds �

a

(x),

where the index a inludes all internal as well as spae-time indies. Moreover, the Lagrangian

for a �eld �

a

(x) will ontain not only time but also spae derivatives.

To ensure Lorentz invariane, we onsider a salar Lagrange density L (x) that depend as a

loal funtion on the �elds and their derivatives. By analogy to L(q; _q), we restrit ourselves

to �elds �

a

(x) and their �rst derivatives �

�

�

a

(x). We inlude no expliit time-dependene,

sine \everything" should be explained by the �elds and their interations. The Lagrangian

L(�

a

; �

�

�

a

) is obtained by integrating the densityL over a given spae volume V . The ation

S is thus the four-dimensional integral

S[�

a

℄ =

Z

t

b

t

a

dt L(�

a

; �

�

�

a

) =

Z




d

4

xL (�

a

; �

�

�

a

) (3.1)

with 
 = V � [t

a

: t

b

℄. A variation Æ�

a

(x) of the �elds leads to a variation of the ation,

ÆS =

Z




d

4

x

�

�L

��

a

Æ�

a

+

�L

�(�

�

�

a

)

Æ(�

�

�

a

)

�

; (3.2)

where we have to sum over �eld omponents (a = 1; : : : ; k) and the Lorentz index � = 0; : : : ; 3.

The orrespondene q(t)! �(x

�

) implies that the sale fator " parametrising the variations

�

a

(x

�

; ") depends not on x

�

. We an therefore eliminate again the variation of the �eld

gradients �

�

�

a

by a partial integration using Gauss' theorem,

ÆS =

Z




d

4

x

�

�L

��

a

� �

�

�

�L

�(�

�

�

a

)

��

Æ�

a

= 0 : (3.3)
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3. Free salar �eld

The surfae term vanishes, sine we require that the variation is zero on the boundary �
.

Thus the Lagrange equations for the �elds �

a

are

�L

��

a

� �

�

�

�L

�(�

�

�

a

)

�

= 0 : (3.4)

If the Lagrange density L is hanged by a four-dimensional divergene, ÆL = �

�

K

�

, and

surfae terms an be dropped, the same equations of motion result. Note also that it is

often more eÆient to perform diretly the variation Æ�

a

in the ation S[�

a

℄ than to use the

Lagrange equations.

The path integral beomes now a funtional integral over the k �elds �

a

,

K =

Z

D�

1

� � � D�

k

e

iS[�

a

℄

=

Z

D�

1

� � � D�

k

e

i

R




d

4

xL (�

a

;�

�

�

a

)

: (3.5)

A major problem we have to address later is that the k �elds �

a

are often not independent:

For instane, in eletrodynamis all potentials A

�

onneted by a gauge transformation de-

sribe the same physis. This redundany makes the path integral (3.5) ill-de�ned. We start

therefore with the simplest ase of a single, real salar �eld � where suh problems are absent.

Moreover, we restrit ourselves in this hapter to a free �eld without interations.

3.2. Generating funtional for a salar �eld

Lagrangian The (free) Shr�odinger equation i�

t

 = H

0

 an be obtained substituting ! !

i�

t

and k ! �ir

x

into the non-relativisti energy-momentum relation ! = k

2

=(2m). With

the same replaements, the relativisti !

2

= m

2

+ k

2

beomes the Klein-Gordon equation

(�+m

2

)� = 0 with � = �

��

�

�

�

�

= �

�

�

�

: (3.6)

The relativisti energy-momentum relation implies that the solutions to the free Klein-Gordon

equation onsist of plane-waves with positive and negative energies �

p

k

2

+m

2

. For the

stability of a quantum system it is however essential that its energy eigenvalues are bounded

from below. Otherwise, we ould generate e.g. in a sattering proess �+�! n� an arbitrarily

high number of � partiles with suÆiently low energy, and no stable form of matter ould

exist. Interpreting the Klein-Gordon equation as a relativisti wave equation for a single

partile an be therefore not fully satisfatory, sine the energy of its solutions is not bounded

from below.

How do we guess the orret Lagrange density L ? Plane waves an be seen as a olletion

of oupled harmoni osillators at eah spae-time point. The orrespondene _q ! �

�

�

means that the kineti �eld energy is quadrati in the �eld derivatives. Relativisti invariane

implies that the Lagrange density is a salar, leaving as the only two possible terms ontaining

derivatives

�

��

(�

�

�)(�

�

�) and ��� :

Using the ation priniple to derive the equation of motions, we an however drop boundary

terms performing partial integrations. Thus these two terms are equivalent, up to a minus

sign. The Klein-Gordon equation �� = �m

2

� suggests that the mass term is also quadrati

in the �eld �. Therefore we try as Lagrange density

L =

1

2

�

��

(�

�

�) (�

�

�)�

1

2

m

2

�

2

�

1

2

�

��

�

�

��

�

��

1

2

m

2

�

2

: (3.7)
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3.2. Generating funtional for a salar �eld

From now, we will drop the parenthesis around �

�

� and it should be understood from the

ontext that the derivative �

�

ats only on the �rst �eld �. Even shorter alternative notations

are (�

�

�)

2

and the onise (��)

2

. Swapping the indies in the the Lagrangian (3.7), we obtain

for the seond part of the Lagrange equation

�

�(�

�

�)

(�

��

�

�

��

�

�) = �

��

�

Æ

�

�

�

�

�+ Æ

�

�

�

�

�

�

= �

��

�

�

�+ �

��

�

�

� = 2�

�

� : (3.8)

Hene the Lagrange equation beomes

�L

��

� �

�

�

�L

�(�

�

�)

�

= �m

2

�� �

�

�

�

� = 0 ; (3.9)

and the Lagrange density (3.7) leads indeed to the Klein-Gordon equation. We an understand

the relative sign in the Lagrangian splitting the relativisti kineti energy into the \proper"

kineti energy (�

t

�)

2

=2 and the gradient energy density (r�)

2

=2,

L =

1

2

_

�

2

�

1

2

(r�)

2

�

1

2

m

2

�

2

: (3.10)

The last two terms orrespond to a potential energy and arry therefore the opposite sign of

the �rst one.

Instead of guessing, we an derive the orret Lagrangian L as follows: We multiply the

free �eld equation for � by a variation Æ� that vanishes on �
. Then we integrate over 
,

perform a partial integration of the kineti term, use �

�

Æ = Æ�

�

, the Leibniz rule and ask

that the variation vanishes,

A

Z




d

4

x Æ� (�+m

2

)� = A

Z




d

4

x

�

�Æ(�

�

�)�

�

�+ Æ��m

2

�

= (3.11a)

= A

Z




d

4

x Æ

�

�

1

2

(�

�

�)

2

+

1

2

�

2

m

2

�

= 0 : (3.11b)

The term in the square brakets agrees with our guess (3.7), taking into aount that the

soure-free �eld equation �xes the Lagrangian only up to the overall fator A. In analogy

with a quantum mehanial osillator, we want that the oeÆients of the two terms are �1=2

and thus we set jAj = 1.

We an determine the orret overall sign of L by alulating the energy density � of the

salar �eld and requiring that it is bounded from below and stable against small perturbations.

We identify the energy density � of the salar �eld with its Hamiltonian density H , and use

the onnetion between the Lagrangian and the Hamiltonian known from lassial mehanis.

The transition from a system with a �nite number of degrees of freedom to one with an in�nite

number of degrees of freedom proeeds as follows,

p

i

=

�L

� _q

i

) �

a

=

�L

�

_

�

a

; (3.12a)

H = p

i

_q

i

� L ) H =

X

a

�

a

_

�

a

�L : (3.12b)

The anonially onjugated momentum � of a real salar �eld is

� =

�L

�

_

�

=

_

� : (3.13)
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3. Free salar �eld

Thus the Hamilton density is

H = �

_

��L = �

2

�L =

1

2

_

�

2

+

1

2

(r�)

2

+

1

2

m

2

�

2

� 0 (3.14)

and thus obviously positive de�nite. Moreover, generating utuations Æ� osts energy and

thus the system is stable against small perturbations. Hene the transition from a single

partile interpretation of the Klein-Gordon equation to a �eld theory has been suÆient to

ure the problem of the negative energy solutions.

Note that we ould subtrat a onstant �

0

from the Lagrangian whih would drop out

of the equation of motion. From Eq. (3.14) we see that suh a onstant orresponds to a

uniform energy density of empty spae. Suh a term would at as an additional soure of the

gravitational �eld, but would be otherwise unobservable. Next we generalise the Lagrangian

by subtrating a polynomial in the �elds, V (�), subjet to the stability onstraint disussed

above. Hene the potential V should be bounded from below, and we an expand it around

its minimum at � � v,

dV

d�

�

�

�

�

�=v

= 0 ;

d

2

V

d�

2

�

�

�

�

�=v

� m

2

> 0 : (3.15)

The term V

00

(v) ats as mass term the �eld �. We will see soon that terms �

n

with n � 3

generate interations between n partiles, as expeted from the analogy of a quantum �eld to

oupled quantum mehanial osillators. The �eld � has the non-zero value � = v everywhere,

if the minimum v of V (�) is not at zero, v 6= 0. If the value of V (�) at the minimum v is

not zero, V (v) 6= 0, then the non-zero potential implies a non-zero uniform energy density

� = V (v).

Generating funtional Now we move on to the quantum theory of a salar �eld, whih we

de�ne by the path-integral over exp iS[�℄. The Green funtions whih enode all information

about this theory an be obtained from the generating funtional

Z[J ℄ = h0 + j0�i

J

= N

Z

D� exp i

Z

d

4

x

�

1

2

�

�

��

�

��

1

2

m

2

�

2

+ J�

�

; (3.16)

where we appended to the ation a linear oupling between the �eld and an external soure.

To ensure the onvergene of the integral, we add an in�nitesimal small imaginary part to

the squared mass of the partile, m

2

! m

2

� i". Next we perform an integration by part of

the �rst term, exploiting the fat that the boundary term vanishes,

Z[J ℄ = N

Z

D� exp i

Z

d

4

x

�

�

1

2

�(�+m

2

)�+ J�

�

: (3.17)

The �rst two terms, A = �(�+m

2

), are quadrati and symmetri in the �eld �,

�

1

2

Z

d

4

x �(x)(�

x

+m

2

)�(x) =

1

2

Z

d

4

xd

4

x

0

�(x)A(x; x

0

)Æ(x � x

0

)�(x

0

) : (3.18)

Note that the operator A is loal, A(x) / A(x; x

0

)Æ(x � x

0

): Sine speial relativity forbids

ation at a distane, non-loal terms like �(x

0

)A(x; x

0

)�(x) should not appear in a relativisti

Lagrangian.
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3.2. Generating funtional for a salar �eld

If we disretise ontinuous spae-time x

�

into a lattie, we an use Eq. (2.22) to perform

the path integral,

Z[J ℄ = N

�

(2�i)

N

det[A℄

�

1=2

exp

�

�

1

2

iJA

�1

J

�

� NZ[0℄ exp(iW [J ℄) : (3.19)

The prefator of the exponential funtion does not depend on J and is thus given by NZ[0℄ =

h0 + j0�i. The vauum should be stable and normalised to one in the absene of soures,

h0+ j0�i = 1. Therefore the proper normalisation of Z[J ℄ implies that N

�1

= Z[0℄. Thus we

an omit the normalisation fator, if we normalise the path integral measure D� suh that

the Gaussian integral over a free �eld is one. In the last step of Eq. (3.19), we de�ned a

new funtional W [J ℄ that depends only quadratially on the soure J ; therefore it should be

easier to handle than Z[J ℄. Going for N ! 1 bak to ontinuous spae-time, the matrix

multipliations beome integrations,

Z[J ℄ = exp(iW [J ℄) = exp

�

�

i

2

Z

d

4

xd

4

x

0

J(x)A

�1

(x; x

0

)J(x

0

)

�

(3.20)

and

W [J ℄ = �

1

2

Z

d

4

xd

4

x

0

J(x)A

�1

(x; x

0

)J(x

0

) : (3.21)

Propagator In order to evaluate the funtional W [J ℄ we have to �nd the inverse �(x; x

0

) �

A

�1

(x; x

0

) of the di�erential operator A, de�ned by

� (�+m

2

)�(x; x

0

) = Æ(x� x

0

) : (3.22)

Beause of translation invariane, the Green funtion �(x; x

0

) an depend only on the di�er-

ene x � x

0

. Therefore it is advantageous to perform a Fourier transformation and to go to

momentum spae,

�

Z

d

4

k

(2�)

4

(�+m

2

)�(k)e

�ik(x�x

0

)

=

Z

d

4

k

(2�)

4

e

�ik(x�x

0

)

; (3.23)

or

�

F

(k) =

1

k

2

�m

2

+ i"

; (3.24)

where the pole at k

2

= m

2

is avoided by the i". Thus them

2

! m

2

�i" presription introdued

to ensure the onvergene of the path integral tells us also how to handle the poles of the

Green funtion. The index F spei�es that the propagator �

F

is the Green funtion obtained

with the m

2

� i" presription proposed by Feynman. (Some authors use instead D

F

for the

propagator of massive bosons and �

F

for the propagator of massless bosons.)

Note that the four momentum omponents k

�

are independent. Therefore �

F

(k) desribes

the propagation of a virtual partile that has|in ontrast to a real or external partile|not

to be on \mass-shell:" in general

k

0

6= �!

k

� �

p

k

2

+m

2

:
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3. Free salar �eld

Im(k

0

)

Re(k

0

)

C

+

C

�

�! + i"

�

! � i"

�

Figure 3.1.: Poles and ontours in the omplex k

0

plane used for the integration of the Feyn-

man propagator.

We an evaluate the k

0

integral in the oordinate representation of �

F

(x� x

0

) expliitly,

�

F

(x� x

0

) =

Z

d

4

k

(2�)

4

e

�ik(x�x

0

)

k

2

0

� k

2

�m

2

+ i"

(3.25a)

=

Z

d

3

k

(2�)

3

Z

dk

0

2�

e

�ik

0

(t�t

0

)

e

ik(x�x

0

)

(k

0

� !

k

+ i")(k

0

+ !

k

� i")

; (3.25b)

using Cauhy's theorem

1

. The integrand has two simple poles at +!

k

� i" and �!

k

+ i",

f. Fig. 3.1. For negative � = t � t

0

, we an lose the integration ontour C

+

on the upper

half-plane, inluding the pole at �!

k

,

Z

dk

0

e

�ik

0

�

(k

0

� !

k

+ i")(k

0

+ !

k

� i")

= 2�i res

�!

k

= 2�i

e

i!

k

�

�2!

k

for � < 0 : (3.26)

For positive � , we have to hoose the ontour C

�

in the lower plane, piking up

2�i e

�i!

k

�

=(2!

k

) and an additional minus sign sine the ontour is lokwise. Combining

both results, we obtain

i�

F

(x) =

Z

d

3

k

(2�)

3

2!

k

�

e

�i!

k

t

#(x

0

) + e

i!

k

t

#(�x

0

)

�

e

ikx

; (3.27)

or after shifting the integration variable k! �k in the seond term

i�

F

(x) =

Z

d

3

k

(2�)

3

2!

k

h

e

�i(!

k

t�kx)

#(x

0

) + e

i(!

k

t�kx)

#(�x

0

)

i

: (3.28)

Comparing this expression to our guess (2.79) at the end of the last hapter, we see that our

intuitive arguments about the struture of a Lorentz invariant propagator in a quantum theory

1

Sine " is in�nitesimal and !

k

> 0, we an set 2i!

k

"+ "

2

! i".
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3.2. Generating funtional for a salar �eld

were orret. We stress one again the salient features of the Feynman propagator: First,

the propagator ontains positive and negative frequenies, as expeted from the existene of

solutions to the Klein-Gordon equation with positive and negative energies. Seond, positive

frequenies propagate forward in time, while negative frequenies propagate bakward. This

implies the existene of antipartiles. Third, the relativisti normalisation of (on-shell) plane

waves inludes a fator 1=

p

2!

k

, or

hkjk

0

i = 2!

k

(2�)

3

Æ(k � k

0

) ; (3.29)

while the non-relativisti normalisation uses hkjk

0

i = Æ(k � k

0

).

Remark 3.1: Other Green funtions are obtained, if we hoose di�erent presriptions for the

handling of the poles. For positive � = t � t

0

, we have to lose the irle on the lower half-plane.

Shifting both poles to the lower half-plane, �!

k

� i", gives thus the retarded propagator �

ret

(x)

vanishing for all � < 0. In the opposite ase, we shift both poles to the upper half-plane, �!

k

+ i",

and obtain the advaned propagator �

adv

(x). Both propagators are real-valued, propagating a real

solution of the wave equation into another real one at a di�erent time, as required in lassial physis.

Moreover, both Green funtions have support inside the light-one, the retarded in the forward and

the advaned in the bakward part of the light one. This behaviour should be ontrasted with the

Feynman propagator �

F

whih is omplex-valued and non-zero in R(1; 3).

Another way to handle the singularities is to use Cauhy's Prinipal value presription, obtaining

�(x) =

1

2

[�

adv

(x) + �

ret

(x)℄. This hoie orresponds to an ation-at-distane whih seems to have

no relevane in physis. Finally, we an shift one pole up and the other one down. The hoie

�(!

k

� i") used in the Feynman propagator allows us to rotate the integration ontour anti-lokwise

to �i1 : +i1 avoiding both poles in the omplex k

0

plane. Sine k

0

= i�

t

, this transformation

is onsistent with the lokwise rotation in oordinate spae required to obtain an Eulidean ation

bounded from below. Thus the Feynman presription is the only one in whih the physis in Minkowski

and Eulidean spae are analytially onneted, f. with the remark 2.1.

We are now in the position to evaluate the generating funtional

W [J ℄ = �

1

2

Z

d

4

xd

4

x

0

J(x)�

F

(x� x

0

)J(x

0

) : (3.30)

in Fourier spae. Inserting the Fourier transformations for the propagator as well as for the

soures J gives

W [J ℄ = �

1

2

Z

d

4

xd

4

x

0

Z

d

4

k

(2�)

4

d

4

k

0

(2�)

4

d

4

~

k

(2�)

4

J(k)

�

e

ikx

e

�i

~

k(x�x

0

)

~

k

2

�m

2

+ i"

J(k

0

)e

�ik

0

x

0

: (3.31)

Exhanging the integration order and performing the spae-time integrations leads to the

onservation of the four-momenta entering and leaving the two interation points, (2�)

8

Æ(k�

~

k)Æ(

~

k� k

0

): The soure J(k)

�

produe a salar partile with momentum k, and thus only the

Fourier omponent k of the salar propagator ontributes. This is a very general behaviour,

based solely on the translation invariane of the free partile states we are using. In the

�nal step, we anel two of the three momentum integrations with the two momentum delta

funtions and are left with

W [J ℄ = �

1

2

Z

d

4

k

(2�)

4

J(k)

�

1

k

2

�m

2

+ i"

J(k) : (3.32)
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3. Free salar �eld

The funtional W [J ℄ has the same struture as the one for the harmoni osillator found in

the last hapter. We will see that it ontains, as in the one-dimensional ase, all information

about a free salar �eld, not only about its ground state. Note that the ontribution of Fourier

modes to W [J ℄ inreases, the loser they are on-shell, k

2

! m

2

. For k

2

= m

2

, the propagator

diverges �nally. In order to interpret this unphysial result, we an ompare it to a lassial

harmoni osillator: If an external soure is applied in resonane with the eigen-frequeny ! of

the osillator, the osillation amplitude will inrease until frition annot be longer negleted.

In our ase at hand, the non-zero life-time of unstable partiles plays the rôle of frition:

Inluding in our formalism that the exhanged partile is unstable, the in�nitesimal " would

be replaed by half its deay-width, "! i�=2.

Attrative Yukawa potential by salar exhange From our marosopi experiene, we

know the two ases of eletromagnetism, where equal eletri harges repel eah other, and of

gravity where two masses attrat eah other. The �rst physis question we want to answer with

our newly developed formalism is if the salar �eld falls into the ategory of a fundamentally

attrative or repulsive interation.

In order to address this question, we onsider two stati point harges as external soures,

J = J

1

(x

1

) + J

2

(x

2

) with J

i

= Æ(x�x

i

), in W [J ℄. Multiplying out the terms in J(x)�

F

(x�

x

0

)J(x

0

) gives four ontributions, W

ij

/ J

i

J

j

: The terms W

11

[J ℄ and W

22

[J ℄ orrespond to

the emission and re-absorption of the partile by the same soure J

i

. They are examples

for self-interations that we neglet for the moment. The interation between two di�erent

harges is given by

W

12

[J ℄ =W

21

[J ℄ = �

1

2

Z

d

4

xd

4

x

0

Z

d

4

k

(2�)

4

J

1

(x)

e

�ik(x�x

0

)

k

2

�m

2

+ i"

J

2

(x

0

) (3.33)

= �

1

2

Z

dtdt

0

Z

d

4

k

(2�)

4

e

�ik

0

(t�t

0

)

e

ik(x

1

�x

2

)

k

2

�m

2

+ i"

: (3.34)

Performing one of the two time integrals, e.g. the one over t

0

, gives 2�Æ(k

0

). Hene our

assumption of stati soures implies that the virtual partile arries zero energy and is spae-

like, k

2

= �k

2

< 0. Eliminating then the k

0

integral with the help of the delta funtion, we

obtain next

W

12

[J ℄ =

1

2

Z

dt

Z

d

3

k

(2�)

3

e

ikr

k

2

+m

2

(3.35)

with r = x

1

� x

2

. The denominator is always positive, and we an therefore omit the i".

Before we an go on, we have to make sense out of the in�nite time integral: Looking at

Z[J ℄ = h0j exp(�iH[J ℄�)j0i = exp(iW [J ℄) ; (3.36)

we see that W [J ℄ = �E� with � = t� t

0

as the onsidered time interval. Hene the potential

energy V of two stati point harges separated by the distane r is

V = �(W

12

+W

21

)=� = �

Z

d

3

k

(2�)

3

e

ikr

k

2

+m

2

= �

e

�mr

4�r

< 0 : (3.37)

Thus the potential energy of two equal harges is redued by the exhange of a salar partile,

whih means that the salar fore between them is attrative. If the exhanged partile is

massive, the range of the fore is of order 1=m. These two observations were the basi
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3.3. Green funtions for a free salar �eld

motivation for Yukawa to suggest in 1935 the exhange of salar partiles as model for the

nulear fore. Note also that we obtain in the limitm! 0 a 1=r potential as in Newton's and

Coulomb's law. Thus we learnt the important fat that the only two known fores of in�nite

range, the eletromagneti and the gravitational fore, are transmitted by massless partiles,

the photon and the graviton, respetively. The result V / 1=r form = 0 and n = 4 spae-time

dimensions, or more generally V / 1=r

n�3

for n � 4, follows from simple dimensional analysis:

For m = 0, the only remaining dimensionfull parameter after the integration over k is the

distane r. From Eq. (3.37), we read o� that the potential energy V has the dimension [V ℄ =

k

n�3

. Thus the potential energy due to the exhange of a massless partile sales as r

�n+3

.

Finally, note that the amplitude W

12

+W

21

or J(x)�

F

(x� x

0

)J(x

0

) = J(x

0

)�

F

(x

0

� x)J(x)

is symmetri against the exhange 1$ 2 or x

1

$ x

2

, reeting that the salar propagator is

an even funtion. Thus salar partiles are bosons and follow Bose-Einstein statistis.

3.3. Green funtions for a free salar �eld

In the last setion, we obtained the salar Feynman propagator or two-point Green funtion

as the inverse of the Klein-Gordon operator. As next step, we want to derive n-point Green

funtions from the their generating funtional. Moreover, we will introdue two types of

Green funtions, namely disonneted n-point funtions G(x

1

; : : : ; x

n

) and onneted n-point

funtions G(x

1

; : : : ; x

n

). Consider the expansion of the exponential in Eq. (3.19),

Z[J ℄ = e

iW [J℄

=

1

X

n=0

i

n

n!

W

n

=

1

X

n=0

i

n

n!

Z

d

4

x

1

� � � d

4

x

n

G

n

(x

1

; � � � ; x

n

)J(x

1

) � � � J(x

n

) ; (3.38)

where we assume that Z[J ℄ is normalised so that Z[0℄ = 1. The RHS serves as de�nition

of the disonneted n-point Greens funtion G(x

1

; � � � ; x

n

). They an be alulated as the

funtional derivatives of Z[J ℄,

G(x

1

; : : : ; x

n

) =

1

i

n

Æ

n

ÆJ(x

1

) � � � ÆJ(x

n

)

Z[J ℄

�

�

�

�

J=0

: (3.39)

For n = 2 we should re-derive the Feynman propagator. Starting from

1

i

ÆZ[J ℄

ÆJ(x)

=

1

i

Æ

ÆJ(x)

exp

�

�

i

2

Z

d

4

x

1

d

4

x

2

J(x

1

)�

F

(x

1

� x

2

)J(x

2

)

�

= �

Z

d

4

x

1

�

F

(x� x

1

)J(x

1

) exp(iW [J ℄) ; (3.40)

we obtain

1

i

Æ

ÆJ(y)

1

i

Æ

ÆJ(x)

Z[J ℄ = i�

F

(x� y) exp(iW [J ℄)

+

�

Z

d

4

x

1

�

F

(x� x

1

)J(x

1

)

��

Z

d

4

x

1

�

F

(y � x

1

)J(x

1

)

�

exp(iW [J ℄) : (3.41)

Setting J = 0 gives the desired result for the 2-point funtion,

G(x; y) = i�

F

(x� y) : (3.42)
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It is straightforward to ontinue: Another funtional derivative gives the 3-point funtion,

Æ

iÆJ(x

1

)

Æ

iÆJ(x

2

)

Æ

iÆJ(x

3

)

Z[J ℄ = �

�

Z

d

4

x�

F

(x

1

� x)J(x)

�

�

�

Z

d

4

x�

F

(x

2

� x)J(x)

��

Z

d

4

x�

F

(x

3

� x)J(x)

�

exp(iW [J ℄)

�i�

F

(x

2

� x

3

)

Z

d

4

x�

F

(x

1

� x)J(x) exp(iW [J ℄)

�i�

F

(x

2

� x

1

)

Z

d

4

x�

F

(x

3

� x)J(x) exp(iW [J ℄)

�i�

F

(x

3

� x

1

)

Z

d

4

x�

F

(x

2

� x)J(x) exp(iW [J ℄) : (3.43)

For n odd, we obtain always a soure J in the prefator beause W [J ℄ is an even polynomial

in J . Hene all odd n-point funtions are zero. We ontinue with the 4-point funtion: Taking

another derivative and setting J = 0, only terms linear in J in Eq. (3.43) ontribute and thus

we obtain

G(x

1

; x

2

; x

3

; x

4

) =� [�

F

(x

1

� x

2

)�

F

(x

3

� x

4

)

+ �

F

(x

1

� x

3

)�

F

(x

2

� x

4

)

+ �

F

(x

1

� x

4

)�

F

(x

2

� x

3

)℄ : (3.44)

We see that the 4-point funtion is the sum of all permutations of produts of two 2-point

funtions. For instane, the �rst term �

F

(x

1

�x

2

)�

F

(x

3

�x

4

) in the 4-point funtion desribes

the independent propagation of a salar partile from x

1

to x

2

and of another one from x

3

to x

4

. Thus our approah leads indeed to a many-partile theory. Sine we did not inlude

interations, partiles are propagating independently and the n-point funtion fatorises into

produts of two-point funtions. Thus the funtional Z[J ℄ generates disonneted Green

funtions. The statement that the n-point funtion is the sum of all permutations of the

produt of the n=2 two-point funtions holds for all n and is alled \Wik's theorem".

We introdue next the onneted n-point funtions G(x

1

; : : : ; x

n

). Their generating fun-

tional is W [J ℄,

G(x

1

; : : : ; x

n

) =

1

i

n

Æ

n

ÆJ(x

1

) � � � ÆJ(x

n

)

iW [J ℄

�

�

�

�

J=0

: (3.45)

For a free theory, W is quadrati in the soures J . Hene, all onneted n-point funtions

G(x

1

; : : : ; x

n

) with n > 2 vanish and the only non-zero one is the two-point funtion with

G(x; y) = i�

F

(x� y) = G(x; y) : (3.46)

To summarise: There exists only one non-zero onneted n-point funtion in a free the-

ory whih is determined by the Feynman propagator, G(x; y) = i�

F

(x � y). All non-zero

disonneted n-point funtions an be obtained by permuting the produt of n=2 two-point

funtions (\Wik's theorem"). Hene any higher-order Green funtion an be onstruted out

of a single building blok, the Feynman propagator. In perturbation theory, we will reast the

interating theory|loosely speaking|in \interation verties times free propagators". This

enables us to derive simple Feynman rules that tell us how one onstruts an arbitrary Green

funtion out of verties and propagators.
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3.3. Green funtions for a free salar �eld

Causality and the Feynman propagator We already disussed in setion 2.5 that any valid

relativisti theory should implement the requirement of ausality: No signal using � partiles

as arrier should travel with a speed larger than the one of light. We also saw that the Feyn-

man presription leads to a relativisti onsistent interpretation of the propagator, although

the propagator does not vanish outside the light-one but goes only exponentially to zero,

f. problem 1.??. One may therefore wonder, if this means that the unertainty priniple

makes the light-one "fuzzy" and thus the axiom of speial relativity that no signal an be

transmitted with v >  is violated on sales smaller

<

�

1=m.

We an address this question onsidering the �eld �(x) as operator

^

�(x) and asking then

when a measurement of

^

�(x) inuenes

^

�(x

0

). Reall �rst that the Feynman propagator equals

the 2-point Green funtion whih in turn orresponds to the vauum expetation value of the

time-ordered produt of �eld operators,

G(x

1

; x

2

) = h0jTf

^

�(x

1

)

^

�(x

2

)gj0i = i�

F

(x

1

� x

2

) : (3.47)

The property �

F

(x

1

� x

2

) = �

F

(x

2

� x

1

) implies that the �eld operators

^

�(x

1

) and

^

�(x

2

)

ommute,

h0jTf

^

�(x

1

)

^

�(x

2

)gj0i = h0j

^

�(x

1

)

^

�(x

2

)j0i#(t

1

� t

2

)

+ h0j

^

�(x

2

)

^

�(x

1

)j0i#(t

2

� t

1

) :

(3.48)

Using the analogy of a free quantum �eld to an in�nite set of osillators, we try to express the

�eld operator

^

�(x) through annihilation and reation operators. Comparing to the expansion

(2.62) of an osillator in d = 1, e.g. to �(t) = (2!)

�1=2

(ae

�i!t

+ a

y

e

i!t

), suggests the ansatz

^

�(x) =

Z

d

3

k

p

(2�)

3

2!

k

h

a(k)e

�ikx

+ a

y

(k)e

+ikx

i

; (3.49)

with k

0

= !

k

, a(k) and a

y

(k) as annihilation and reation operators that satisfy

a(k) j0i = 0 ; a

y

(k) j0i = jki and [a(k); a

y

(k

0

)℄ = Æ(k � k

0

) : (3.50)

Hene the vauum state j0i is de�ned by a(k) j0i = 0 for all k.

If this ansatz is orret, then we should be able to reprodue the known form of the Feynman

propagator: Inserting our ansatz for the �eld into h0j

^

�(x; t)

^

�(0)j0i for t > 0, we obtain four

terms ontaining the produts aa, aa

y

, a

y

a, a

y

a

y

. Only aa

y

survives, resulting into

h0j

Z

d

3

k d

3

k

0

(2�)

3

p

2!

k

2!

k

0

a(k)e

�ikx

a

y

(k

0

)#(t)j0i =

Z

d

3

k

(2�)

3

2!

k

e

�ikx

#(t) : (3.51)

In the seond step, we used the ommutation rule [a(k); a

y

(k

0

)℄ = Æ(k � k

0

). Performing the

same exerise for t < 0, we see that we reprodue also in this ase the orresponding term of

the Feynman propagator. Thus we onlude that our ansatz for the �eld and ommutation

rules for the annihilation and reation operators are onsistent. Note that we ould reate in

Eq. (3.51) alternatively one-partile states, h0ja(k)a

y

(k

0

)j0i = hkjk

0

i ; and onsisteny requires

thus that the states jki are non-relativistially normalised, hkjk

0

i = Æ(k � k

0

). This should

ome as no surprise, sine we started from the analogy to the non-relativisti osillator. If

one prefers states satisfying the relativisti normalisation, one an resale the reation and
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annihilation operators suh that [~a(k); ~a

y

(k

0

)℄ = (2�)

3

2!

k

Æ(k � k

0

) and the �eld-operator

beomes

^

�(x) =

Z

d

3

k

(2�)

3

2!

k

h

~a(k)e

�ikx

+ ~a

y

(k)e

+ikx

i

: (3.52)

Both normalisations lead to anonial ommutation relations between the �eld

^

� and its

anonially onjugated momentum density �̂ =

_

� at equal times,

[

^

�(x; t); �̂(x

0

; t)℄ = iÆ(x� x

0

) : (3.53a)

[

^

�(x; t);

^

�(x

0

; t)℄ = [�̂(x; t); �̂(x

0

; t)℄ = 0 : (3.53b)

We ome bak to the question if the ommutator of two �elds vanishes for spae-like sepa-

ration. We evaluate �rst

[

^

�(x);

^

�(x

0

)℄ =

Z

d
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k d

3

k

0

(2�)

3
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k

0
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a(k)e
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(k)e

+ikx

; a(k
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�ik

0
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0

+ a
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(k

0
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+ik
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0

i

=

Z

d

3

k

(2�)

3
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k

�

e

�ik(x�x

0

)

� e

+ik(x�x

0

)

�

� D(x� x

0

) : (3.54)

For equal times, t = t

0

, exhanging the dummy variable k! �k in the seond term shows that

the ontribution from positive and negative energies anel. Thus the equal-time ommutator

of two �elds is zero, as laimed in (3.53b). For spae-like distanes, (x � x

0

)

2

< 0, we an

�nd a Lorentz boost whih hanges the ordering of the spae-time events, x�x

0

! �(x�x

0

):

Sine the funtion D(x� x

0

) is the sum of two Lorentz invariant expressions, its value has to

be the same in all inertial frames. But for spae-like distanes, we an transform D(x) into

�D(x), and therefore D(x) has to vanish, if x is outside the light-one of x

0

and vie versa.

Thus we have shown that also the ommutator of two spae-like separated �elds vanishes,

[

^

�(x);

^

�(x

0

)℄ = 0 for (x� x

0

)

2

< 0 ; (3.55)

whih is the ondition for ausality: The transmission of a signal orresponds not only to

the propagation of a virtual partile, but inludes its measurement. Thus the fat that the

Feynman propagator does not vanish outside the light-one does not ontradit ausality by

itself.

There are two main di�erenes between the Feynman propagator and the ommutator of two

�elds: First, [

^

�(x);

^

�(x

0

)℄ is an operator, while i�(x

1

�x

2

) is a vauum expetation value. The

quantum vauum utuates, and these utuations are orrelated also on spae-like distanes,

similar to the ERP orrelations in quantum mehanis. The Feynman propagator i�

F

(x

1

�x

2

)

is designed to desribe not only the propagation of time-like partiles, but inludes also the

spae-like propagation of virtual partiles: The most \extreme" ase is the instantaneous

exhange of partiles transmitting the Coulomb or Yukawa fore between stati soures, f.

Eq. (3.35). Seond, in [

^

�(x);

^

�(x

0

)℄ we subtrat the ontribution of positive and negative

frequenies, while we add them in the Feynman propagator. As a result, the ontributions

from a partile travelling the distane x and from an antipartile travelling the distane �x

anel in the ommutator, while they add up in the Feynman propagator. Sine ausality

relies on the anellation between positive and negative energy modes in [

^

�(x);

^

�(x

0

)℄, we

onlude that a relativisti quantum theory has to inorporate antipartiles.
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3.4. Vauum energy and the Casimir e�et

Vauum energy We now aim at alulating the energy of the vauum state of a free salar

quantum �eld. The energy density � of the �eld � is given by the vauum expetation value

of its Hamiltonian density H ,

� = h0jH j0i = �

0

+

1

2

h0j�

2

+ (r�)

2

+m

2

�

2

j0i = �

0

+ �

1

: (3.56)

Here we added the onstant energy density �

0

to (3.14) and used that the vauum is nor-

malised, h0j0i = 1. For the alulation of �

1

, we an reyle our result for the propagator of

a salar �eld by onsidering �

2

(x) as the limit of two �elds at nearby points,

h0j�(x

0

)�(x)j0i

x

0

&x

=

Z

d

3

k

(2�)

3

2!

k

e

�ik(x
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�x)

�

�

�

�

x

0

&x

=

Z

d

3

k

(2�)

3

2!

k

: (3.57)

We perform �rst the di�erentiation in h�

2

i = h

_

�

2

i and h(r�)

2

i and send then x

0

& x. Thus

�

2

and (r�)

2

add a !

2

k

and k

2

term, respetively,

� = h0jH j0i = �

0

+

Z

d

3

k

(2�)

3

2!

k

�

1

2

(!

2

k

+ k

2

+m

2

)

�

= �

0

+

Z

d

3

k

(2�)

3

1

2

!

k

: (3.58)

If we insert ~ and  into this expression, we see that �

0

as a lassial ontribution to the energy

density of the vauum is / ~

0

, while the seond term �

1

/ ~!

k

=V as a quantum orretion

is linear in ~. The total energy density � of the vauum state of a free salar �eld has a

very intuitive interpretation: Additionally to the lassial energy density �

0

, it sums up the

zero-point energies of all individual modes k of a free �eld. Despite its simpliity, we annot

make sense out of this result: Sine both the density of modes and their energy inreases with

jkj, the integral diverges. This is the �rst example that momentum integrals in quantum �eld

theories are often ill-de�ned and require some are and ure. One alls momentum integrals

whih are divergent for k ! 0 infrared (IR) divergent, while one alls integrals whih diverge

for k !1 ultraviolet (UV) divergent.

Let us now onsider the ase that the Hamiltonian (3.14) desribes physis orretly only

up to the energy sale �, while the modes with jkj

>

�

� do not ontribute to �

1

. Suh a

possibility exists e.g. in supersymmetri theories where the ontributions of di�erent partile

types anel eah other above the sale �

SUSY

where supersymmetry is broken. Integrating

the ontribution to the vauum energy density by �eld modes up to the uto� sale �, we

�nd

�

1

=

Z

�

0

dk k

2

2�

2

1

2

!

k

� �

4

(3.59)

in the limit �� m. Sine only the total energy density � is observable, the unknown �

0

an be

always hosen suh that �

0

+�

1

agrees with observations, even if j�

0

j; j�

1

j � j�j. Nevertheless,

the strong sensitivity of �

1

on the value of the uto� sale � is puzzling for two reasons: First,

osmologial observations determine the total vauum energy density �

�

to whih all types

of �elds ontribute as �

�

� (meV )

4

. On the other hand, aelerator experiments give no

indiations that a anellation mehanism as supersymmetry works at energy below few TeV.

Thus we expet naively at least �

�

� (�

SUSY

)

4

>

�

(fewTeV )

4

, whih is 60 orders of magnitude

larger than observed, if no strong anellation of the various ontributions to �

�

takes plae.

Seond, the behaviour �

1

� �

4

implies that all salar partiles with mass m

<

�

� ontribute
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equally to �. This poses the question, if we have to know the physis at energy sales muh

larger than those we probe experimentally in order to make preditions using QFT. Suh a

behaviour would be in ontradition of developing suessfully hemistry, atomi or nulear

physis using only the experimental data and models of the orresponding relevant energy

sale E. Something similar should happen in QFT too and we will study later the onditions

that heavy partiles with mas m \deouple" at energies E � m: In this ase, their e�ets

are either suppressed by fators E=m, or are hidden in unobservable quantities like �

1

.

Casimir e�et Although we annot alulate unambiguously the vauum energy, we an

determine the energy di�erene of di�erent vaua. As a onrete example, we onsider the

suggestion by Casimir that the vauum between two onduting plates is disturbed. As a

result, the vauum energy density between the plates beomes a funtion of their distane d.

The di�erene of the vauum energy density inside and outside the plates is �nite and leads

to a measurable fore between them.

Let us onsider two parallel, unharged, perfetly onduting plates at distane d. Standing

waves between them have the form sin(n�x=d) with disrete energies !

n

= n�=d. The vauum

utuations of a photon have the same form as the one of massless salar �eld, exept that

there is an additional fator two due to its two spin degrees of freedom. Thus the vauum

energy inside the box of volume dL

y

L

z

per single polarisation mode is given by

E = L

y

L

z

1

X

n=1

Z

dk

y

dk

z

(2�)

2

1

2

r

�

n�

d

�

2

+ k

2

y

+ k

2

z

: (3.60)

To simplify the alulations, we onsider a 1+1 dimensional system of two plates separated

by the distane d. Then the energy density � = E=d of a massless �eld per polarisation mode

inside the plates is

�(d) =

�

2d

2

1

X

n=1

n : (3.61)

Next we introdue a uto� funtion f(a) = exp(�an�=d) whih suppresses the high-energy

modes,

�(d)! �(a; d) =

�

2d

2

1

X

n=1

ne

�an�=d

: (3.62)

This proedure is alled regularisation: For a > 0, we obtain a well-de�ned mathematial sum

whih we an manipulate following the usual rules of analysis, while we reover for a! 0 the

original divergent sum. We have hosen as argument of the exponential an�=d, beause the

physially relevant quantities are the energy levels !

n

= n�=d of the system. Now we an

evaluate the regularised sum, rewriting it as a geometrial sum,

�(a; d) =

�

2d

2

1

X

n=1

ne

�an�=d

= �

1

2d

�

�a

1

X

n=0

e

�an�=d

(3.63a)

= �

1

2d

�

�a

1

1� e

�a�=d

=

�

2d

2

e

�a�=d

(1� e

�a�=d

)

2

: (3.63b)

Then we use e

x

(1� e

�x

)

2

= 4 sinh

2

(x=2) and expand �(a; d) for small a in a Laurent series,

�(a; d) =

�

8d

2

1

sinh

2

(a�=2d)

=

1

2�a

2

�

�

24d

2

+O(a

2

d

�4

) : (3.64)
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3.4. Vauum energy and the Casimir e�et

Note that we isolated thereby the divergene into a term whih does not depend on the

distane d of the plates. Thus the divergene anels in the di�erene of the vauum energy

with and without plates,

�

Cas

(d) � lim

a!0

�

�(a; d) � �(a; d!1)

�

= �

�

24d

2

: (3.65)

This �nal step in order to obtain a �nite result is alled renormalisation. One an verify

that the result is not only independent of the uto� parameter a, but also of the shape of

a reasonable

2

uto� funtion f(a). In ontrast, the a dependent terms in Eq. (3.64) may

depend on the form of f(a).

The quantity measured in atual experiments is the fore F with whih the plates attrat

(or repel) eah other. This fore is given by

� F =

�E

�d

=

�(d�

Cas

)

�d

=

�

24d

2

: (3.66)

Thus two parallel plates attrat eah other. The experimentally relevant ase of eletromag-

neti waves between two parallel plates in 3+1 dimensions an be alulated analogously. The

experimental on�rmation of the Casimir e�et has been ahieved only in the 1990s, with a

preision on the 1% level.

How an we understand that the Casimir fore is independent on the details of the regu-

larisation proedure? Let us ompare the impat of the two plates on modes with di�erent

wave-number k = 2�=�: In a typial experimental set-up, the plates are separated by a dis-

tane of the order d � 1mm and thus k

0

� 2�=d �meV. The plates eliminate all low-energy

modes with k < k

0

between them, while the modes with k > k

0

attain a disrete spetrum.

However, for k

n

� k

0

, the spaing between the modes beomes negligible and experimentally

one annot distinguish the disrete spetrum from a ontinuous one. In partiular, we an

approximate the sum over the disrete energies by an integral and the ontributions of modes

with k � k

0

with and without plates anel alulating the energy di�erene. Sine the main

ontribution to the Casimir energy omes from utting o� modes with k

<

�

2�=d �meV, we

onlude that the Casimir energy is an IR e�et. Therefore the details of the UV regular-

isation should not inuene the result and any reasonable uto� funtion that makes the

mathematial manipulations (3.63a-3.64) well-de�ned should lead to the same result.

Summary

The exhange of time-like quanta with zero energy between two stati soures leads to the

Yukawa potential. The orresponding fore mediated by a salar �eld is attrative. The Feyn-

man propagator obtained by the m

2

� i" presription is the unique Green funtion whih an

be analytially ontinued to an Eulidean Green funtion. It propagates partiles (with pos-

itive frequenies) forward in time, while anti-partiles (with negative frequenies) propagate

bakward in time. While these two ontributions add up in the salar Feynman propaga-

tor, they anel in the ommutator of �eld-operators at spae-like distanes, as required by

ausality. Disonneted n-point Green funtions are generated by the funtional Z[J ℄, while

2

Reasonable means that f(a) is normalised, f(0) = 1, and that all its derivatives vanish for large a,

lim

a!1

f

(n)

(a) = 0.
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3. Free salar �eld

iW [J ℄ = lnZ[J ℄ generates onneted Green funtions. Wik's theorem says that a n-point

funtion an be obtained as the permutation of produts of 2-point funtions. The Casimir

e�et shows that the zero-point energies of quantum �elds have real, measurable onsequenes.

Further reading

The quantisation of free �elds using both anonial quantisation and the path integral ap-

proah is disussed extensively by [GR08℄.
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4. Salar �eld with ��

4

interation

We know from quantum mehanis that adding an anharmoni term to an osillator fores

us to use either perturbative or numerial methods. The same happens in �eld theory: No

analyti solution for a realisti interating theory is at present known in n = 4 spae-time

dimensions. Therefore we develop in this hapter a perturbative method to evaluate the

generating funtionals Z[J ℄ and W [J ℄. We ontinue to work with the simplest ase of a

single real salar �eld and hoose as interation a ��

4

term. Then the oupling onstant � is

dimensionless in the for us interesting ase n = 4. If � is small enough, we may hope that a

perturbative series expansion in � provides a useful approximation sheme. As motivation, we

note that a salar �eld with ��

4

interation an not only model a wide range of phenomena

in statistial physis but desribes also the Higgs �eld of the SM and its self-interations.

4.1. Perturbation theory for interating �elds

General formalism The Lagrange density L in the funtional Z[J ℄ for the salar �eld on-

sidered up to now was at most quadrati in the �elds and its derivatives. On one hand, this

allowed us to evaluate the path integral, while on the other hand this means that the �eld

has no interations: Two wave pakets desribed by the free propagator just pass eah other

without interation, as the superposition priniple presribes. As next step we add therefore

an interation term L

I

to the free Lagrangian L

0

, i.e. we set L = L

0

+ L

I

. Then the

generating funtional Z[J ℄ for an interating real salar �eld � beomes

Z[J ℄ =

Z

D� exp i

Z

d

4

x (L

0

+L

I

+ J�) ; (4.1)

while we denote the free funtionals we onsidered so far from now on as Z

0

[J ℄ and W

0

[J ℄.

Starting from the full generating funtional Z[J ℄ we an de�ne exat Green funtions whih

we denote by boldfae letters: For instane, the exat 2-point funtion or propagator is given

analogous to Eq. (3.45) by

G(x

1

; x

2

) =

1

i

2

Æ

2

Z[J ℄

ÆJ(x

1

)ÆJ(x

2

)

�

�

�

�

J=0

=

Z

D� �(x

1

)�(x

2

)e

i

R

d

4

x [L

0

+L

I

℄

: (4.2)

In general, we are not able to alulate these exat Green funtions, and we will apply therefore

perturbation theory. We assume that the interation term L

I

is a polynomial P(�) of degree

� 3 in the �eld � and ontains an expansion parameter � whih is small in the onsidered

kinemati regime, L

I

= �P(�) with �� 1. This suggests to expand the interation term,

exp i

Z

d

4

xL

I

(�) = 1 + i�

Z

d

4

xP(�(x)) +

(i�)

2

2!

Z

d

4

x

1

d

4

x

2

P(�(x

1

))P(�(x

2

)) + : : : (4.3)

Sine

i�(x)e

i

R

d

4

x

0

(L

0

+J�)

=

Æ

ÆJ(x)

e

i

R

d

4

x

0

(L

0

+J�)

; (4.4)
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we an perform the replaement

L

I

(�(x))! L

I

�

1

i

Æ

ÆJ(x)

�

: (4.5)

Then the interation L

I

does not depend longer on � and an be pulled out of the funtional

integral,

Z[J ℄ = exp i

Z

d

4

xL

I

�

1

i

Æ

ÆJ(x)

�

Z

D� exp i

Z

d

4

x (L

0

+ J�) (4.6a)

= exp i

Z

d

4

xL

I

�

1

i

Æ

ÆJ(x)

�

Z

0

[J ℄ = exp i

Z

d

4

xL

I

�

1

i

Æ

ÆJ(x)

�

e

iW

0

[J℄

: (4.6b)

The solution of the free funtionals Z

0

and W

0

was given in Eq. (3.19) as

Z

0

[J ℄ = Z

0

[0℄ exp

�

�

i

2

Z

d

4

xd

4

x

0

J(x)�

F

(x� x

0

)J(x

0

)

�

= Z

0

[0℄

1

X

n=0

i

n

n!

W

n

0

: (4.7)

Perturbation theory onsists in a double expansion of the two exponentials in Z[J ℄: One in

the oupling onstant � and one in the number of external soures J . The latter is �xed by

the number of external partiles in a sattering proess, while the former is hosen aording

to the desired preision of the alulation.

Choosing the interation term Let us reall from our disussion of the free Lagrangian the

physial requirements we should impose on the Lagrangian: Eah term should be a Lorentz

salar whih is loal in the �elds. The orresponding Hamiltonian has to be bounded from

below, stable against small perturbations and real. These onditions assure that the vauum

in the absene of external soures is stable.

Additional restritions follow from a surprisingly simple argument employing dimensional

analysis: Using natural units, ~ =  = 1, the dimension of all physial quantities an be

expressed as powers of one basi unit whih we hoose as mass m. Then we use that the

ation has dimension zero, [S℄ = m

0

, and thus the Lagrangian [L ℄ = m

4

in four spae-time

dimensions. We onsider next the free Lagrangian: From the kineti term, we onlude that

the dimension of a salar �eld is [�℄ = m

1

. Thus simple dimensional analysis shows that the

term m

2

in front of �

2

has the interpretation of a mass squared. Furthermore, we an order

possible self-ouplings of a salar �eld aording to their dimension as

L

I

= g

3

M�

3

+ g

4

�

4

+

g

5

M

�

5

+ : : : ; (4.8)

where the oupling onstants g

i

are dimensionless and we introdued the mass sale M to

ensure [L ℄ = m

4

. We all �

d

an operator of dimension d. Similar as in the ase of the Fermi

onstant, G

F

=

p

2g

2

=(8m

2

W

), the sale M ould be onneted to the exhange of a heavy

partile.

Let us now estimate by dimensional analysis whih energy saling of the interation prob-

ability we expet for the di�erent oupling terms in L

I

. At lowest order perturbation the-

ory, the interation probability is dW / jL

I

j

2

. Hene the interation probability sales as

/ (g

d

=M

d�4

)

2

. Now we onsider the ultra-relativisti limit, so that we an neglet the mass

m of the salar partile ompared to the enter-of-mass (ms) energy

p

s. A probability has
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to be dimensionless, and for s� m

2

the only remaining dimensionfull variable that an enter

the total interation probability W is s. Thus W has to sale as g

2

d

(s=M

2

)

d�4

in the limit

s � m

2

. Let us now distinguish the two ranges m

2

� s � M

2

and s � M

2

. In the latter

ase, the interation terms with d > 4 ontain the large fators (

p

s=M))

d�4

� 1 and pertur-

bation theory beomes thus unreliable. In ontrast, these terms are smaller than one below

the sale M and thus suppressed relative to the operators with dimension d � 4. Therefore

we neglet in a �rst approah all operators with dimension d � 5. Simplifying further L

I

, we

want to inlude only one interation term. In this ase, a �

3

term would lead to an unstable

vauum. Therefore our hoie for the salar self-interation is L

I

= ���

4

=4!, where the

fator 1=4! was added for later onveniene. If this hoie of interation is realised in Nature

for a spei� partile has to be deided by experiment.

4.2. Green funtions for the ��

4

theory

We start now with the perturbative evaluation of Eq. (4.6a) for a ��

4

=4! interation. From

Z[J ℄ =

�

1�

i�

4!

Z

d

4

x

Æ

4

i

4

ÆJ(x)

4

+ : : :

�

Z

0

[J ℄ = Z

0

[J ℄�

i�

4!

Z

d

4

x

Æ

4

Z

0

[J ℄

ÆJ(x)

4

+ : : :

= Z

0

[J ℄

�

1 + �z

1

[J ℄ + �

2

z

2

[J ℄ + : : :

�

(4.9)

we see that we will generate a series of the type free Green funtions plus higher order

orretions in �. The alulation of the �rst-order orretion is very similar to the alulation

of the free four-point funtion, with the di�erene that now the four soures sit at the same

point. You should �nd in problem ?? as result

�

Æ

iÆJ(x)

�

4

exp(iW

0

[J ℄) =

"

3(i�

F

(0))

2

+ 6i�

F

(0)

�

Z

d

4

y�

F

(x� y)J(y)

�

2

+

�

Z

d

4

y�

F

(x� y)J(y)

�

4

#

exp(iW

0

[J ℄) : (4.10)

Next we introdue a graphial representation for the various terms in Eq. (4.10). Eah

Feynman propagator �

F

(x� y) is represented by

i�

F

(x� y) =

�

x

y

(4.11)

a soure term J(x) by

i

Z

d

4

x J(x) =

�

(4.12)

and an interation vertex by

� i�

Z

d

4

x = � (4.13)

Eah soure and vertex has its own oordinates and an integration over all oordinates is

implied. In the ase of the �

4

interation, a vertex onnets four lines. Using this notation

1

,

1

This graphial notation �rst introdued by St�ukelberg was made popular by Feynman. The graphs are

therefore often alled Feynman diagrams or Feynman graphs.
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we an express Z

1

as

Z

1

[J ℄ =

1

4!

0

�

3

�

+ 6

�

+

�

1

A

exp

�

1

2

�

�

: (4.14)

A graph onsists of lines and dots, where the latter may be verties or soures. We distinguish

internal and external lines: A line whih ends on both sides at a dot with at least two lines

attahed is alled internal; otherwise it is an external line. The three graphs ontained in

Z

1

[J ℄ di�er by the number of loops, i.e. by the number L of losed lines. A graph with

loop number L = 0 (as the third one in Z

1

[J ℄) is alled a tree graph, otherwise it is a loop

graph. An inspetion of the three graphs shows their loop number L is onneted to the

number n of lines and d of dots as L = n � d + 1. Expressing L via the number of verties

and soures, d = V + S, and the number of internal and external lines, n = I + E, we have

L = I+E�V �S+1. Sine eah external line omes with one soure, we an express therefore

the loop number also as L = I � V + 1, a formula whih is valid for all types of interations.

Note also that the �rst and the seond graph ontained in Z

1

[J ℄ an be obtained from the

third one by joining two and one lines, respetively. There are six ways to join one line, and

three ways to join two lines. Thus the prefators of the various graphs an be derived by

simple symmetry arguments.

Knowing Z

1

[J ℄, we an derive disonneted Green funtions valid at O(�) by performing

funtional derivatives,

G

(n)

(x

1

; : : : ; x

n

) =

1

i

n

Æ

n

ÆJ(x

1

) � � � ÆJ(x

n

)

Z

0

[J ℄ (1 + �z

1

[J ℄)

�

�

�

�

J=0

: (4.15)

In the graphial notation, di�erentiating with respet to J(x) amounts to replae the open

dot denoting the soure i

R

d

4

yJ(y) by its position x,

1

i

Æ

ÆJ(x)

�

= x

�

x

(4.16)

Vauum diagrams We all terms in the perturbative evaluation of Z[J ℄ whih ontain no

soure vauum diagrams. Sine setting J = 0 eliminates all graphs ontaining at least one

soure, the vauum diagrams orrespond to loops without external lines. The orresponding

Green funtions are the \zero-point" Green funtions G

(0)

.

Let us assume that the path integral measure D� is hosen suh that the free vauum

is normalised, Z

0

[0℄ = 1. Swithing on interations will hange the free vauum into the

true vauum of the interating theory. Therefore the true vauum and thus Z[J ℄ are not

normalised. As example, we obtain setting J = 0 in our result (4.14) for Z[J ℄ at lowest order

perturbation theory,

G

(0)

� Z[0℄ = 1�

i�

8

Z

d

4

x(i�

F

(0))

2

6= 1 : (4.17)

Beause of N = exp ln(N ), a normalisation di�erent from one is equivalent to adding a

onstant term to the Lagrangian,

L ! L + ln(N )=(V T ) = L � � ; (4.18)
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where V T is the four-dimensional integration volume in the ation.

Sine vauum diagrams only hange the vauum energy density � but do not ontribute to

sattering proesses, one often prefers to eliminate these diagrams multiplying Z[J ℄ with the

normalisation onstant

N

�1

= Z[0℄ =

Z

D� e

iS

: (4.19)

Thus one uses the normalised generating funtional

e

Z[J ℄ � NZ[J ℄ = Z[J ℄=Z[0℄ whih or-

responds to a vauum with zero energy density �. We now show that this normalisation

eliminates all vauum graphs. Expanding the numerator and denominator of

e

Z[J ℄ up to

O(�), we have at lowest order perturbation theory

e

Z[J ℄ =

Z[J ℄

Z[0℄

=

1 + �z

1

[J ℄ +O(�

2

)

1 + �z

1

[0℄ +O(�

2

)

Z

0

[J ℄ = f1 + �(z

1

[J ℄� z

1

[0℄)g Z

0

[J ℄ +O(�

2

) : (4.20)

Thus dividing Z[J ℄ by the soure-free funtional subtrats indeed the vauum graph O(�).

It beomes obvious that this proedure works at any order perturbation theory, if we look at

the generating funtional for onneted graphs, W [J ℄. As dividing Z[J ℄ by the soure-free

funtional Z[0℄ orresponds to

i

f

W [J ℄ = ln

e

Z[J ℄ = lnZ[J ℄� lnZ[0℄ ; (4.21)

it is lear that this proedure eliminates indeed all vauum graphs.

2-point funtions We start by taking one derivative of the normalised generating funtional,

1

i

Æ
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1

)

�
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+
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�

= (4.22a)
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�
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= (4.22b)

=
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Æ

+

�

�

!#

exp

�

1

2

�

�

: (4.22)

Every term in this expression ontains at least one soure J , and the one-point funtion

G

(1)

(x) vanishes therefore. If we proeed to the two-point funtion G

(2)

(x

1

; x

2

), we have to
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di�erentiate only those terms with one soure,

1

i

2

Æ

2

ÆJ(x

1

)ÆJ(x

2

)

e

Z[J ℄ =

=

1

i

Æ

ÆJ(x

2

)

"

�

+

1

4!

 

12

�

+

vanishing

terms for

J = 0

!#

exp

�

1

2

�

�

=

�

�

+

1

2

�

�

exp

�

1

2

�

�

: (4.23)

Setting then the soures J to zero, the exponential fator beomes one. Converting the

graphial formula bak into standard notation, we �nd the 2-point funtion G

(2)

(x

1

; x

2

) at

order O(�) as the sum of the free 2-point funtion G

(2)

0

(x

1

; x

2

) and a orretion term,

G

(2)

(x

1

; x

2

) = G

(2)

0

(x

1

; x

2

)�

i�

2

Z

d

4

x i�

F

(x

1

� x)i�

F

(x� x)i�

F

(x� x

2

) : (4.24)

This orretion is alled the self-energy �(x

1

; x

2

) of the salar partile. Note that the prefa-

tors ombine to 6 � 2=4! = 1=2, so that there appears an extra fator 1/2. Suh fators are

alled symmetry fators. They appear beause we inluded a fator 1=4! in L

I

to ompensate

for the 4! permutations of four soures. This anellation works in most diagrams however

only partially, and a non-zero prefator is left over.

Example 4.1: Let us illustrate how one an determine the symmetry fator of more ompliated

diagrams. As �rst step, we express the Green funtion that orresponds to a given Feynman diagram

as the time-ordered produt of �elds. Consider e.g. the so-alled \sunrise diagram", whih is a seond

order diagram, orresponding to the term

�

x

1

x

2

y

1

y

2

=

1

2!

�

�i�

4!

�

2

Z

d

4

y

1

d

4

y

2

h0jT [�(x

1

)�(x

2

)�

4

(y

1

)�

4

(y

2

)℄j0i+ (y

1

$ y

2

)

in the perturbative expansion. The exhange graph y

1

$ y

2

is idential to the original one, anelling

the fator 1=2! from the Taylor expansion. This anellation takes plae in general: The 1=n! fator

from the Taylor expansion of a n.th order ontains n interation points whih leads to n! permutations.

Next onsider how the �elds � are ombined in T [� � � ℄: The internal points y

1

and y

2

denote interation

points, whih have four �elds attahed. In ontrast, the external points x

1

and x

2

arry eah only one

�eld. We have to ount the number of possible ways to ombine the �elds in the time-ordered produt

into the �ve propagators of the graph. As shorthand notation, we mark a possible ombination as

�(x

1

)�(y

1

). We have four possibilities to ombine �(x

1

) with �(y

1

), �(x

1

)�(y

1

). Similarly, there are

four possibilities for �(x

2

)�(y

2

). The remaining six �elds an be ombined in 3! ways into pairs, as

e.g. in �(y

1

)�(y

1

)�(y

1

)�(y

2

)�(y

2

)�(y

2

). Thus the symmetry fator of this diagram is given by

S =

�

1

2!

� 2!

��

1

4!

�

2

(4� 4� 3!) =

1

3!

:
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Figure 4.1.: Graphs ontributing to the disonneted four-point funtion G(x

1

; x

2

; x

3

; x

4

).

4-point funtions The disonneted 4-point funtion G(x

1

; x

2

; x

3

; x

4

) is shown graphially

in Fig. 4.1. The �rst three graphs orrespond to the free 4-point funtion from (3.44), the

next six graphs are the orresponding O(�) orretions. Finally, the last diagram orresponds

to the onneted 4-point funtion G(x

1

; x

2

; x

3

; x

4

). Next we want to derive G(x

1

; x

2

; x

3

; x

4

)

from its generating funtional

f

W [J ℄. We insert

e

Z[J ℄ = exp(i

f

W [J ℄) into

i

f

W [J ℄ = ln exp

�

1

2

�

�

+ ln

�

1 +

1

4!

�

6

�

+

�

��

+O(�

2

)

=

1

2

�

+

1

4!

�

6

�

+

�

�

+O(�

2

) ; (4.25)

where we expanded the logarithm, ln(1 + x) ' x. Taking four derivatives with respet to J ,

only the last term survives and we obtain as onneted Green funtion

G(x

1

; x

2

; x

3

; x

4

) = �i�

Z

d

4

x i�

F

(x

1

� x)i�

F

(x

2

� x)i�

F

(x

3

� x)i�

F

(x

4

� x) : (4.26)

Feynman rules for the ��

4

theory We an summarise our results in a few simple rules

whih allow us to write down Green funtions diretly, without the need to derive them from

their generating funtional. The Feynman rules for onneted Green funtions G(x

1

; : : : ; x

n

)

in oordinate spae are as follows:

1. Draw all topologially di�erent diagrams for the hosen order O(�

n

) and number of

external oordinates or partiles.

2. To eah line onneting the points x and x

0

we assoiate a propagator i�

F

(x� x

0

).

3. Eah vertex has a fator �i� and onnets n lines for a ��

n

interation.
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4. Integrate over all intermediate points.

5. Determine and add the symmetry fator.

Translation invariane of Minkowski spae implies that the propagators depend like

exp(�ikx) on the position of the interation point. Therefore the spae-time integrations

result in four-momentum onservation at eah vertex,

R

d

4

x e

�i

P

j

k

j

x

= (2�)

4

Æ(

P

j

k

j

). In

the ase of tree-level diagrams, all the four-momentum integrals of the I = V � 1 propaga-

tors will be eliminated by delta funtions, leaving over one delta funtion expressing overall

momentum onservation. In ontrast, L integrations over loop momenta

R

d

4

k=(2�)

4

remain

in the ase of loop diagrams. Aounting for the result of the spae-time integrations, we

an give the Feynman rules diretly in momentum spae. De�ning the Fourier transformed

n-point funtion as

G(k

1

; : : : ; k

n

) =

Z

n

Y

i=1

d

4

x

i

exp

�

i

X

i

k

i

x

i

�

G(x

1

; : : : ; x

n

) ; (4.27)

the Feynman rules for these Green funtions have the following hanges:

2. To eah line assoiate a propagator i�

F

(k) = i=(k

2

�m

2

+ i").

3. Fix the external momenta and impose 4-momentum onservation at eah vertex.

4. Integrate over all unonstrained momenta k with

R

d

4

k=(2�)

4

. The number of indepen-

dent momenta we have to integrate over equals the loop number L of the graph.

We will see in the next setion for G

(2)

(p) as example how these rules work out.

4.3. Loop diagrams

In the Fourier transformed Green funtions G(k

1

; : : : ; k

n

) of tree-level graphs all integrals

about the propagator momenta have been anelled by delta funtions, and G(k

1

; : : : ; k

n

)

is a mathematially well-de�ned distribution. In ontrast, the integration over momenta in

loop graphs are often divergent, requiring to regularise and to renormalise these expressions.

Aim of this setion is to illustrate this proedure. We onentrate �rst on the tehnialities

involved in the evaluation of these loop diagrams, before we interpret the results. We will have

time to digest these examples, before we will ome bak to the problem of renormalisation in

hapter 11. The basi steps in the evaluation of simple Feynman integrals are summarised in

the appendix 4.A.

4.3.1. Self-energy

We onsider �rst the only one-loop diagram ontained in Z

1

[J ℄, the 2-point funtion of a

salar partile at O(�),

G

(2)

(x

1

; x

2

) = i�

F

(x

1

� x

2

)�

�

2

�

F

(0)

Z

d

4

x�

F

(x

1

� x)�

F

(x� x

2

) : (4.28)

The alulation of G

(2)

(x

1

; x

2

) onsists of three steps: First, we have to ombine its two

piees into a single, modi�ed propagator: As it stands, the expression seems to desribes
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the propagation of two modes, a free one plus one onsisting of the O(�) orretion, while

G

(2)

(x

1

; x

2

) should desribe the propagation of a single partile with properties modi�ed by

the self-interations. Seond, we have to alulate the loop diagram i�

F

(0) whih will turn

out to be in�nite. Thus the �nal task is the question how we should interpret this result.

We start onentrating on the orretion term, whih we all the self-energy �(x

1

; x

2

) of the

salar partile, and insert the Fourier representation of the two propagators into the integral,

�(x

1

; x

2

) = �

�

2

�

F

(0)

Z

d

4

x

d

4

p

(2�)

4

d

4

p

0

(2�)

4

e

�ip(x

1

�x)

p

2

�m

2

+ i"

e

�ip

0

(x�x

2

)

p

02

�m

2

+ i"

: (4.29)

The d

4

x integration results in (2�)

4

Æ(p� p

0

), then one of the momentum integrations an be

performed. Together this gives

�(x

1

� x

2

) = �

�

2

�

F

(0)

Z

d

4

p

(2�)

4

e

�ip(x

1

�x

2

)

(p

2

�m

2

+ i")

2

: (4.30)

Inserting also for the free Green funtion its Fourier representation, we arrive at

G

(2)

(x

1

� x

2

) =

Z

d

4

p

(2�)

4

e

�ip(x

1

�x

2

)

"

i

p

2

�m

2

+ i"

�

�

2

�

F

(0)

(p

2

�m

2

+ i")

2

#

: (4.31)

The Green funtion G

(2)

(p) in momentum spae is thus given by the expression in the square

braket, whih we ould have written down immediately using the Feynman rules in momen-

tum spae. Next we fator out one propagator,

G

(2)

(p) =

i

p

2

�m

2

+ i"

"

1 +

i�

2

�

F

(0)

p

2

�m

2

+ i"

#

: (4.32)

Assuming that perturbation theory is justi�ed, the seond term in the parenthesis should be

small. Thus [1 + �a℄ = [1� �a℄

�1

+O(�

2

), and we obtain

G

(2)

(p) =

i

p

2

�m

2

�

i�

2

�

F

(0) + i"

: (4.33)

The residue of the free propagator i=(p

2

�m

2

+i") de�nes the \bare" partile mass m at zero

order in �. Swithing on interations, we ontinue to de�ne the physial (or renormalised)

mass m

phys

of the salar partile by the residue of G

(2)

(p). Thus at order �,

m

2

phys

= m

2

+ Æm

2

= m

2

+

i�

2

�

F

(0) : (4.34)

Hene interations shift or \renormalise" the \bare" mass m used initially in the lassial

Lagrangian L . It is important to realise that suh a renormalisation does not appertain to

QFTs but happens in any interating theory. A familiar example in a lassial ontext is the

Debye sreening of the eletri harge in a plasma. As next step, we have to alulate (and

to interpret properly)

i�

F

(0) =

Z

d

4

k

(2�)

4

i

k

2

�m

2

+ i"

: (4.35)

Sine the mass orretion is Æm

2

= i��

F

(0)=2, the Feynman propagator at oinident points

�

F

(0) has to be purely imaginary. Otherwise the ��

4

theory would ontain no stable partiles.
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Wik rotation The integrals appearing in loop graphs an be easier integrated, if one per-

forms a Wik rotation from Minkowski to Eulidean spae: Rotating the integration ontour

anti-lokwise to �i1 : +i1 avoids both poles in the omplex k

0

plane and is thus admissible.

Introduing as new integration variable ik

4

= k

0

, it follows

Z

1

�1

dk

0

1

k

2

�m

2

+ i"

=

Z

i1

�i1

dk

0

1

k

2

�m

2

+ i"

= i

Z

1

�1

dk

4

1

k

2

�m

2

+ i"

: (4.36)

We next ombine k and k

4

into a new four-vetor k

E

= (k; k

4

). Sine

k

2

= �(jkj

2

+ k

2

4

) = �k

2

E

(4.37)

we work now (apart from the overall sign) in an Eulidean spae. In partiular, the denom-

inator never vanishes and we an omit the i". Moreover, the integrand is now spherially

symmetri. Thus we have

i�

F

(0) =

Z

d

4

k

E

(2�)

4

1

k

2

E

+m

2

: (4.38)

As required by our interpretation Æm

2

= i�

F

(0), the propagator �

F

(0) is imaginary. Beause

the relative sign of the momenta and the mass term indiates if we work in the Eulidean

or Minkowski spae, we will omit the index E in the following. Introduing furthermore

spherial oordinates, we see that �

F

(0) diverges quadratially for large k,

�i�

F

(0) /

Z

�

0

dk k

3

1

k

2

+m

2

/ �

2

: (4.39)

Dimensional regularisation Using the integral representation

1

k

2

+m

2

=

Z

1

0

ds e

�s(k

2

+m

2

)

(4.40)

and interhanging the integrals, we an redue the momentum integral to a Gaussian integral.

Manipulations like interhanging the order of integrations or a hange of integration variables

in divergent expressions as Eq. (4.39) are however ambiguous. Before we an proeed, we

have to \regularise" therefore the integral, similar as we did introduing a uto� funtion into

the expression of the zero-point energy.

We will use dimensional regularisation (DR), i.e. we will alulate integrals in d = 4 � 2"

dimensions where they are �nite. Then we �nd

i�

F

(0) =

Z

1

0

ds

Z

d

d

k

(2�)

d

e

�s(k

2

+m

2

)

=

1

(4�)

d=2

Z

1

0

ds s

�d=2

e

�sm

2

: (4.41)

The substitution x = sm

2

transforms the integral into one of the standard representations of

the Gamma funtion (see the appendix 4.A for some useful formula),

i�

F

(0) =

(m

2

)

d

2

�1

(4�)

d=2

�

�

1�

d

2

�

: (4.42)

This expression diverges for d = 2; 4; 6; : : :, but is as announed �nite for d = 4�2" and small

". In the next step, we would like to expand the expression in a Laurent series, separating

pole terms in " and a �nite remainder.
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Appearane of a dimensionfull sale As the expression stands, we an not expand the

prefator of the Gamma funtion, beause it is dimensionfull. In order to make the fator

m

d�2

dimensionless, we should supply a new mass sale. More physially, we an understand

the need for an additional dimensionfull sale by the requirement that the ation S =

R

d

d

xL

remains dimensionless if we deviate from d = 4 dimensions. From the kineti term, we dedue

that the salar �eld has the mass dimension [�℄ = d=2� 1. The interation term implies then

that � aquires the dimension [�℄ = 4�d. In order to retain a dimensionless oupling onstant,

we introdue therefore a mass � alled the renormalisation sale as follows,

S

I

=

Z

d

4

xL

I

= �

Z

d

4

x

�

4!

�

4

! ��

4�d

Z

d

d

x

�

4!

�

4

: (4.43)

Adding the fator �

4�d

to our previous result, we obtain

��

4�d

i�

F

(0) = �

m

2

(4�)

2

�

4��

2

m

2

�

2�d=2

�(1� d=2) : (4.44)

Now we expand the dimensionless last two fators in this expression around d = 4 using

Eq. (A.42) for the Gamma funtion,

�(1� d=2) = �(�1 + ") = �

1

"

� 1 +  +O(") (4.45)

and

a

"

= e

" ln a

= 1 + " ln a+O("

2

) : (4.46)

Note that we require the expansion of the prefator of the Gamma funtion up to O("

2

)

beause of the pole term in (4.45). Thus the mass orretion is given by

��

4�d

i�

F

(0) / m

2

�

�

1

"

� 1 +  +O(")

� �

1 + " ln

�

4��

2

m

2

�

+O("

2

)

�

: (4.47)

or

Æm

2

=

i�

2

�

4�d

�

F

(0) =

�

2

m

2

(4�)

2

�

�

1

"

� 1 +  + ln

�

m

2

4��

2

�

+O(")

�

: (4.48)

This expansion has allowed us to separate the orretion into a divergent term / 1=" and a

�nite remainder. The latter ontains an analyti part, �1+, and an non-analyti piee that

depends on the renormalisation sale, ln(m

2

=4��

2

). This result is typial for DR: First, all

divergenes appear in the limit d ! 4 as poles of the Gamma funtion. Seond, the renor-

malisation sale � enters always via Eq. (4.46) in a logarithm. Thus the only dimensionfull

parameter whih an set the sale of the mass orretion Æm

2

is the mass of the partile in

the loop. In the ase of a theory with a single partile, the orretion must have therefore

the form Æm

2

/ m

2

using DR. You should ontrast this behaviour with the one using as

regularisation sheme an Eulidean uto� �: Integrating up to momenta �� m, the partile

mass m an be negleted, and the orretion diverges as a power-law Æm

2

/ �

2

.

Let us now disuss in turn the three di�erent kind of terms present in Eq. (4.48). First, the

form of the divergent terms depends on the regularisation sheme applied. However, in any

sheme we an eliminate them using Eq. (4.34), requiring that the unobservable bare massm

2

ontains the same divergent terms with the opposite sign. Seond, the �nite analyti terms

depend also on the sheme, sine we an always shift a �nite part from m

2

to Æm

2

. In order
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to speify preisely Æm

2

we have to �x therefore a renormalisation sheme , i.e. a set of rules

resolving these ambiguities. Finally, the �nite, non-analyti terms are important preditions,

whih are independent of the regularisation sheme (apart from a resaling of the arbitrary

parameter �). As we will see in hapter 9 suh non-analyti terms are neessary that the

S-matrix is unitary, or in other words that the theory preserves probability.

4.3.2. Vauum energy density

We an generate out of the self-energy diagram new one-loop graphs by adding or subtrating

two external lines. Subtrating two lines generates an one-loop graph without external lines

2

,

the \zero-point" Green funtion G

(0)

at order �

0

. One way to alulate this quantity is to

evaluate diretly Z

0

[0℄ using

DetA = exp lnDetA = expTr lnA (4.49)

what gives

Z

0

[0℄ = exp

�

�

1

2

Tr ln(��m

2

)

�

: (4.50)

We postpone the question how suh an expression an be evaluated and use instead another

approah, reyling our result for the self-energy. Vauum diagrams are generated by the

funtional Z[J ℄ setting J = 0,

h0 + j0�i = Z

0

[0℄ =

Z

D� exp i

Z

d

4

x

�

1

2

�

�

��

�

��

1

2

m

2

�

2

�

: (4.51)

We saw in Eq. (3.57) that the zero-point energy is related to the propagator at oinident

points. Sine we suspet a onnetion between vauum diagrams and the zero-point energy,

we try to relate Z[0℄ and �

F

(0). Taking a derivative with respet to m

2

gives

�

�m

2

h0 + j0�i = �

i

2

Z

d

4

x h0 + j�(x)

2

j0�i = �

i

2

Z

d

4

x i�

F

(0)h0 + j0�i : (4.52)

The additional fator h0 + j0�i = N

�1

on the RHS takes into aount that we de�ned the

Feynman propagator with respet to a normalised vauum. Translation invariane implies

that h0 + j0�i does not depend on x. Thus we obtain

�

�m

2

lnh0 + j0�i = �

i

2

Z

d

4

x i�

F

(0) = �

i

2

V T i�

F

(0) (4.53)

with V T as the four-dimensional integration volume. Integrating and exponentiating the

resulting formal solution, we obtain

h0 + j0�i = exp

�

�

i

2

V T

Z

dm

2

i�

F

(0)

�

: (4.54)

Comparing this result to

h0 + j0�i = h0 + j exp (�iHT ) j0�i = exp (�i� V T ) ; (4.55)

2

Although G

(0)

is often represented as a losed loop, it has also no internal line; this is in agreement with

our general formula l = n� V + 1.
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4.3. Loop diagrams

we see that we should assoiate

� =

1

2

Z

dm

2

i�

F

(0) (4.56)

with the energy density of the vauum. On the other hand, we an onnet � to the soure-free

generating funtionals as

� =

i lnZ[0℄

V T

=

�W [0℄

V T

; (4.57)

Thus the ontribution of quantum utuations to the energy density of the vauum is given

by the sum of onneted vauum graphs, in aordane with (4.21).

Next we evaluate (4.56) whih gives the ontribution of a free salar �eld to the vauum

energy density. Using our result (4.42) for the propagator, i�

F

(0) = C(m

2

)

d=2�1

, we an

perform the integration over m

2

,

� = C

m

d

d

� �

0

=

m

d

(4�)

d=2

d

�

�

1�

d

2

�

� �

0

; (4.58)

where we introdued the integration onstant �

0

.

The energy density given by Eq. (4.58) diverges for d = 2; 4; 6 : : : as 1=". We an make �

�nite and equal to the observed value �

�

, if we hoose �

0

as

�

0

= �

d�4

�

1

4

m

4

(4�)

2

1

"

� �

�

�

: (4.59)

The prefator �

d�4

ensures again that the ation remains dimensionless also for d 6= 4.

Note that this implies that we should start o� with L � �

0

instead of L . Even if we

dismiss a non-zero vauum energy in the lassial Lagrangian, it will appear automatially by

quantum orretions. More generally, every possible term that is not forbidden by a symmetry

in L will show up alulating loop orretions. We have seen that we an absorb the vauum

energy density � into the normalisation of the path integral,

Z

D� e

�

R

d

4

x�

= N

Z

D� :

Therefore, one may wonder if � has a real physial meaning or ould be eliminated by a

simple rede�nition of the integration measure. The answer is no: First, we used our freedom

to de�ne the path integral measure setting Z

0

[0℄ = 1. Seond, � depends on the parameters

(masses, oupling onstants) of the onsidered theory, but the path integral measure should

be independent of the details of the Lagrangian we integrate.

Remark 4.1: Equivalene to the zero-point energy:

Performing the k

0

integral in Eq. (4.35) or using (3.28)

i�

F

(0) =

Z

d

3

k

(2�)

3

2!

k

=

Z

d

3

k

(2�)

3

2

p

m

2

+ k

2

(4.60)

and integrating then with respet to m

2

,

� =

1

2

Z

dm

2

i�

F

(0) =

1

2

Z

d

3

k

(2�)

3

p

m

2

+ k

2

; (4.61)
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shows that the present expression for the vauum energy agrees with the sum over zero-point energy

evaluated in Eq. (3.58). However, the results for the unrenormalised � di�er: While Eq. (3.59) shows

that � / �

4

using a uto�, we have obtained � / m

4

in the ase of dimensional regularisation. Thus

in this sheme a massless partile as the photon would give a zero ontribution to the osmologial

onstant. We will ome bak to this di�erene in hapter 25.

4.3.3. Vertex orretion

Feynman amplitude For our last example we add two external lines to the self-energy dia-

gram. The orresponding Green funtion an be used to desribe 2! 2 sattering at O(�

2

).

A sattering proess orresponds however to a transition between an initial state at t = �1

and a �nal state at t = 1 whih ontain both real, on-shell partiles. In order to obtain

sattering amplitudes, we should therefore replae the propagators of external lines|whih

desribe virtual partiles|by on-shell wave funtions. This rule will be derived later in hap-

ter 9.2. For the moment, we simply antiipate that we obtain the Feynman amplitude iA

desribing a sattering proess using the Feynman rules for momentum spae, but writing for

salar external partiles simply the prefator of a plane-wave without normalisation fator, i.e.

simply \1". Moreover, we omit the delta funtion expressing the onservation of the external

momenta. Thus we add to the Feynman rules in momentum spae:

6. The Feynman amplitude iA desribing sattering proesses is obtained omitting the

fator (2�)

4

Æ(

P

k

k

i

�

P

f

k

f

) expressing the onservation of the external momenta, and

the propagators on external lines.

Determining the Feynman amplitude Instead of alulating the order �

2

term in the per-

turbative expansion of the generating funtional Z[J ℄ we use diretly the Feynman rules to

obtain the Feynman amplitude for this proess. Aording to these rules, the �rst steps in

the alulation of the Feynman amplitude are to draw all Feynman diagrams, to �nd the

symmetry fator and to assoiate then the orresponding mathematial expressions to the

graphial symbols.

We determine �rst the symmetry fator, following the same proedure as in example 4.1.

In oordinate spae, we have to onnet four external points (say x

1

; : : : ; x

4

) with the help of

two verties (say at x and y) whih ombine eah four lines. An example is shown here

x1 x3

x2 x4

x

y

Two additional diagrams are obtained onneting x

1

with x

2

or x

4

. In order to determine

the symmetry fator, we onsider the expression for the four-point funtion orresponding to

the graph shown above,

1

2!

�

�i

�

4!

�

2

Z

d

4

xd

4

yh0jTf�(x

1

)�(x

2

)�(x

3

)�(x

4

)�

4

(x)�

4

(y)gj0i + (x$ y) ; (4.62)

58



4.3. Loop diagrams

k2 k3

k1 k4 k1 k3

k2 k4

k1 k4

k2 k3

iAs iAt iAu

Figure 4.2.: Three graphs ontributing to �(k

1

)�(k

2

)! �(k

3

)�(k

4

) at order �

2

.

and ount the number of possible ontrations: We an onnet �(x

1

) with eah one of the

four �(x), and then �(x

3

) with one of the three remaining �(x). This gives 4� 3 possibilities.

Another 4�3 possibilities ome by the same reasoning from the upper part of the graph. The

remaining pairs �

2

(x) and �

2

(y) an be ombined in two possibilities. Finally, the fator 1=2!

from the Taylor expansion is anelled by the exhange graph. Thus the symmetry fator is

S =

1

2!

2!

�

4� 3

4!

�

2

2 =

1

2

: (4.63)

Next we assoiate mathematial expressions to the symbols of the graphs in momentum

spae: We replae internal propagators by i�(k), external lines by 1 and verties by �i�.

Imposing four-momentum onservation at the two verties leaves one free loop momentum,

whih we all p. The momentum of the other propagator is then �xed to p � q, where

q

2

= s = (p

1

+ p

2

)

2

, q

2

= t = (p

1

� p

3

)

2

, and q

2

= u = (p

1

� p

4

)

2

for the three graphs shown

in Fig. 4.2. Thus the Feynman amplitudes in n = 4 are at order O(�

2

)

iA

(2)

q

=

1

2

�

2

Z

d

4

p

(2�)

4

1

[p

2

�m

2

+ i"℄

1

[(p� q)

2

�m

2

+ i"℄

: (4.64)

The squared ms energy s and the two variables desribing the momentum transfer t and u

are alled Mandelstam variables. For 2 ! 2 sattering, they are onneted by s + t + u =

m

2

1

+m

2

2

+m

2

3

+m

2

4

, see problem 4.??. Aording to the value of q

2

one alls the diagrams

the s, t and u hannel.

Performing again a simple ounting of the powers of loop momenta, we �nd that the

amplitude is logarithmially divergent,

A

(2)

q

/

Z

d

4

p

p

4

/ ln(�) : (4.65)

If we onsider the in�nite number of one-loop graphs haraterised by n = V � 0, then we

see that adding two external lines inreases the number of propagators in the loop by one.

As a result, the onvergene of the loop integral improves from a quarti divergene (vauum

energy), over a quadrati divergene (self-energy energy) to a logarithmi divergene for the

vertex orretion. Adding two or more external lines to the vertex orretion would therefore

produe a �nite diagram. At one-loop, the ��

4

theory ontains thus only three divergent

Feynman graphs.
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Calulating the loop integral The path to be followed in the evaluation of simple loop

integrals as (4.64) an be skethed shematially as follows: Regularise the integral (and

add a mass sale if you use DR). Combine then the denominators, and shift the integration

variable to eliminate linear terms in the denominator by ompleting the square. Performing

the same shift of variables in the numerator, linear terms an be dropped as they vanish after

integration. Finally, Wik rotate the integrand, and redue the integral to a known one by a

suitable variable substitution. We do the last steps one in the appendix 4.A where we derive

a list of useful Feynman integrals whih we simply look up in the future.

We start by rewriting the integral for d = 4� 2" dimensions as

iA

(2)

q

=

1

2

�

2

(�

2

)

4�d

Z

d

d

p

(2�)

d

1

D

; (4.66)

where we introdued also the short-ut D for the denominator in the integrand. Next we use

1

ab

=

Z

1

0

dz

[az + b(1� z)℄

2

(4.67)

to ombine the two denominators, setting a = p

2

�m

2

and b = (p� q)

2

�m

2

,

D � az + b(1� z) = p

2

�m

2

� 2pq(1� z) + q

2

(1� z) : (4.68)

Then we eliminate the term linear in p substituting p

02

= [p� q(1� z)℄

2

,

D = p

02

�m

2

+ q

2

z(1� z) : (4.69)

Sine d

d

p = d

d

p

0

, we an drop the primes and �nd

iA

(2)

q

=

1

2

�

2

(�

2

)

4�d

Z

1

0

dz

Z

d

d

p

(2�)

d

1

[p

2

�m

2

+ q

2

z(1� z)℄

2

: (4.70)

Performing a Wik rotation requires that q

2

z(1 � z) < m

2

for all z 2 [0 : 1℄, or q

2

< 4m

2

.

The integral is of the type I(!; 2) alulated in the appendix and equals

I(!; 2) = i

1

(4�)

!

�(2� !)

�(2)

1

[m

2

� q

2

z(1 � z)℄

2�!

: (4.71)

Inserting the result into the Feynman amplitude gives

A

(2)

q

=

1

2

�

2

(�

2

)

4�d

�(2� d=2)

(4�)

d=2

Z

1

0

dz [m

2

� q

2

z(1� z)℄

d=2�2

(4.72a)

=

�

2

32�

2

(�

2

)

2�d=2

�(2� d=2)

Z

1

0

dz

�

m

2

� q

2

z(1 � z)

4��

2

| {z }

f

�

d

2

�2

: (4.72b)

In the last step, we made the funtion f dimensionless. Now we take the limit " = 2�d=2! 0,

expanding both the Gamma funtion, �(2� d=2) = �(") = 1=" �  +O("), and f

�"

. From

�

2

32�

2

�

2"

�

1

"

�  +O(")

��

1� "

Z

1

0

dz ln f +O("

2

)

�

(4.73)
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4.3. Loop diagrams

we see that all diagrams give the same divergent part, while we have to replae q

2

by the

value fs; t; ug appropriate for the three diagrams,

A = A

(1)

+A

(2)

s

+A

(2)

t

+A

(2)

u

+O(�

3

) (4.74a)

= ���

"

+

3�

2

�

2"

32�

2

"

�

�

2

�

2"

32�

2

�

3 + F (s;m; �) + F (t;m; �) + F (u;m; �)

�

; (4.74b)

with

F (q

2

;m; �) =

Z

1

0

dz ln

�

m

2

� q

2

z(1� z)

4��

2

�

: (4.75)

Note that t and u are in the physial region negative and thus the ondition q

2

< 4m

2

is

always satis�ed for these two diagrams, f. with problem 4.??. By ontrast, for the s hannel

diagram the relation q

2

= s > 4m

2

holds: In this ase, we have to ontinue analytially the

result (4.75) into the physial region. We will postpone this task to hapter 9 and note for the

moment only that thereby the argument of the logarithm in (4.75) hanges sign. Additionally,

an imaginary part of the sattering amplitude is generated.

4.3.4. Basi idea of renormalisation

The regularisation of loop integrals has introdued as a new parameter the renormalisation

sale �. As we perform perturbation theory at order �

n

, we have to onnet the parameters

fm

n

; �

n

; �

n

g of the trunated theory with the physial ones of the full theory. This pro-

ess is alled renormalisation and will replae the undetermined parameter � by a physial

momentum sale relevant for the onsidered proess.

Renormalisation of the oupling Let us try to onnet the amplitude iA to a physial

measurement. We assume that experimentalists measured ��! �� sattering. It is suÆient

that they provide us with a single value, e.g. with the value of the di�erential ross setion

d�=d
 at zero-momentum transfer lose to threshold s = 4m

2

. Then the funtion F (s;m; �)

is given by

F (4m

2

;m; �) = C�

2

ln

�

4m

2

�

2

�

+ onst ; (4.76)

while it beomes for s� m

2

F (s;m; �) = C�

2

ln

�

s

�

2

�

+ onst : (4.77)

Subtrating the in�nite parts (and the onstant term) from A, we obtain for s; t; u� m

2

,

A = ��� C�

2

�

ln(s=�

2

) + ln(t=�

2

) + ln(u=�

2

)

�

+O(�

3

) � ��� C�

2

L(s=�

2

) ; (4.78)

where we introdued also the sloppy notation L for the three log terms in the square braket.

This expression for A is �nite but still arbitrary sine it ontains �.

We use now the experimental measurement at the sale s = 4m

2

to onnet via

A = ��� C�

2

L(4m

2

=�

2

) (4.79)

the measured value �

phys

of the oupling to our alulation,

� �

phys

= ��� C�

2

L(4m

2

=�

2

) +O(�

3

) : (4.80)
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Here we indiated also that our perturbative alulation is only valid up to O(�

3

) terms. Now

we solve for �,

�� = ��

phys

+ C�

2

L(4m

2

=�

2

) +O(�

3

) (4.81a)

= ��

phys

+ C�

2

phys

L(4m

2

=�

2

) +O(�

3

phys

) : (4.81b)

In the seond line, we ould replae �

2

by �

2

phys

, beause their di�erene is of O(�

3

). Next

we insert � bak into the matrix element A for general s and replae then again �

2

by �

2

phys

,

A = ��� C�

2

L(s=�

2

) +O(�

3

) (4.82a)

= ��

phys

+ C�

2

phys

L(4m

2

=�

2

)� C�

2

phys

L(s=�

2

) +O(�

3

phys

) (4.82b)

= ��

phys

� C�

2

phys

L(s=4m

2

) +O(�

3

phys

) : (4.82)

Combining the log's, the sale � has anelled and we �nd

A = ��

phys

�

�

2

phys

32�

2

�

ln(s=4m

2

) + ln(t=4m

2

) + ln(u=4m

2

)

�

+O(�

3

phys

) : (4.83)

Thus the amplitude is �nite and depends only on the measured value �

phys

of the oupling

onstant and the kinematial variables s, t and u.

Running oupling We look now from a somewhat di�erent point of view at the problem of

the apparent � dependene of physial observables. Assume again that we have subtrated

the in�nite parts (and the onstant term) of the amplitude A, obtaining Eq. (4.78). We

now demand that the sattering amplitude A as a physial observable is independent of the

arbitrary sale �, dA=d� = 0. If we did a perturbative alulation up to O(�

n

), the ondition

dA=d� = 0 an hold only up to terms O(�

n+1

). The expliit � dependene of the amplitude,

�A=�� 6= 0, an be only anelled by a orresponding hange of the parameters m and �

ontained in the lassial Lagrangian, onverting them into \running" parameters m(�) and

�(�). Then the ondition

3

dA=d� = 0 beomes

�

�

��

+

�m

2

��

�

�m

2

+

��

��

�

��

�

A(s; t;m(�); �(�); �) = 0 : (4.84)

The only expliit � dependene of A is ontained in the F (q

2

;m; �) funtions, giving in the

limit "! 0

�

��

A(s; t;m(�); �(�); �) = �3

�

2

32�

2

�

��

F (q

2

;m; �) =

3�

2

16�

2

�

: (4.85)

Sine the hange of m(�) and �(�) is given by loop diagrams, it inludes at least an additional

fator �. Therefore the ation of the derivatives �

m

2
and �

�

on the 1-loop ontribution A

(2)

leads to a term of O(�

3

) whih an be negleted. Thus the only remaining term will be given

by �

�

ating on the tree-level term A

(1)

. Note that this holds also at higher orders and ensures

that �

�

� at O(�

n+1

) is determined by the parameters alulated at O(�

n

). Combining the

two ontributions we �nd

�

��

��

=

3�

2

16�

2

+O(�

3

) : (4.86)

3

Equations of the type (4.84) that desribe the hange of observables as funtion of the sale � are alled

renormalisation group equations (RGE).
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Thus the sattering amplitude A is independent of the sale �, if we transform the ou-

pling onstant � into a sale dependent \running" oupling �(�) whose evolution is given by

Eq. (4.86). Sine we trunate the perturbation series at a �nite order, the anellation of the

sale dependene is inomplete and a residual dependene of physial quantities on � remains.

Separating variables in Eq. (4.86), we �nd

�(�) =

�

0

1� 3�

0

=16�

2

ln(�=�

0

)

(4.87)

with �

0

� �(�

0

) as initial ondition. Thus the running oupling �(�) inreases logarithmially

for inreasing � in the ��

4

theory.

Comparing (4.87) to our result for the sattering amplitude (4.83),

A = ��

0

�

1 +

�

0

32�

2

�

ln(s=4m

2

) + ln(t=4m

2

) + ln(u=4m

2

)

�

�

+O(�

3

0

) ; (4.88)

we see that we an rewrite the amplitude using a symmetri point q

2

= s = t = u and

�

2

0

= 4m

2

as

A = ��

0

�

1 +

3�

0

32�

2

ln(q

2

=�

2

0

)

�

= ��(q

2

) : (4.89)

This shows that the q

2

dependene of the amplitude A in the limit q

2

� m

2

is determined

ompletely by the sale dependene of the running oupling �(�). Therefore, we should set the

renormalisation sale � in general equal to the physial momentum sale q that haraterises

the onsidered proess. We will ome bak to this topi in hapter 12, giving a formal

de�nition of the running oupling.

4.A. Appendix: Evaluation of Feynman integrals

Combination of propagators The standard strategy in the evolution of loop integrals is the om-

bination of the n propagator denominators into a single propagator-like denominator of higher power.

One uses either Shwinger's proper-time representation

i

p

2

�m

2

+ i"

=

Z

1

0

ds e

is(p

2

�m

2

+i")

(4.90)

or the Feynman parameter integral

1

x

1

� � �x

n

= �(n)

Z

1

0

d�

1

� � �

Z

1

0

d�

n

Æ(1�

X

i

�

i

) [�

1

x

1

� � ��

n

x

n

℄

�n

= �(n)

Z

1

0

d�

1

� � �

Z

�

n�2

0

d�

n

[�

1

(1� x

1

) + �

2

(x

1

� x

2

) � � ��

n

x

n�1

℄

�n

: (4.91)

In order to derive this formula for n = 2, onsider

1

b� a

Z

b

a

dx

x

2

=

1

b� a

�

1

a

�

1

b

�

=

1

ab

(4.92)

for a; b 2 C. Setting x = az + b(1� z) and hanging the integration variable, we obtain

1

ab

=

Z

1

0

dz

[az + b(1� z)℄

2

: (4.93)
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4. Salar �eld with ��

4

interation

The ases n > 2 an be derived by indution, rewriting e.g. 1=(ab) as 1=(aB) with B = b, and using

the result for n� 1. In partiular, for n = 3 it follows

1

ab

= 2

Z

1

0

dx

Z

1�x

0

dy

[ax+ by + (1� x� y)℄

3

: (4.94)

Finally, we an generalise these formulae to expressions like 1=(a

n

b

m

) by taking derivatives with respet

to a and b.

Evaluation of Feynman integrals We want to alulate integrals of the type

I

0

(!; �) =

Z

d

2!

k

(2�)

2!

1

[k

2

�m

2

+ i"℄

�

(4.95)

de�ned in Minkowski spae. Performing a Wik rotation to Eulidean spae and introduing spherial

oordinates results in

I

0

(!; �) = i(�1)

�

Z

d

2!

k

(2�)

2!

1

[k

2

+m

2

℄

�

= i

(�1)

�

(2�)

2!




2!

Z

1

0

dk

k

2!�1

[k

2

+m

2

℄

�

; (4.96)

where we denoted the volume vol(S

2!�1

) of a unit sphere in 2! dimensions

4

by 


2!

. You are asked

in problem 4.?? to show that 


2!

= 2�

!

=�(!) and thus 


4

= 2�

2

. Substituting k = m

p

x and using

the integral representation (A.28) for Euler's Beta funtion allows us to express the k integral as a

produt of Gamma funtions,

Z

1

0

dk

k

2!�1

[k

2

+m

2

℄

�

=

1

2

m

2!�2�

Z

1

0

dx

x

!�1

[1 + x℄

�

= (4.97a)

1

2

m

2!�2�

B(!; �� !) =

1

2

m

2!�2�

�(!)�(�� !)

�(�)

: (4.97b)

Combining this result with 


2!

= 2�

!

=�(!) we obtain

I

0

(!; �) =

Z

d

2!

k

(2�)

2!

1

[k

2

�m

2

+ i"℄

�

= i

(�1)

�

(4�)

!

�(�� !)

�(�)

[m

2

� i"℄

!��

: (4.98)

Note that m

2

an denote any funtion of the external momenta and masses, sine we required only

that it is independent of the loop momentum. We an generate additional formulae by adding �rst a

dependene on a external momentum p

�

, shifting then the integration variable k ! k + p,

I(!; �) =

Z

d

2!

k

(2�)

2!

1

[k

2

+ 2pk �m

2

+ i"℄

�

= i

(�1)

�

(4�)

!

�(�� !)

�(�)

[m

2

+ p

2

� i"℄

!��

: (4.99)

Taking then derivatives with respet to the external momentum p

�

results in

I

�

(!; �) =

Z

d

2!

k

(2�)

2!

k

�

[k

2

+ 2pk �m

2

+ i"℄

�

= �p

�

I(!; �) (4.100)

and

I

��

(!; �) =

Z

d

2!

k

(2�)

2!

k

�

k

�

[k

2

+ 2pk �m

2

+ i"℄

�

= (4.101)

= i

(��)

!

(2�)

2!

�(�� ! � 1)

�(�)

p

�

p

�

(�� ! � 1)�

1

2

�

��

(m

2

+ p

2

)

[m

2

+ p

2

� i"℄

��!

: (4.102)

4

A n�1-dimensional sphere S

n�1

(R) enloses the n-dimensional volume x

2

1

+: : :+x

2

n

� R

2

, while its own n�1-

dimensional volume is given by x

2

1

+ : : :+x

2

n

= R

2

. The volume of a unit 1-sphere is a length, vol(S

1

) = 2�,

of a unit 2-sphere an area, vol(S

2

) = 4�, and of a unit 3-sphere a volume, vol(S

3

) = 2�

2

. If we say that

the volume of a sphere is 4�R

3

=3, we mean in fat the volume of the 3-ball B

3

(R), x

2

1

+ x

2

2

+ x

2

3

� R

2

whih is enlosed by the 2-sphere S

2

(R).
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4.A. Appendix: Evaluation of Feynman integrals

Contrating both sides with k

�

k

�

and using �

��

�

��

= 2! gives

I

2

(!; �) =

Z

d

2!

k

(2�)

2!

k

2

[k

2

+ 2pk �m

2

+ i"℄

�

= i

(��)

!

(2�)

2!

�(�� ! � 1)

�(�)

(�� 2! � 1)p

2

� !m

2

[m

2

+ p

2

� i"℄

��!

: (4.103)

Speial ases often needed are

I(!; 2) =

i

(4�)

!

�(2� !) (m

2

+ p

2

� i")

!�2

; (4.104)

I

2

(!; 2) = �

i

(4�)

!

!�(1� !) (m

2

+ p

2

� i")

!�1

; (4.105)

and

I(2; 3) = �

i

32�

2

1

m

2

+ p

2

� i"

: (4.106)

Summary

Disonneted n-point Green funtions are generated by the funtional Z[J ℄, while iW [J ℄ =

lnZ[J ℄ generates onneted Green funtions. The three loop diagrams we alulated in the

��

4

theory were in�nite and had to be regularised. Renormalising the three parameters on-

tained in the lassial Lagrangian of the ��

4

theory, �

0

, m

2

, and �, eliminated the divergenes

and onverted them into \running" quantities.

Further reading

The derivation of the Feynman rules using the graphial approah is disussed extensively in

[GR08℄. [Sre07℄ treats the ��

3

theory whih resembles more QED than the ��

4

theory we

disussed.
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5. Global symmetries and Noether's theorem

Emmy Noether showed 1917 that any global ontinuous symmetry of a lassial system de-

sribed by a Lagrangian leads to a loally onserved urrent. We an divide suh symmetries

into two lasses: Symmetries of spae-time and internal symmetries of a group of �elds. Promi-

nent examples for the latter are the global symmetries that lead to the onservation laws of

eletri harge or baryon number, respetively. For a quantum system, we have to study the

impat of symmetries on its generating funtional. If this funtional remains invariant, the

symmetry holds also at the quantum level. Then onserved harges exists whih ommute

with the Hamiltonian. Analysing spae-time symmetries, we restrit ourselves in this hapter

to the ase when we an neglet gravity. Then spae-time is the familiar Minkowski spae

haraterised by the Poinar�e symmetry group, i.e. the produt of the translation and the

Lorentz group, with its orresponding onservation laws.

5.1. Internal symmetries

We have used up-to now mainly spae-time symmetry of Minkowski spae, namely the re-

quirement of Lorentz invariane, to dedue possible terms in the ation. If we allow for more

than one �eld, e.g. several salar �elds, the new possibility of internal symmetries arise. For

instane, we an look at a theory of two massive salar �elds with quarti interations,

L =

1

2

(�

�

�

1

)

2

�

1

2

m

2

1

�

2

1

�

1

4

�

1

�

4

1

+

1

2

(�

�

�

2

)

2

�

1

2

m

2

2

�

2

2

�

1

4

�

2

�

4

2

�

1

2

�

3

�

2

1

�

2

2

: (5.1)

In order to maintain the disrete Z

2

symmetry �

i

! ��

i

of the individual Lagrangians for

the �elds �

1

and �

2

, we have omitted odd terms like �

1

�

3

2

. Then the theory ontains �ve

arbitrary parameters, two masses m

i

and three oupling onstants �

i

. For arbitrary values

of these parameters, no new additional symmetry results. In nature, we �nd however often

a set of partiles with nearly the same mass and (partly) similar ouplings. One of the �rst

examples was suggested by Heisenberg after the disovery of the neutron, whih has a mass

very lose to the one of the proton, m

n

' m

p

: With respet to strong interations, it is useful

to view the proton and neutron as two di�erent \isospin" states of the nuleon, similar as

an eletron has two spin states. An example of an exat symmetry are partiles and their

antipartiles, as e.g. the harged pions �

�

whih an be ombined into one omplex salar

�eld.

If we set in our ase m

1

= m

2

and �

2

= �

1

, the Lagrangian beomes invariant under the

exhange �

1

$ �

2

. Adding the further ondition that �

3

= �

1

= �

2

, we arrive at

L =

1

2

�

(�

�

�

1

)

2

+ (�

�

�

2

)

2

�

�

1

2

m

2

(�

2

1

+ �

2

2

)�

�

4

(�

2

1

+ �

2

2

)

2

: (5.2)

Now any orthogonal transformation O 2 O(2) in the two-dimensional �eld spae f�

1

; �

2

g

leads to the same Lagrangian L . In partiular, the Lagrangian is invariant under a rotation
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5.2. Noether's theorem

R(�) 2 SO(2) whih mixes f�

1

; �

2

g as

�

�

0

1

�

0

2

�

=

�

os� sin�

� sin� os�

��

�

1

�

2

�

: (5.3)

The �elds transform as a vetor � = f�

1

; �

2

g, and a rotation leaves the length of this vetor

invariant. Generalising this to n salar �elds, � = f�

1

; : : : ; �

n

g, we an write down immedi-

ately a theory that is invariant under transformations �

a

! R

ab

�

b

where R is an element of

O(n),

L =

1

2

(�

�

�)

2

�

1

2

m

2

�

2

�

�

4

(�

2

)

2

: (5.4)

Note that the Lagrangian is only invariant under global, i.e. spae-time independent rotations,

sine the term �

�

[R(x)�℄ would breaking the invariane for R = R(x).

The free LagrangianL

0

, i.e. the part quadrati in the �elds, is diagonal,L

0

= L

0

(�

1

)+: : :+

L

0

(�

n

). Thus the propagator D

ab

(x� x

0

) is diagonal too, D

ab

(x� x

0

) / Æ

ab

. An interation

vertex at x onnets four propagators D

ab

(x� x

i

). As a result of the Z

2

symmetry, an even

number of �

1

and �

2

partiles are onneted at eah vertex whih has therefore the form

�i�(Æ

ab

Æ

d

+ Æ

a

Æ

bd

+ Æ

ad

Æ

b

).

5.2. Noether's theorem

From our experiene in lassial and quantum mehanis, we expet that global ontinuous

symmetries lead also in �eld theory to onservation laws for the generators of the symmetry.

In order to derive suh a onservation law, we onsider an in�nitesimal hange Æ�

a

of the

�elds that keeps by assumption L (�

a

; �

�

�

a

) invariant,

0 = ÆL =

ÆL

Æ�

a

Æ�

a

+

ÆL

Æ�

�

�

a

Æ�

�

�

a

: (5.5)

Now we exhange Æ�

�

= �

�

Æ in the seond term and use then the Lagrange equations,

ÆL =Æ�

a

= �

�

(ÆL =Æ�

�

�

a

), in the �rst one. Then we an ombine the two terms using

the produt rule,

0 = ÆL = �

�

�

ÆL

Æ�

�

�

a

�

Æ�

a

+

ÆL

Æ�

�

�

a

�

�

Æ�

a

= �

�

�

ÆL

Æ�

�

�

a

Æ�

a

�

: (5.6)

Hene the invariane of L under the hange Æ�

a

implies the existene of a onserved urrent,

�

�

j

�

= 0, with

j

�

=

ÆL

Æ�

�

�

a

Æ�

a

: (5.7)

If the transformation Æ�

a

leads to hange in L that is a total four-divergene, ÆL = �

�

K

�

,

and boundary terms an be dropped, then the equations of motion remain invariant too. The

onserved urrent j

�

, also alled Noether urrent, is then hanged to

j

�

=

ÆL

Æ�

�

�

a

Æ�

a

�K

�

: (5.8)

In Minkowski spae, we an onvert this di�erential form of a onservation law into a global

one using Gauss' theorem: Reall that this theorem allows us to onvert a n dimensional
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5. Global symmetries and Noether's theorem

volume integral over the divergene of a tensor �eld into a n� 1 dimensional surfae integral

of the tensor �eld,

Z




d

4

x �

�

X

�����

=

Z

�


dS

�

X

�����

: (5.9)

Applied to the Noether urrent j

�

, we obtain assuming jjj ! 0 for jxj ! 1

Z




d

4

x �

�

j

�

=

Z

V (t

2

)

d

3

x j

0

�

Z

V (t

1

)

d

3

x j

0

= 0 : (5.10)

Thus the volume integral Q =

R

V

d

3

x j

0

over the harge density j

0

remains onstant. Often

(but not always) this harge has a profound physial meaning. Finally, we note that the

onserved urrent j

�

is not unique, sine we an add the four-divergene �

�

K

�

= ÆL .

Internal symmetries As an example, we an use the n salar �elds invariant under the

group

1

SO(n). We need the in�nitesimal generators T

i

of rotations,

�

0

a

= R

ab

�

b

= (1 + �

i

T

i

+O(�

2

i

))

ab

�

b

: (5.11)

SO(n) has an antisymmetri Lie algebra with n(n� 1)=2 generators. Thus a theory invariant

under SO(n) has n(n � 1)=2 onserved urrents. The speial ase n = 2 has as important

appliation e.g. the harged pions �

�

. We ombine the two real �elds �

1

and �

2

into the

omplex �eld � = (�

1

+ i�

2

)=

p

2, then the Lagrangian beomes

L = �

�

�

y

�

�

��m

2

�

y

�� �(�

y

�)

2

: (5.12)

Now the Lagrangian L is invariant under the ombined phase transformations � ! e

�i#

�

and �

y

! e

i#

�

y

: Using omplex �elds, the SO(2) symmetry has beome an U(1) symmetry.

With Æ� = �i�, Æ�

y

= i�

y

, the onserved urrent follows as

j

�

= i

h

�

y

�

�

�� (�

�

�

y

)�

i

: (5.13)

The onserved harge Q =

R

d

3

x j

0

an be also negative and thus we annot interpret j

0

as the probability density to observe a � partile. Instead, we should assoiate Q with a

onserved additive quantum number as e.g. the eletri harge.

Note that Noethers theorem requires only the existene of a global symmetry. In the ases

of the onservation of eletri and olour harge, the global symmetry is a onsequene of an

underlying loal gauge symmetry whih we will study later in hapter 10 in detail. In most

other ases however, as e.g. the onservation of baryon or lepton number, the global symmetry

an not be generalised to a loal one, and one speaks therefore of aidental symmetries. Suh

symmetries are not proteted against quantum orretions and there is no reason to expet

them to hold exatly. We will see later that baryon and lepton number are indeed broken.

1

Although the Lagrangian is invariant under the larger group O(n), we onsider only the subgroup SO(n)

whih is ontinuously onneted to the identity. The additional disrete transformations ontained in O(n)

an be used to lassify solutions of the Lagrangian, but do not lead to additional onservation laws.
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5.2. Noether's theorem

Spae-time symmetries of Minkowski spae The Poinar�e group as symmetry group of

Minkowski spae has ten generators

2

. If the Lagrangian does not depend expliitly on spae-

time oordinates, i.e. L = L (�

a

; �

�

�

a

), ten onservation laws for the �elds �

a

follow.

We onsider �rst the behaviour of the �elds �

a

and the Lagrangian under an in�nitesimal

translation x

�

! x

�

+ "�

�

. As in the ase of internal symmetries, we onsider only global

transformations and thus " does not depend on x. From

�

a

(x

�

)! �

a

(x

�

+ "�

�

) � �

a

(x

�

) + "�

�

�

�

�

a

(x

�

) (5.14)

we �nd the hange

Æ�

a

(x) = �

�

�

�

�

a

(x) = �

�

[�

�

�

a

(x)℄ :

Sine the Lagrange density L ontains by assumption no expliit spae-time dependene, it

will hange simply as L (x

�

)! L (x

�

+ "�

�

) or

ÆL (x) = �

�

�

�

L (x) = �

�

[�

�

L (x)℄ : (5.15)

Thus K

�

= �

�

L (x) and inserting both in the Noether urrent gives

j

�

=

�L

�(�

�

�

a

)

[�

�

�

�

�

a

℄� �

�

L = �

�

�

�L

�(�

�

�

a

)

��

a

�x

�

� �

��

L

�

� �

�

T

��

; (5.16)

where the square braket de�nes the (energy-momentum) stress tensor T

��

of the �elds �

a

.

The orresponding four onserved Noether harges are the omponents of the four-momentum

p

�

=

Z

d

3

x T

0�

: (5.17)

The onserved tensor de�ned by Eq. (5.16) is alled the anonial stress tensor. The de�nition

(5.16) does not guarantee that T

��

is symmetri. A symmetri stress tensor, T

��

= T

��

, is

however the ondition for the onservation of the total angular momentum, as we will show

in the next paragraph. Another reason to require a symmetri stress tensor T

��

is that it

serves as soure term for the symmetri gravitational �eld. Sine the Lagrange density is only

determined up to a four-divergene, we an symmetrize always T

��

adding an appropriate

divergene of an antisymmetri tensor. Thus in general, the anonial stress tensor has to be

symmetrised by hand.

Example 5.1: The general expression (5.16) for the anonial stress tensor beomes for a free

omplex salar �eld

T

��

= 2�

�

�

y

�

�

�� �

��

L : (5.18)

Thus the anonial stress tensor of a salar �eld is already symmetri. Its 00 omponent,

T

00

= � =H = 2j

_

�j

2

�L = j

_

�j

2

+ jr�j

2

+m

2

j�j

2

; (5.19)

agrees with twie the result (3.14) for the energy-density � of a single real salar �eld. We onsider

now plane-wave solutions to the Klein-Gordon equation, � = N exp(ikx). If we insert �

�

� = ik

�

� into

L , we �nd L = 0 and thus

T

00

= 2N

2

k

0

k

0

: (5.20)

Changing from the ontinuum normalisation to a box of size V = L

3

amounts to replae (2�)

3

by L

3

.

Thus the normalisation onstant N

�2

= (2�)

3

2! beomes for a �nite volume N

�2

= 2!V . Thene

2

If this sound unfamiliar, read �rst the appendies B.3 and B.4 before ontinuing
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5. Global symmetries and Noether's theorem

the energy-density T

00

= !=V agrees with the expetation for one partile with energy ! per volume

V . The remaining omponents of T

��

are �xed by its tensor struture,

T

��

= 2N

2

k

�

k

�

=

k

�

k

�

!V

: (5.21)

Sine the stress tensor T

��

is symmetri, we an �nd a frame in whih T

��

is diagonal with T /

diag(!; v

x

k

x

; v

y

k

y

; v

z

k

z

)=V . The spatial part of the stress tensor agrees with the pressure tensor of an

ideal uid, f. problem 5.??. Thus a salar �eld an be viewed as an ideal uid with energy density �

and pressure P , or T

��

= diag(�; P

x

; P

y

; P

z

).

Angular momentum If the tensor T

��

is symmetri, we an onstrut six more onserved

quantities. If we de�ne

M

���

= x

�

T

��

� x

�

T

��

; (5.22)

then M

���

is onserved with respet to the index �,

�

�

M

���

= Æ

�

�

T

��

� Æ

�

�

T

��

= T

��

� T

��

= 0 ; (5.23)

provided that T

��

= T

��

. In this ase,

J

��

=

Z

d

3

xM

0��

=

Z

d

3

x

�

x

�

T

0�

� x

�

T

0�

�

; (5.24)

is a globally onserved tensor. The antisymmetry of J

��

implies that there exist six onserved

harges. The three harges

J

ij

=

Z

d

3

x

�

x

i

T

0j

� x

j

T

0i

�

(5.25)

orrespond to the onservation of total angular momentum, sine T

0j

is the momentum

density. The remaining three harges J

0i

express the fat that the enter-of-mass moves with

onstant veloity.

While J

��

transforms as expeted for a tensor under Lorentz transformations, it is not

invariant under translations x

�

! x

�

+ �

�

. Instead, the angular momentum hanges as

J

��

! J

��

+ �

�

p

�

� �

�

p

�

: (5.26)

Clearly, this is a onsequene of the de�nition of the orbital angular momentum with respet

to the enter of rotation. We want therefore to split the total angular momentum J

��

into

the orbital angular momentum L

��

and an intrinsi part onneted to a non-zero spin of the

�eld. The latter we require to be invariant under translations. We set

S

�

=

1

2

"

��Æ

J

�

u

Æ

; (5.27)

where u

�

is the four-veloity of the enter-of-mass system (ms). Beause of the antisymmetry

in � of "

��Æ

, the hange in (5.26) indued by a translation drops out in S

�

. In the ms,

u

�

= (1; 0; 0; 0) and thus S

0

= 0 and S

�

u

�

= 0. The other omponents are S

1

= J

23

, S

2

= J

31

,

and S

3

= J

12

. Thus the vetor S

�

desribes as desired the intrinsi angular momentum of a

�eld. It is alled the Pauli-Lubanski spin vetor.
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5.3. Quantum symmetries

Remark 5.1: To see that the ontration of a symmetri tensor S

��

with an antisymmetri tensor

A

��

gives zero, onsider

S

��

A

��

= �S

��

A

��

= �S

��

A

��

= �S

��

A

��

: (5.28)

Here we used �rst the antisymmetry of A

��

, then the symmetry of S

��

, and �nally exhanged the

dummy summation indies. Clearly, this remains true if the tensor expression ontains additional

indies. Applied to the Pauli-Lubanski spin vetor and realling p



= mu



, its hange ontains terms

as "

��Æ

�

�

u



u

Æ

whih are zero.

5.3. Quantum symmetries

Conserved urrents We have seen that Noether's theorem guaranties on the lassial level

the onservation of urrents generated by global ontinuous symmetries. In the orresponding

quantum theory, we have to study the impat of this symmetry on the generating funtional Z.

Sine we used the equations of motion to derive Noether's theorem, urrent onservation holds

only for lassially allowed paths in �eld spae, or in other words for on-shell �elds. Thus the

ation evaluated for o�-shell �elds is not invariant under global symmetry transformations. In

the path integral, the �elds are however only integration variables. The generating funtional

is therefore invariant, if we an �nd a �eld transformation �

i

!

~

�

i

whih eliminates the hange

of the ation for o�-shell �elds and keeps the integration measure invariant, D�

i

= D

~

�

i

.

Let us assume that our theory has a global symmetry under whih the lassial solutions

transform as �

a

! �

0

a

= �

a

+ "�

a

. Here, " takes the same value at all spae-time points and

�

a

is a funtion of the original �elds, �

a

= �

a

(�

a

(x)). The lassially forbidden solutions will

be transformed into

~

�

a

6= �

0

a

. We an express

~

�

a

always as

�

a

!

~

�

a

= �

a

+ "(x)�

a

; (5.29)

promoting thereby "(x) to a spae-time dependent funtion. To be onrete, we onsider

again a global U(1) symmetry for a omplex salar �eld. Sine the transformation (5.29) is

loal , kineti terms breaks the symmetry: Diret alulation shows that the Lagrangian (5.12)

hanges as

ÆL = i [�

�

�

�

�� �

�

�

�

�℄ �

�

" = j

�

�

�

" ; (5.30)

where j

�

is the lassial Noether urrent, f. problem 5.??. The �nal result ÆL = j

�

�

�

"

holds in general.

Next we have to generalise the generating funtional for a single, real salar �eld given

in Eq. (4.1) to a omplex salar �eld. We treat � and �

�

as the two independent degrees

of freedom, and add therefore also two independent soures J and J

�

. Coupling them as

L

s

� J�

�

+ J

�

� to the �elds keeps the Lagrangian real. We denote the total Lagrangian as

L

eff

= L

l

+ L

s

, with L

l

= L

0

+ L

int

as the Lagrangian used to derive to the lassial

equation of motions. Thus the generating funtional is

Z[J; J

�

℄ =

Z

D�D�

�

exp i

Z

d

4

x (L

l

+ J�

�

+ J

�

�) : (5.31)

We want to alulate matrix elements of the operator representing the lassial Noether

urrent (5.8). Using the path integral formalism, we an derive the time-ordered vauum
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5. Global symmetries and Noether's theorem

expetation value of a produt of �elds � and the urrent operator j

�

by adding a lassial

external soure v

�

oupled to j

�

,

Z[J; J

�

; v

�

℄ =

Z

D�D�

�

exp i

Z

d

4

x (L

l

+ J�

�

+ J

�

�+ v

�

j

�

) : (5.32)

Then we obtain the vauum expetation value of the urrent as

hj

�

(x)i � h0jj

�

(x)j0i =

1

i

Æ

Æv

�

(x)

iW [J; J

�

; v

�

℄

�

�

�

�

v

�

=J=0

: (5.33)

Inverting this relation we �nd

ÆW [J; J

�

; v

�

℄ =

Z

d

4

x hj

�

(x)iÆv

�

(x) : (5.34)

We are interested how W and Z hange under a transformation of the external soure v

�

.

To dedue their transformation properties, it is suÆient to onsider them for zero external

soures J and J

�

. Setting Z[0; 0; v

�

℄ � Z[v

�

℄ and hoosing Æv

�

(x) = ��

�

"(x), it follows

ÆW [v

�

℄ =W [v

�

� �

�

"(x)℄ �W [v

�

℄ = �

Z

d

4

x hj

�

(x)i�

�

"(x) =

Z

d

4

x�

�

hj

�

(x)i"(x) : (5.35)

Thus ÆW [v

�

℄ = 0 guarantees urrent onservation in the quantum theory, �

�

hj

�

i = 0. The

orresponding hange of Z[v

�

℄ under the same transformation is

Z[v

�

� �

�

"(x)℄ =

Z

D�D�

�

exp i

Z

d

4

x fL + [v

�

� �

�

"(x)℄j

�

g : (5.36)

We now assume that the substitution �

a

!

~

�

a

= �

a

+ "(x)�

a

keeps the integration measure

invariant, D�D�

�

= D

~

�D

~

�

�

. Realling then that ÆL = j

�

�

�

", we �nd that the generating

funtional is invariant,

Z[v

�

� �

�

"(x)℄ =

Z

D

~

�D

~

�

�

exp i

Z

d

4

x

�

L (

~

�; �

�

~

�) + v

�

j

�

�

= Z[v

�

℄ : (5.37)

In the ase of the U(1) transformation, the two phases anel in the integration measure

D

~

�D

~

�

�

=

Y

x

d

~

�(x)d

~

�

�

(x) =

Y

x

d�(x)d�

�

(x) : (5.38)

As a result, the vauum expetation value of the eletromagneti urrent is onserved,

�

�

hj

�

i = 0.

Anomalies The substitution �

a

!

~

�

a

= �

a

+ "(x)�

a

shifts the enter of the integration at

eah spae-time point by the value "(x)�

a

. Suh a linear shift seems harmless. Therefore

it was taken for granted that the path integral remains invariant under this hange and,

onsequently, that this approah predits that all lassial global symmetries hold also on

the quantum level. It was only realised by Fujikawa in 1979 that the integration measure in

the path integral may transform non-trivially under a symmetry transformation: Sine the

path integral is divergent, we have to regularise it and this proedure may break the lassial

symmetry.
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5.3. Quantum symmetries

If the lassial symmetry is broken, one speaks of an \anomaly". The three most important

examples are the trae anomaly, the hiral anomaly, and the breaking of onformal invariane

in string theory. We will disuss the �rst two ases later in some detail. The anomalous term

breaking onformal invariane in string theory vanishes for a de�nite number of spae-time

dimensions, D = 10 or 26, what is the reason for the preditions of extra-dimensions in string

theory.

Summary

Noether's theorem shows that ontinuous global symmetries lead lassially to onservation

laws. Suh symmetries an be divided into spae-time and internal symmetries. Minkowski

spae-time is invariant under global Poinar�e transformations. The orresponding ten Noether

harges are the four-momentum p

�

and the total angular momentum J

��

. Examples for

onserved harges due to internal symmetries are eletri and olour harge, as well as baryon

or lepton number. In a quantum theory, the vauum expetation value of a Noether urrent

is onserved, if the symmetry transformation keeps the path integral measure invariant.

Further reading

A more omplete disussion of Noether's theorem an be found in [GR08℄ and [Hil51℄.
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6. Spae-time symmetries

In the previous hapter, we disussed the symmetries of Minkowski spae. In this ase, we

ould view the Poinar�e group as the group generating global symmetry transformations

on Minkowski spae and �nd the resulting onservation laws. Aim of the present hapter

is to extend this disussion to the ase of a Riemannian manifold, i.e. to a urved spae

whih looks only loally Eulidean. We will show how one an �nd the symmetries of suh

manifolds and how they determine onservation laws. Riemannian manifolds arise naturally

in lassial mehanis using generalised oordinates q

i

, sine the kineti energy T = a

ik

_q

i

_q

k

de�nes a quadrati form a

ik

whih we an view as metri tensor on the on�guration spae

fq

i

g. However, the for us more important appearane of a (pseudo-) Riemannian manifold is

in Einstein's theory of general relativity whih replaes Minkowski spae by a urved spae-

time. Most of the mathematial strutures we will introdue have also a lose analogue in

gauge theories whih we will use later on to desribe the eletroweak and strong interations.

Equivalene priniple As a start, we motivate why one an replae the gravitational fore

by the urvature of spae-time disussing the equivalene priniple. The idea underlying this

priniple emerged in the 16th entury, when among others Galileo Galilei found experimen-

tally that the aeleration g of a test mass in a gravitational �eld is universal. Beause of

this universality, the gravitating mass m

g

and the inertial mass m

i

are idential in lassial

mehanis. While m

i

= m

g

an be ahieved for one material always by a onvenient hoie

of units, there should be in general deviations for test bodies with di�ering ompositions.

Current limits for departures from universal gravitational attration for di�erent materials

are however very tight, j�g=gj < 10

�12

.

As a result, gravity has ompared to the three other known fundamental interations the

unique property that it an be swithed-o� loally: Inside a freely falling elevator, one does

not feel any gravitational e�ets exept tidal fores. The latter arise if the gravitational �eld is

non-uniform and tries to deform the elevator. Inside a suÆiently small freely falling system,

also tidal e�ets plays no role. Einstein promoted the equivalene of inertial and gravitating

mass to the postulate of the \strong equivalene priniple": In a small enough region around

the enter of a freely falling oordinate system all physis is desribed by the laws of speial

relativity.

In general relativity, the gravitational fore of Newton's theory that aelerates partiles

in an Eulidean spae is replaed by a urved spae-time in whih partiles move fore-free

along geodesi lines. In partiular, photons move still as in speial relativity along urves

satisfying ds

2

= 0, while all e�ets of gravity are now enoded in the non-Eulidean geometry

of spae-time whih is determined by the line-element ds or the metri tensor g

��

,

ds

2

= g

��

dx

�

dx

�

: (6.1)

Swithing on a gravitational �eld, the metri tensor g

��

an be transformed only loally by a

oordinate hange into the form �

��

= diag(1;�1;�1;�1). Thus we should develop the tools
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6.1. Manifolds and tensor �elds

neessary to do analysis on a urved manifoldM whih geometry is desribed by the metri

tensor g

��

.

6.1. Manifolds and tensor �elds

Manifolds A manifoldM is any set that an be ontinuously parametrised. The number of

independent parameters needed to speify uniquely any point of M is its dimension n, the

parameters x = fx

1

; : : : ; x

n

g are alled oordinates. Loally, a manifold with dimension n

an be approximated by R

n

. Examples for manifolds are Lie groups, the on�guration spae

q

i

or the phase spae (q

i

; p

i

) of lassial mehanis, and spae-time in general relativity. We

require the manifold to be smooth: The transitions from one set of oordinates to another

one, x

i

= f(~x

i

; : : : ; ~x

n

), should be C

1

. In general, it is impossible to over all M with one

oordinate system that is well-de�ned on allM . An example are spherial oordinate (#; �)

on a sphere S

2

, where � is ill-de�ned at the poles. Instead one has to over the manifold with

pathes of di�erent oordinates that partially overlap.

Vetor �elds A vetor �eld V (x

a

) on (a subset S of) M is a set of vetors assoiating

to eah spae-time point x

a

2 S exatly one vetor. The paradigm for suh a vetor �eld

is the four-veloity u(�) = dx=d� whih is the tangent vetor to the world-line x(�) of a

partile. Sine the di�erential equation dx=d� =X(�) has loally always a solution, we an

�nd for any given X a urve x(�) whih has X as tangent vetor. Although the de�nition

u(�) = dx=d� oinides with the one familiar from Minkowski spae, there an important

di�erene: In a general manifold, we an not imagine a vetor V as an \arrow"

��!

PP

0

pointing

from a ertain point P to another point P

0

of the manifold. Instead, the vetors V generated

by all smooth urves through P span a n-dimensional vetor spae at the point P alled

tangent spae T

P

. We an visualise the tangent spae for the ase of a two-dimensional

manifold embedded in R

3

: At any point P , the tangent vetors lie in a plane R

2

whih we

an assoiate with T

P

. In general, T

P

6= T

P

0

and we annot simply move a vetor V (x

�

)

to another point ~x

�

. This implies in partiular that we annot add the vetors V (x

�

) and

V (~x

�

), if the points x

�

and ~x

�

di�er. Therefore we annot di�erentiate a vetor �eld without

introduing an additional mathematial struture whih allows us to transport a vetor from

one tangent spae to another.

If we want to deompose the vetor V (x

�

) into omponents V

�

(x

�

), we have to introdue

a basis e

�

in the tangent spae. There are two natural hoies for suh a basis: First, we

ould use Cartesian basis vetors as in a Cartesian inertial system in Minkowski spae. We

will follow this approah later, when we disuss gravity as a gauge theory in hapter 18. Now,

we will use the more onventional approah and use as basis vetors the tangential vetors

along the oordinate lines x

�

inM ,

e

�

=

�

�x

�

� �

�

: (6.2)

Here the index � with value i in e

�

denotes the i.th basis vetor e

�

= (0; : : : ; 1; : : : 0), with

an one at the i.th position, not a omponent. Using this basis, a vetor an be deomposed

as

V = V

�

e

�

= V

�

�

�

: (6.3)
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6. Spae-time symmetries

A oordinate hange

x

�

= f(~x

1

; : : : ; ~x

n

) ; (6.4)

or more briey x

�

= x

�

(~x

�

), hanges the basis vetors as

e

�

=

�

�x

�

=

�~x

�

�x

�

�

�~x

�

=

�~x

�

�x

�

~e

�

: (6.5)

Therefore the vetor V will be invariant under general oordinate transformations,

V = V

�

�

�

=

~

V

�

~

�

�

=

~

V ; (6.6)

if its omponents transform opposite to the basis vetors e

�

= �

�

, or

V

�

=

�x

�

�~x

�

~

V

�

: (6.7)

If x

�

and ~x

�

are two inertial frames in Minkowski spae, we ame bak to Lorentz transfor-

mations �x

�

=�~x

�

= �

�

�

as a speial ase of general oordinate transformations.

Covetors or one-forms In quantum mehanis, we use Dira's braket notation to assoiate

to eah vetor jai a dual vetor haj and to introdue a salar produt haj bi. If the vetors jni

form a basis, then the dual basis hnj is de�ned by hnjn

0

i = Æ

nn

0

. Similarly, we de�ne a basis

e

�

dual to the basis e

�

in T

P

by

e

�

(e

�

) = Æ

�

�

: (6.8)

This basis an be used to form a new vetor spae T

�

P

alled the otangent spae whih is

dual to T

P

. Its elements ! are alled ovetors or one-forms,

! = !

�

e

�

: (6.9)

Combining a vetor and an one-form, we obtain a map into the real numbers,

!(V ) = !

�

V

�

e

�

(e

�

) = !

�

V

�

: (6.10)

The last equality shows that we an alulate !(V ) in omponent form without referene to

the basis vetors. In order to simplify notation, we will use therefore in the future simply

!

�

V

�

; we also write e

�

e

�

instead of e

�

(e

�

).

Using a oordinate basis, the duality ondition (6.8) is obviously satis�ed, if we hoose

e

�

= dx

�

. Then the one-form beomes

! = !

�

dx

�

: (6.11)

Thus the familiar \in�nitesimals" dx

�

are atually the �nite basis vetors of the otangent

spae T

�

P

. We require again that the transformation of the omponents !

�

of a ovetor

anels the transformation of the basis vetors,

!

�

=

�~x

�

�x

�

~!

�

: (6.12)

This ondition guarantees that the ovetor itself is an invariant objet, sine

! = !

�

dx

�

=

�~x

�

�x

�

~!

�

�x

�

�~x

�

d~x

�

= ~!

�

d~x

�

= ~! : (6.13)
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Covariant and ontravariant tensors Next we generalise the onept of vetors and ove-

tors. We all a vetor X also a ontravariant tensor of rank one, while we all a ovetor

also a ovariant vetor or ovariant tensor of rank one. A general tensor of rank (n;m) is a

multilinear map

T = T

�;:::;�

�;:::;�

�

�


 : : :
 �

�

| {z }

n


dx

�


 : : :
 dx

�

| {z }

m

(6.14)

whih omponents transforms as

~

T

�;:::;�

�;:::;�

(~x) =

�~x

�

�x

�

: : :

�~x

�

�x

�

| {z }

n

�x



�~x

�

: : :

�x

Æ

�~x

�

| {z }

m

T

�;:::;�

;:::;Æ

(x) (6.15)

under a oordinate hange.

Metri tensor A (pseudo-) Riemannian manifold is a di�erentiable manifold ontaining as

additional struture a symmetri tensor �eld g

��

whih allows us to measure distanes and

angles. We de�ne the salar produt of two vetors a(x) and b(x) whih have the oordinates

a

�

and b

�

in a ertain basis e

�

as

a � b = (a

�

e

�

) � (b

�

e

�

) = (e

�

� e

�

)a

�

b

�

= g

��

a

�

b

�

: (6.16)

Thus we an evaluate the salar produt between any two vetors, if we know the symmetri

matrix g

��

omposed out of the N

2

produts of the basis vetors,

g

��

(x) = e

�

(x) � e

�

(x) ; (6.17)

at any point x of the manifold. This symmetri matrix g

��

is alled metri tensor. The

manifold is alled Riemannian, if all eigenvalues of g

��

are positive, and thus the salar

produt de�ned by g

��

is positive-de�nite. If the salar produt is inde�nite, as in the ase

of general relativity, one alls the manifold pseudo-Riemannian.

In the same way, we de�ne for the dual basis e

�

the metri g

��

via

g

��

= e

�

� e

�

: (6.18)

A omparison with Eq. (6.10) shows that the metri g

��

maps ovariant vetors X

�

into

ontravariant vetors X

�

, while g

��

provides a map into the opposite diretion. Similarly, we

an use the metri tensor to raise and lower indies of any tensor.

Next we want to determine the relation of g

��

with g

��

. We multiply e

�

with e

�

= g

��

e

�

,

obtaining

Æ

�

�

= e

�

� e

�

= e

�

� g

��

e

�

= g

��

g

��

(6.19)

or

Æ

�

�

= g

��

g

��

: (6.20)

Thus the omponents of the ovariant and the ontravariant metri tensors, g

��

and g

��

, are

inverse matries of eah other. Moreover, the mixed metri tensor of rank (1,1) is given by

the Kroneker delta, g

�

�

= Æ

�

�

. Note that the trae of the metri tensor is therefore not �2,

but

tr(g

��

) = g

��

g

��

= Æ

�

�

= 4 ; (6.21)

beause we have to ontrat an upper and a lower index.
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6. Spae-time symmetries

6.2. Covariant derivative and the geodesi equation

Covariant derivative In an inertial system in Minkowski spae, taking the partial derivative

�

�

maps a tensor of rank (n;m) into a tensor of rank (n+1;m). Additionally, this map obeys

linearity and the Leibniz produt rule. We will see that in general the partial derivative in

a urved spae does not satisfy these rules. We therefore introdue a new derivative alled

ovariant derivative modi�ed suh that it ful�ls these rules.

We start by onsidering the gradient �

�

� of a salar �. By de�nition, a salar quantity

does not depend on the oordinate system, �(x) =

~

�(~x). Therefore its gradient transforms as

�

�

�!

~

�

�

~

� =

�x

�

�~x

�

�

�

� : (6.22)

Thus the gradient is a ovariant vetor. Similarly, the derivative of a vetor V transforms as

a tensor,

�

�

V !

~

�

�

~

V =

�x

�

�~x

�

�

�

V ; (6.23)

beause V is an invariant quantity. If we onsider however its omponents V

�

= e

�

�V , then

the moving oordinate basis in urved spae-time, �

�

e

�

6= 0, leads to an additional term in

the derivative,

�

�

V

�

= e

�

� (�

�

V ) + V � (�

�

e

�

) : (6.24)

The term e

�

� (�

�

V ) transforms as a tensor, sine both e

�

and �

�

V are tensors. This implies

that the ombination of the two remaining terms has to transform as tensor too, whih we

de�ne as ovariant derivative

r

�

V

�

� e

�

� (�

�

V ) = �

�

V

�

� V � (�

�

e

�

) : (6.25)

The �rst equality tells us that we an view the ovariant derivative r

�

V

�

as the projetion

of �

�

V onto the diretion e

�

.

We expand now the partial derivatives of the basis vetors as a linear ombination of the

basis vetors,

�

�

e

�

= ��

�

��

e

�

: (6.26)

The n

3

numbers �

�

��

are alled (aÆne) onnetion oeÆients or symbols, in order to stress

that they are not the omponents of a tensor. You are asked to derive their transformation

properties in problem 6.??. Introduing this expansion into (6.25) we an rewrite the ovariant

derivative of a vetor �eld as

r

�

V

�

= �

�

V

�

+ �

�

��

V

�

: (6.27)

Using r

�

� = �

�

� and requiring that the usual Leibniz rule is valid for � = X

�

X

�

leads to

r

�

X

�

= �

�

X

�

� �

�

��

X

�

(6.28)

and to

�

�

e

�

= �

�

��

e

�

: (6.29)

For a general tensor, the ovariant derivative is de�ned by the same reasoning as

r

�

T

�:::

�:::

= �

�

T

�:::

�:::

+ �

�

��

T

�:::

�:::

+ : : :� �

�

��

T

�:::

�:::

� : : : (6.30)

Note that it is the last index of the onnetion oeÆients that is the same as the index of

the ovariant derivative. The plus sign goes together with upper (supersripts), the minus

with lower indies.
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Parallel transport We say a tensor T is parallel transported along the urve x(�), if its

omponents T

�:::

�:::

stay onstant. In at spae, this means simply

d

d�

T

�:::

�:::

=

dx

�

d�

�

�

T

�:::

�:::

= 0 : (6.31)

In urved spae, we have to replae the normal derivative by a ovariant one. We de�ne the

diretional ovariant derivative along x(�) as

D

d�

=

dx

�

d�

r

�

: (6.32)

Then a tensor is parallel transported along the urve x(�), if

D

d�

T

�:::

�:::

=

dx

�

d�

r

�

T

�:::

�:::

= 0 : (6.33)

Metri ompatibility Relations like ds

2

= g

��

dx

�

dx

�

or g

��

p

�

p

�

= m

2

beome invariant

under parallel transport only, if the metri tensor is ovariantly onstant,

r

�

g

��

= r

�

g

��

= 0 : (6.34)

A onnetion satisfying Eq. (6.34) is alled metri ompatible and leaves lengths and angles

invariant under parallel transport. This requirement guarantees that we an introdue lo-

ally in the whole spae-time Cartesian inertial oordinate systems where the laws of speial

relativity are valid. Moreover, these loal inertial systems an be onsistently onneted by

parallel transport using an aÆne onnetion satisfying the onstraint (6.34).

Note that we have already built in this onstraint into our de�nition of the ovariant

derivative: If the length of a vetor would not be onserved under parallel transport, then we

should di�erentiate in (6.24) also the salar produt in V

�

= e

�

�V , leading to an additional

term in Eq. (6.25).

Geodesi equation The requirement that the aÆne onnetion is metri ompatible �xes

the onnetion not uniquely, and thus the question arises whih onnetion desribes physis

on a general spae-time? Ultimately, the ombined ation for gravity and matter should selet

the orret onnetion|an approah we resume in Chapter 18. For the moment, we use a

simple workaround whih does not require the knowledge of the ation of gravity: In at

spae, we know that the solution to the equation of motions of a free partile is a straight

line. Suh a path is haraterised by two properties: It is the shortest urve between the

onsidered initial and �nal point, and it is the urve whose tangent vetors remains onstant

if they are parallel transported along it. Both onditions an be generalised to urved spae

and the urves satisfying either one of them are alled geodesis. Using the de�nition of a

geodesis as the \straightest" line on a manifold requires as mathematial struture only the

possibility to parallel transport a tensor and thus the existene of an aÆne onnetion. In

ontrast, the onept of an \extremal" (shortest or longest) line between two points on a

manifold relies on the existene of a metri. Requiring that these two de�nitions agree �xes

uniquely the onnetion to be used in the ovariant derivative.

We start by de�ning geodesis as the \straightest" line or an autoparallel urve on a

manifold|the ase whih is almost trivial: The tangent vetor along the path x(�) is
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6. Spae-time symmetries

u

�

= dx

�

=d� . Then the requirement (6.33) of parallel transport for u

�

beomes

D

d�

dx

�

d�

=

d

2

x

�

d�

2

+�

�

��

dx

�

d�

dx

�

d�

= 0 : (6.35)

Introduing _x

�

= dx

�

=d� , we obtain the geodesi equation in its standard form,

�x

�

+ �

�

��

_x

�

_x

�

= 0 : (6.36)

Note that a possible antisymmetri part of the onnetion �

�

��

drops out of the geodesi

equation, beause _x

�

_x

�

is symmetri.

Next we derive the de�ning equation for a geodesis as the extremal urve between two

points on a manifold. The Lagrangian of a free partile in Minkowski spae, Eq. (1.53), is

generalised to a urved spae-time manifold with the metri tensor g

��

by replaing �

��

with

g

��

(we set also m = �1),

L = g

��

_x

�

_x

�

: (6.37)

The Lagrange equations are

d

d�

�L

�( _x

�

)

�

�L

�x

�

= 0 : (6.38)

Only the metri tensor g

��

depends on x

�

and thus �L=�x

�

= g

��;�

_x

�

_x

�

. Here we introdued

also the short-hand notation g

��;�

= �

�

g

��

for partial derivatives. Now we use � _x

�

=� _x

�

= Æ

�

�

and apply the hain rule for g

��

(x(�)), obtaining �rst

g

��;�

_x

�

_x

�

= 2

d

d�

(g

��

_x

�

) = 2(g

��;�

_x

�

_x

�

+ g

��

�x

�

) (6.39)

and then

g

��

�x

�

+

1

2

(2g

��;�

� g

��;�

) _x

�

_x

�

= 0 : (6.40)

Next we rewrite the seond term as

2g

��;�

_x

�

_x

�

= (g

��;�

+ g

��;�

) _x

�

_x

�

; (6.41)

multiply everything by g

��

and arrive at our desired result,

�x

�

+

1

2

g

��

(g

��;�

+ g

��;�

� g

��;�

) _x

�

_x

�

= �x

�

+ f

�

��

g _x

�

_x

�

= 0 : (6.42)

Here we de�ned in the last step the Christo�el symbols

�

�

��

	

=

1

2

g

��

(�

�

g

��

+ �

�

g

��

� �

�

g

��

) : (6.43)

They are also alled Levi-Civita or Riemannian onnetion. A omparison with Eq. (6.36)

shows that our two geodesi equations agree, if we hoose as onnetion the Christo�el sym-

bols. Moreover, the Christo�el symbols are symmetri in their two lower indies and, as we

will show next, ompatible to the metri tensor. Following standard pratise, we will denote

them also with �

�

��

. In the remainder of this setion, we will use always as aÆne onnetion

the Christo�el symbols.
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6.2. Covariant derivative and the geodesi equation

We de�ne

1

�

���

= g

��

�

�

��

: (6.44)

Thus �

���

is symmetri in the last two indies. Then it follows

�

���

=

1

2

(�

�

g

��

+ �

�

g

��

� �

�

g

��

) : (6.45)

Adding 2�

���

and 2�

���

gives

2(�

���

+ �

���

) = �

b

g

��

+ �

�

g

��

� �

�

g

��

+ �

�

g

��

+ �

�

g

��

� �

�

g

��

= 2�

�

g

��

(6.46)

or

�

�

g

��

= �

���

+ �

���

: (6.47)

Applying the general rule for ovariant derivatives, Eq. (6.30), to the metri,

r

�

g

��

= �

�

g

��

� �

�

�

g

��

� �

�

��

g

��

= �

�

g

��

� �

���

� �

���

; (6.48)

and inserting Eq. (6.47) shows that

r

�

g

��

= r

�

g

��

= 0 : (6.49)

Hene r

�

ommutes with ontrating indies,

r

�

(X

�

X

�

) = r

�

(g

��

X

�

X

�

) = g

��

r

�

(X

�

X

�

) (6.50)

and onserves the norm of vetors as announed. Thus the Christo�el symbols are symmetri

and ompatible with the metri. These two properties speify uniquely the onnetion.

Example 6.1: Calulate the Christo�el symbols of the two-dimensional unit sphere S

2

.

The line-element of the two-dimensional unit sphere S

2

is given by ds

2

= d#

2

+ sin

2

#d�

2

. A faster

alternative to the de�nition (6.43) of the Christo�el oeÆients is the use of the geodesi equation:

From the Lagrange funtion L = g

ab

_x

a

_x

b

=

_

#

2

+ sin

2

#

_

�

2

we �nd

�L

��

= 0 ;

d

dt

�L

�

_

�

=

d

dt

(2 sin

2

#

_

�) = 2 sin

2

#

�

�+ 4 os# sin#

_

#

_

�

�L

�#

= 2 os# sin#

_

�

2

;

d

dt

�L

�

_

#

=

d

dt

(2

_

#) = 2

�

#

and thus the Lagrange equations are

�

�+ 2 ot#

_

#

_

� = 0 and

�

#� os# sin#

_

�

2

= 0 :

Comparing with the geodesi equation �x

�

+�

�

��

_x

�

_x

�

= 0, we an read o� the non-vanishing Christo�el

symbols as �

�

#�

= �

�

�#

= ot# and �

#

��

= � os# sin#. (Note that 2 ot# = �

�

#�

+ �

�

�#

.)

We an use also the Hamiltonian formulation for a relativisti partile. From the Lagrangian

L =

1

2

g

��

_x

�

_x

�

we determine �rst the onjugated momenta p

�

= �L=� _x

�

= _x

�

and perform

then a Legendre transformation,

H(x

�

; p

�

; �) = p

�

_x

�

� L(x

�

; _x

�

; �) =

1

2

g

��

p

�

p

�

: (6.51)

1

We showed that the metri tensor an be used to raise or to lower tensor indies, but the onnetion � is

not a tensor.
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6. Spae-time symmetries

Sine the Lagrangian of a free partile does not depend expliitly on the evolution parameter

�, there exists at least one onserved quantity. This onservation law, H = 1=2, expresses

the fat that the tangent vetor _x

�

has a onstant norm. Hamilton equations give then

_x

�

=

�H

�p

�

= g

��

p

�

(6.52)

and

_p

�

= �

�H

�x

�

= �

1

2

�g

��

�x

�

p

�

p

�

: (6.53)

This is a useful alternative to the standard geodesi equation: First, it makes lear that the

momentum omponent p

�

is onserved, if the metri tensor is independent of the oordi-

nate x

�

. Seond, we an alulate _p

�

diretly from the metri tensor, without knowing the

Christo�el symbols. Combining the Eqs. (6.52) and (6.53) one an re-derive the standard

form of the geodesi equation, f. problem 6.??.

6.3. Integration and Gauss' theorem

Having de�ned the ovariant derivative of an arbitrary tensor �eld, it is natural to ask how

the inverse, the integral over a tensor �eld, an be de�ned. The short answer is that this is

in general impossible: Integrating a tensor �eld requires to sum tensors at di�erent points

in an invariant way, whih is only possible for salars. Restriting ourselves to salar �elds,

we should generalise an integral like I =

R

d

4

x�(x) valid in an Cartesian inertial frame x

�

in Minkowski spae to a general spae-time with oordinates ~x. For a general oordinate

transformation x

�

! ~x

�

, we have to take into aount that the Jaobi determinant J =

det(�~x

�

=�x

�

) of the transformation an deviate from one. We an express this Jaobian by

the determinant g � det(g

��

) of the metri tensor as follows: Applying the transformation

law of the metri tensor,

~g

��

(~x) =

�~x

�

�x

�

�~x

�

�x

�

g

��

(x) (6.54)

to the ase where the x

�

are inertial oordinates, we obtain with g = det(�

��

) = �1 that

det(~g) = J

2

det(g) = �J

2

(6.55)

or J =

p

j~gj. Thus I =

R

d

4

x

p

jgj � is an invariant de�nition of an integral over a salar

�eld whih agrees for inertial oordinates with the one known from speial relativity. Now we

hoose as salar � the divergene of a vetor �eld, � = r

�

X

�

, or

I =

Z

d

4

x

p

jgj r

�

X

�

=

Z

d

4

x

p

jgj

�

�

�

X

�

+ �

�

��

X

�

�

: (6.56)

Our aim is to generalise Gauss' theorem (5.9). The only way how this theorem may be reon-

iled with (6.56) is to hope that we an express the ovariant divergene as 1=

p

jgj�

�

(

p

jgjX

�

).

In order to hek this possibility, we determine �rst the partial derivative of the metri de-

terminant g. As preparation, we onsider the variation of a general matrix M with elements

m

ij

(x) under an in�nitesimal hange of the oordinates, Æx

�

= "x

�

. It is onvenient to look

at the hange of ln detM ,

Æ ln detM � ln det(M + ÆM) � ln det(M) (6.57a)

= lndet[M

�1

(M + ÆM)℄ = lndet[1 +M

�1

ÆM ℄ = (6.57b)

= ln[1 + tr(M

�1

ÆM)℄ +O("

2

) = tr(M

�1

ÆM) +O("

2

) : (6.57)
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6.4. Symmetries of a general spae-time

In the last step, we used ln(1 + ") = "+O("

2

). Expressing now both the LHS and the RHS

as ÆM = �

�

MÆx

�

and omparing then the oeÆients of Æx

�

gives

�

�

ln detM = tr(M

�1

�

�

M) : (6.58)

Applied to derivatives of

p

jgj, we obtain

1

2

g

��

�

�

g

��

=

1

2

�

�

ln g =

1

p

jgj

�

�

(

p

jgj) : (6.59)

This expression oinides with ontrated Christo�el symbols,

�

�

��

=

1

2

g

��

(�

�

g

��

+ �

�

g

��

� �

�

g

��

) =

1

2

g

��

�

�

g

��

=

1

2

�

�

ln g =

1

p

jgj

�

�

(

p

jgj) : (6.60)

Now we an express the divergene of a vetor �eld as

r

�

X

�

= �

�

X

�

+ �

�

��

X

�

= �

�

X

�

+

1

p

jgj

(�

�

p

jgj)X

�

=

1

p

jgj

�

�

(

p

jgjX

�

) : (6.61)

Gauss' theorem for the divergene of a vetor �eld follows diretly,

Z




d

4

x

p

jgj r

�

X

�

=

Z




d

4

x �

�

(

p

jgjX

�

) =

Z

�


dS

�

p

jgjX

�

: (6.62)

This implies in partiular that we an drop terms like r

�

X

�

in the ation, if the vetor

�eld X

�

vanishes on the boundary. Similarly, Gauss' theorem allows us to derive global

onservation laws from r

�

X

�

= 0 in the same way as in Minkowski spae.

Next we onsider the divergene of an antisymmetri tensor of rank 2,

r

�

A

��

= �

�

A

��

+�

�

��

A

��

+ �

�

��

A

��

=

1

p

jgj

�

�

(

p

jgjA

��

) : (6.63)

Beause of the antisymmetry of A

��

the term �

�

��

A

��

vanishes, and we an ombine the �rst

two terms as in the vetor ase. This generalises to ompletely antisymmetri tensors of all

orders. In ontrast, we �nd for a symmetri tensor of rank 2,

r

�

S

��

= �

�

S

��

+ �

�

��

S

��

+ �

�

��

S

��

=

1

p

jgj

�

�

(

p

jgjS

��

) + �

�

��

S

��

: (6.64)

Hene the divergene of a symmetri tensor of rank two ontains an additional term

(�

�

g

��

)S

��

whih prohibits the use of Gauss' theorem.

6.4. Symmetries of a general spae-time

In the ase of a Riemannian spae-time manifold (M ;g), we say the spae-time possess a

symmetry if it looks the same as one moves from a point P along a vetor �eld �

�

to a

di�erent point

~

P . More preisely, we mean with \looking the same" that the metri tensor

transported along �

�

remains the same.

Suh symmetries may be obvious, if one uses oordinates adapted to these symmetries: For

instane, the metri may be independent from one or several oordinates. Let us assume that
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6. Spae-time symmetries

the metri is e.g. independent from the time oordinate x

0

. Then x

0

is a yli oordinate,

�L=�x

0

= 0, of the Lagrangian L = d�=d� of a free test partile moving in M . With

L = d�=d�, the resulting onserved quantity �L=� _x

0

= onst: an be written as

�L

� _x

0

= g

0�

dx

�

Ld�

= g

0�

dx

�

d�

= � � u (6.65)

with � = e

0

and u as the four-veloity. Hene the quantity � � u = p

0

=m is onserved along

the solutions x

�

(�) of the Lagrange equation of a free partile onM , i.e. along geodesis: In

other words, the motion of all test partiles in the orresponding spae-time onserve energy.

The vetor �eld � that points in the diretion in whih the metri does not hange is alled

Killing vetor �eld.

Sine we allow arbitrary oordinate systems, spae-time symmetries are however in general

not evident by a simple inspetion of the metri tensor. We say the metri is invariant

moving along the Killing vetor �eld �

�

, when the resulting hange Æg

��

of the metri is zero.

In order to use this ondition, we have to be able to alulate how the tensor g

��

hanges

as we transport it along a vetor �eld �

�

. Clearly, it is suÆient to onsider an in�nitesimal

distane. Then we an work in the approximation

~x

�

= x

�

+ "�

�

(x

�

) +O("

2

) ; "� 1 ; (6.66)

and neglet all terms quadrati in ".

We reall �rst the transformation law for a rank two tensor as the metri under an arbitrary

oordinate transformation,

~g

��

(~x) =

�~x

�

�x

�

�~x

�

�x

�

g

��

(x) : (6.67)

Applied to the transport along � de�ned in (6.66), we obtain

~g

��

(~x) =

�~x

�

�x

�

�~x

�

�x

�

g

��

(x) = (Æ

�

�

+ "�

�

;�

)(Æ

�

�

+ "�

�

;�

)g

��

(x) (6.68a)

= g

��

(x) + "(�

�;�

+ �

�;�

) +O("

2

) : (6.68b)

In order to be able to ompare the new ~g

��

(~x) with g

��

(x), we have to express ~g

��

(~x) as

funtion of x. A Taylor expansion gives

~g

��

(~x) = ~g

��

(x+ "�) = ~g

��

(x) + "�

�

�

�

~g

��

(x) +O("

2

) : (6.69)

Setting equal Eqs. (6.68b) and (6.69), we obtain

g

��

(x) + "(�

�;�

+ �

�;�

) = ~g

��

(x) + "�

�

�

�

~g

��

(x) : (6.70)

Thus the metri is kept invariant, ~g

��

(x) = g

��

(x), if the ondition

�

�;�

+ �

�;�

� �

�

�

�

g

��

= 0 (6.71)

or

g

��

�

�

�

�

+ g

��

�

�

�

�

� �

�

�

�

g

��

= 0 (6.72)
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6.4. Symmetries of a general spae-time

is satis�ed. Expressing partial derivatives as ovariant ones

2

, the terms ontaining onnetion

oeÆients anel and we obtain the Killing equation

r

�

�

�

+r

�

�

�

= 0 : (6.73)

Its solutions � are the Killing vetors of the metri.

We now hek that Eq. (6.73) leads indeed to a onservation law, as required by our initial

de�nition of a Killing vetor �eld. We multiply the equation for geodesi motion,

Du

�

d�

= 0; (6.74)

by the Killing vetor �

�

and use Leibniz's produt rule together with the de�nition of the

absolute derivative (6.32),

�

�

Du

�

d�

=

d

d�

(�

�

u

�

)�r

�

�

�

u

�

u

�

= 0: (6.75)

The seond term vanishes for a Killing vetor �eld �

�

, beause the Killing equation implies

the antisymmetry of r

�

�

�

. Hene the quantity �

�

u

�

is indeed onserved along any geodesis.

Example 6.2: Find all ten Killing vetor �elds of Minkowski spae and speify the orresponding

symmetries and onserved quantities.

The Killing equation r

�

�

�

+r

�

�

�

= 0 simpli�es in Minkowski spae to

�

�

�

�

+ �

�

�

�

= 0 : (6.76)

Taking one more derivative and using the symmetry of partial derivatives, we arrive at

�

�

�

�

�

�

+ �

�

�

�

�

�

= 2�

�

�

�

�

�

= 0 : (6.77)

Integrating this equation twie, we �nd

�

�

= !

�

�

x

�

+ a

�

: (6.78)

The matrix !

��

has to be antisymmetri in order to satisfy Eq. (6.76). Thus the Killing vetor �elds

are determined by ten integration onstants. They agree with the in�nitesimal generators of Lorentz

transformations, f. appendix B.3.

The four parameters a

�

generate translations, x

�

! x

�

+ a

�

, desribed by four Killing vetor �elds

whih an be hosen as the Cartesian basis vetors of Minkowski spae,

T

0

= �

t

; T

1

= �

x

; T

2

= �

y

; T

3

= �

z

:

For a partile with momentum p

�

= mu

�

moving along x

�

(�), the existene of a Killing vetor T

�

implies

d

d�

(T

�

� u) =

d

md�

(T

�

� p) = 0 ;

i.e. the onservation of the four-momentum omponent p

�

.

Consider next the ij (=spatial) omponents of the Killing equation. Three additional Killing vetors

are

J

1

= y�

z

� z�

y

; and yli permutations. (6.79)

2

Sine Eq. (6.73) is tensor equation, the previous Eq. (6.72) is also invariant under arbitrary oordinate

transformations, although it ontains only partial derivatives. This suggests that one an introdue the

derivative of an arbitrary tensor along a vetor �eld, alled Lie derivative, without the need for a onnetion.
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6. Spae-time symmetries

The existene of Killing vetors J

i

implies that J

i

� p is onserved along a geodesis of partile. But

J

1

� p = yp

z

� zp

y

= J

x

and thus the angular momentum around the origin of the oordinate system is onserved.

The other three omponents satisfy the 0� omponent of the Killing equations (!

0

1

= !

1

0

),

K

1

= t�

z

+ z�

t

; and yli permutations. (6.80)

The onserved quantity tp

z

� zE = onst: now depends on time and is therefore not as popular as

the previous ones. Its onservation implies that the enter of mass of a system of partiles moves with

onstant veloity v

�

= p

�

=E.

Global onservation laws An immediate onsequene of Eq. (6.61) is a ovariant form of

Gauss' theorem for vetor �elds. In partiular, we an onlude from loal urrent onser-

vation, r

�

j

�

= 0, the existene of a globally onserved harge. If the onserved urrent j

�

vanishes at in�nity, then we obtain also in a general spae-time

Z




d

4

x

p

jgj r

�

j

�

=

Z




d

4

x�

�

(

p

jgjj

�

) =

Z

�


dS

�

p

jgj j

�

= 0 : (6.81)

Thus the onservation of Noether harges of internal symmetries as the eletri harge, baryon

number, et., ontinues to hold in a urved spae-time.

Next we onsider the energy-momentum stress tensor as an example for a loally onserved

symmetri tensors of rank two. Now, the seond term in Eq. (6.64) prevents us to onvert

the loal onservation law into a global one. If the spae-time admits however a Killing �eld

�

�

, then we an form the vetor �eld P

�

= T

��

�

�

with

r

�

P

�

= r

�

(T

��

�

�

) = �

�

r

�

T

��

+ T

��

r

�

�

�

= 0 : (6.82)

Here, the �rst term vanishes sine T

��

is onserved and the seond beause T

��

is symmet-

ri, while r

�

�

�

is antisymmetri. Therefore the vetor �eld P

�

= T

��

�

�

is also onserved,

r

�

P

�

= 0, and we obtain thus the onservation of the omponent of the energy-momentum

vetor in diretion �.

Global energy onservation requires thus the existene of a time-like Killing vetor �eld. If

the metri is time-dependent, as e.g. in the ase of the expanding Universe, a time-like Killing

vetor �eld does not exist and the energy ontained in a \omoving" volume hanges with

time.

Summary

In a urved spae-time M we require a onnetion to ompare vetors at di�erent points.

The unique onnetion whih is symmetri and ompatible with the metri are the Christo�el

symbols. The symmetries of a spae-time M are determined by its Killing vetor �elds �

�

.

The momentum omponent parallel to �

�

of test partiles moving inM is onserved. Loally

onserved urrents lead in general only for vetor urrents to globally onserved harges. In the
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6.4. Symmetries of a general spae-time

ase of loally onserved tensors (as r

�

T

��

= 0), the global onservation of the orresponding

harges requires the existene of Killing vetor �elds.

Further reading

[LL80℄ introdues lassial �eld theory inluding general relativity. [Car03℄ presents a lear

introdution to di�erential geometry on a level aessible for physiists.
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7. Spin-1 and spin-2 �elds

We introdued �elds transforming as tensors under oordinate general transformations. Suh

�elds have integer spin and obey Bose-Einstein statistis. Therefore they an exist as maro-

sopi �elds and are thus andidates to desribe the eletri and the gravitational fore. Sine

both the eletri and the gravitational potential V (r) follow a 1=r law, we expet from our

disussion of the Yukawa potential that the two fores are mediated by massless partiles.

We will �nd later that no interating theory of massless partiles with spin s > 2 exists.

Therefore it is suÆient to onsider the two ases s = 1 and s = 2.

7.1. Tensor �elds

The momentum modes / e

�ikx

of massive �elds an be boosted to their rest-frame, where

k

�

= (m;0). In this frame, the total angular momentum redues to spin, and nonrelativisti

quantum mehanis is valid. Thus a �eld with spin s has 2s+ 1 spin or polarisation states.

On the other hand, we an determine the spin

1

s of a �eld alulating the angle s� it is

turned by a rotation R

ij

(�). If we onsider the transformation law of a tensor �eld of rank

n,

~

T

�

1

����

n

= �

�

1

�

1

� � ��

�

n

�

n

T

�

1

����

n

, for the speial ase of rotations, we see that the n fators

�(�) rotate some omponents of T

�

1

����

n

by the angle n�. Therefore a tensor �eld of rank n

has spin s = n. This implies that �elds with spin s � 1 ontain unphysial degrees of freedom:

For instane, a massive spin-1 �eld has three and a massive spin-2 �eld has �ve polarisation

states. On the other hand, a vetor �eld A

�

has four omponents, and a symmetri tensor

�eld h

��

of rank two has ten omponents in d = 4 spae-time dimensions. The purpose of a

relativisti wave equation is thus to impose the orret relativisti dispersion relation and to

selet the orret physial polarisation states in the hosen frame.

The �rst requirement is ful�lled if eah omponent of a free �eld �

a

satis�es the Klein-

Gordon equation. Additionally, we have to impose onstraints f

i

whih eliminate the redun-

dant omponents,

�

�+m

2

�

�

a

(x) = 0 ; and f

i

(�

a

(x)) = 0 : (7.1)

The reason for this mismath in the number of degrees of freedom is that in general a tensor

of rank n is reduible, i.e. it ontains omponents of rank < n. For instane, the trae h

�

�

of a

seond rank tensor transforms learly as a salar. Therefore we should hoose the onstraints

for massive �elds with spin s suh that all omponents with spin < s are eliminated.

Example 7.1: An objet whih ontains invariant subgroups with respet to a symmetry operation

is alled reduible. As example, onsider the reduible subgroups of a symmetri tensor h

��

of rank

two with respet to spatial rotations. Sine one an boost a massive partile into its rest frame, this

the relevant deomposition to �nd its spin states. We split h

��

into a salar h

00

, a vetor h

0i

and a

reduible tensor h

ij

,

h

��

=

�

h

00

h

0i

h

i0

h

ij

�

:

1

See the appendies B.3 and B.4 for a brief disussion.
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7.2. Vetor �elds

Then we deompose h

ij

again into its trae h

ii

and its traeless part h

i

j

� hÆ

i

j

=(d� 1). The latter has

6� 1 = 5 degrees of freedom in d = 4, as required for a massive spin-2 �eld.

This problem is more severe for massless �elds: We know from lassial eletrodynamis

that the photon has only two polarisation states, and in appendix B.4 it is shown that this

holds for massless �elds with any spin s > 0. The redundant degrees of freedom of massless

�elds an be onsistently eliminated only, if some redundany of the �eld variables exists whih

in turn leads to a loal symmetry of the �eld. In this hapter, we disuss the onsequenes of

this redundany alled gauge symmetry on the level of the wave equations and their solutions

for the photon and the graviton.

Tensor struture of the propagator We an gain some insight into the general tensor stru-

ture of the Feynman propagator for �elds with spin s > 0 using the de�nition of the 2-point

Green funtion as the time-ordered vauum expetation values of �elds. In general, we an

express an arbitrary solutions of a free spin s = 0; 1 and 2 �eld by its Fourier omponents as

�(x) =

Z

d

3

k

p

(2�)

3

2!

k

h

a(k)e

�i(!

k

t�kx)

+ h::

i

; (7.2)

A

�

(x) =

X

r

Z

d

3

k

p

(2�)

3

2!

k

h

a

r

(k)"

�

r

(k)e

�i(!

k

t�kx)

+ h::

i

; (7.3)

h

��

(x) =

X

r

Z

d

3

k

p

(2�)

3

2!

k

h

a

r

(k)"

��

r

(k)e

�i(!

k

t�kx)

+ h::

i

; (7.4)

where the momentum is on-shell, k

�

= (!

k

;k) and r labels the spin or polarisation states.

The onstraints f

i

= 0 are now onditions on the polarisation vetor and tensor, respetively,

whih depend on k. Proeeding as in the salar ase, we expet that e.g. the propagator for

a vetor �eld is given by

iD

��

F

(x) = h0jTfA

�

(x)A

��

(0)gj0i = (7.5)

=

X

r

Z

d

3

k

(2�)

3

2!

k

h

"

�

r

(k)"

��

r

(k)e

�ikx

#(x

0

) + "

�

r

(k)"

��

r

(k)e

ikx

#(�x

0

)

i

(7.6)

=

Z

d

4

k

(2�)

4

P

��

(k) e

�ikx

k

2

�m

2

+ i"

: (7.7)

The expression (7.6) is in line with the interpretation of the propagator as the probability

for the reation of a partile at x with any momentum k and polarisation r, its propagation

to x

0

followed by its annihilation. In the last step, we introdued the tensor P

��

(k) whih

orresponds to the sum over the polarisation states "

�

r

(k)"

��

r

(k). We will show that the

polarisation tensors are polynomials in the momentum k, and thus Eq. (7.6) shows that

P

��

(k) is even in the momentum. As a result, our disussion of ausality in the salar

ase applies for all tensor �eld, implying that these �elds seen as quantum �elds ommute.

Therefore the partiles desribed by these �elds satisfy Bose-Einstein statistis.

7.2. Vetor �elds
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7. Spin-1 and spin-2 �elds

Proa and Maxwell equations A massive vetor �eld A

�

has four omponents in d = 4

spae-time dimensions, while it has only 2s + 1 = 3 independent spin omponents. Corre-

spondingly, a four-vetor A

�

transforms under a rotation as (A

0

;A), i.e. it ontains a salar

and a three-vetor. Therefore we have to add to the four Klein-Gordon equations for A

�

one

onstraint whih eliminates A

0

: The only linear, Lorentz invariant possibility is

�

�+m

2

�

A

�

(x) = 0 and �

�

A

�

= 0 : (7.8)

In momentum spae, this translates into (k

2

� m

2

)A

�

(k) = 0 and k

�

A

�

(k) = 0. In the

rest frame of the partile, k

�

= (m;0), and the onstraint beomes A

0

= 0. Hene a �eld

satisfying (7.8) has only three spae-like omponents as required for a massive s = 1 �eld.

We an hoose the three polarisation vetors whih label the three degrees of freedom in the

rest frame e.g. as the Cartesian unit vetors, "

i

/ e

i

.

The two equations an be ombined into one equation alled Proa equation,

(�

��

�� �

�

�

�

)A

�

+m

2

A

�

= 0 : (7.9)

To show the equivalene of this equation with (7.8), we at with �

�

on it,

(�

�

����

�

)A

�

+m

2

�

�

A

�

= m

2

�

�

A

�

= 0 : (7.10)

Hene, a solution of the Proa equation ful�ls automatially the onstraint �

�

A

�

= 0 for

m

2

> 0. On the other hand, we an neglet the seond term in (7.9) for �

�

A

�

= 0 and obtain

the Klein-Gordon equation.

We now go over to the ase of a massless spin-1 �eld whih is desribed by the Maxwell

equations. In lassial eletrodynamis, the �eld-strength tensor F

��

is an observable quantity,

while the potential A

�

is merely a onvenient auxiliary quantity. From the de�nition

F

��

= �

�

A

�

� �

�

A

�

(7.11)

it is lear that F

��

is invariant under the transformations

A

�

(x)! A

0

�

(x) = A

�

(x)� �

�

�(x) : (7.12)

Thus A

0

�

(x) is for any �(x) physially equivalent to A

�

(x), leading to the same �eld-strength

tensor and thus e.g. to the same Lorentz fore on a partile. The transformations (7.12) are

alled gauge transformations. Note that the mass term m

2

A

�

in the Proa equation breaks

gauge invariane.

If we insert into the Maxwell equation the de�nition of the potential,

�

�

F

��

= �

�

(�

�

A

�

� �

�

A

�

) = �A

�

� �

�

�

�

A

�

= j

�

; (7.13)

we see that this expression equals the m = 0 limit of the Proa equation. Gauge invariane

allows us to hoose a potential A

�

suh that �

�

A

�

= 0. Suh a hoie is alled �xing the

gauge, and the partiular ase �

�

A

�

= 0 is denoted as Lorenz gauge. In the Lorenz gauge,

the wave equation simpli�es to

�A

�

= j

�

: (7.14)

Additionally, we an add to the potential A

�

any funtion �

�

� satisfying �� = 0. We an

use this freedom to set A

0

= 0. Inserting then a plane-wave A

�

/ "

�

e

ikx

into the free wave

90



7.2. Vetor �elds

equation, �A

�

= 0, we �nd that k is a null-vetor and that "

�

k

�

= �" � k = 0. Thus the

photon propagates with the speed of light, is transversely polarised and has two polarisation

states as expeted for a massless partile.

Closely onneted to the gauge invariane of eletrodynamis is the fat that its soure, the

eletromagneti urrent, is onserved. The antisymmetry of F

��

, whih is the basis for the

symmetry (7.12), leads also to �

�

�

�

F

��

= 0. Thus the Maxwell equation �

�

F

��

= j

�

implies

the onservation of the eletromagneti urrent j

�

,

�

�

�

�

F

��

= �

�

j

�

= 0 : (7.15)

Propagator for massive spin-1 �elds The propagator D

��

for a massive spin-1 �eld is

determined by

�

�

��

(�+m

2

)� �

�

�

�

�

D

��

(x) = Æ

�

�

Æ(x) : (7.16)

Inserting the Fourier transformation of the propagator and of the delta funtion gives

��

�k

2

+m

2

�

�

��

+ k

�

k

�

�

D

��

(k) = Æ

�

�

: (7.17)

We will apply the tensor method to solve this equation: In this approah, we use �rst all

tensors available in the problem to onstrut the required tensor of rank 2. In the ase at

hand, we have at our disposal only the momentum k

�

of the partile|whih we an ombine

to k

�

k

�

|and the metri tensor �

��

. Thus the tensor struture of D

��

(k) has to be of the

form

D

��

(k) = A�

��

+Bk

�

k

�

(7.18)

with two unknown salar funtions A(k

2

) and B(k

2

). Inserting this ansatz into (7.17) and

multiplying out, we obtain

�

(�k

2

+m

2

)�

��

+ k

�

k

�

�

[A�

��

+Bk

�

k

�

℄ = Æ

�

�

; (7.19a)

�Ak

2

Æ

�

�

+Am

2

Æ

�

�

+Ak

�

k

�

+Bm

2

k

�

k

�

= Æ

�

�

; (7.19b)

�A(k

2

�m

2

)Æ

�

�

+ (A+Bm

2

)k

�

k

�

= Æ

�

�

: (7.19)

In the last step, we regrouped the LHS into the two tensor strutures Æ

�

�

and k

�

k

�

. A

omparison of their oeÆients gives then A = �1=(k

2

�m

2

) and

B = �

A

m

2

=

1

m

2

(k

2

�m

2

)

:

Thus the massive spin-1 propagator follows as

D

��

F

(k) =

��

��

+ k

�

k

�

=m

2

k

2

�m

2

+ i"

: (7.20)

Note that there is a sign ambiguity, sine we ould have added a minus sign to the Proa

equation.

Next we hek this sign and our laim that the propagator D

ab

F

(k) of spin s > 0 �elds an

be obtained as sum over their polarisation states "

(r)

a

times the salar propagator �(k). As

the theory is Lorentz invariant, we an hoose the frame most onvenient for this omparison
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7. Spin-1 and spin-2 �elds

whih is the rest-frame of the massive partile. Then k

�

= (m;0) and the three polarisation

vetors an be hosen as the Cartesian basis vetors. Comparing then

� �

��

+ k

�

k

�

=m

2

=

0

B

B

�

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

C

C

A

=

X

r

"

�(r)

"

�(r)

; (7.21)

shows that both methods agree and an be used to derive the Feynman propagator. In the

latter approah, working from the RHS to the LHS of Eq. (7.21), we derive �rst the expression

valid for the Feynman propagator in a spei� frame. Then we have to rewrite the expression

in an invariant way using the relevant tensors, here �

��

and k

�

k

�

. Moreover, Eq. 7.21 shows

that we have hosen the right sign for the propagator (7.20).

Propagator for massless spin-1 �elds As we have seen, we an set m = 0 in the Proa

equation and obtain the Maxwell equation. The orresponding limit of the propagator (7.20)

leads however to an ill-de�ned result. As we know that the number of degrees of freedom

di�ers between the massive and the massless ase, this is not too surprising. If we try next

the limit m! 0 in Eq. (7.19), then we �nd

�Ak

2

Æ

�

�

+Ak

�

k

�

= Æ

�

�

: (7.22)

This equation has for arbitrary k with A = �1=k

2

and A = 0 no solution. Moreover, the

funtion B is undetermined. We an understand this physially, sine for a massless �eld

urrent onservation holds. But �

�

J

�

(x) = 0 implies k

�

J

�

(k) = 0 and thus the k

�

k

�

term

does not inuene physial quantities: In physial measurable quantities, as e.g. W [J ℄, the

propagator is always mathed between onserved urrents, and the longitudinal part k

�

k

�

drops out.

We now try to onstrut the photon propagator from its sum over polarisation states.

First we onsider a linearly polarised photon with polarisation vetors "

(r)

�

lying in the plane

perpendiular to its momentum vetor k. If we perform a Lorentz boost on "

(1)

�

, we will �nd

~"

(1)

�

= �

�

�

"

(1)

�

= a

1

"

(1)

�

+ a

2

"

(2)

�

+ a

3

k

�

; (7.23)

where the oeÆients a

i

depend on the diretion � of the boost. Thus, in general the po-

larisation vetor will not be anymore perpendiular to k. Similarly, if we perform a gauge

transformation

A

�

(x)! A

0

�

(x) = A

�

(x)� �

�

�(x) (7.24)

with

�(x) = �i� exp(�ikx) + h:: ; (7.25)

then

A

0

�

(x) = ("

�

+ �k

�

) exp(�ikx) + h:: = "

0

�

exp(�ikx) + h:: (7.26)

Choosing e.g. a photon propagating in z diretion, k

�

= (!; 0; 0; !), we see that the gauge

transformation does not a�et the transverse omponents k

x

and k

y

. Thus only the ompo-

nents of "

�

transverse to k an have physial signi�ane. On the other hand, the time-like

and longitudinal omponents depend on the arbitrary parameter � and are therefore unphys-

ial. In partiular, they an be set to zero by a gauge transformation: First, "

0

�

k

0�

= 0 implies
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(again for a photon propagating in z diretion) "

0

0

= �"

0

3

. From "

0

3

= "

3

+ �!, we see that

� = "

3

=! sets "

0

3

= �"

0

0

= 0. Thus the transformation law (7.23) for the polarisation vetor

of a massless spin-1 partiles requires the existene of the gauge symmetry (7.24). The gauge

symmetry in turn implies that the massless spin-1 partile ouples only to onserved urrents.

We an exploit the transformation law "

0

�

= "

�

+�k

�

as follows: Sine the dependene on k

�

is nonphysial, any Feynman amplitudeA = "

�

A

�

has to vanish, if we replae the polarisation

vetor "

�

of an external photon by its four-momentum, k

�

A

�

= 0. This quantum analogue of

lassial urrent onservation k

�

J

�

(k) = 0 is alled \Ward identity." As an example for its

appliation, we derive a onvenient expression for the propagator of a massless vetor partile.

The two polarisation vetors of a photon should satisfy the normalisation "

(a)�

�

"

�(b)

= Æ

ab

.

For a linearly polarised photon propagating in z diretion, k

�

= (!; 0; 0; !), the polarisation

vetors are "

(1)

�

= Æ

1

�

and "

(2)

�

= Æ

2

�

. If we perform the sum over the two polarisation states,

we �nd

X

r

"

(r)�

�

"

(r)

�

= diagf0; 1; 1; 0g : (7.27)

If we try to rewrite this expression in an invariant way using �

��

and k

�

k

�

=k

2

, we fail: We

annot anel at the same time �

00

= +1 and �

33

= �1 by k

�

k

�

=k

2

. We introdue therefore

additionally the momentum vetor

~

k

�

= (!; 0; 0;�!) obtained by a spatial reetion from

k

�

. This allows us to write the polarisation sum as an invariant tensor expression,

X

r

"

(r)�

�

"

(r)

�

= ��

��

+

k

�

~

k

�

+

~

k

�

k

�

k

~

k

� ��

��

: (7.28)

Current onservation, k

�

J

�

(k) = 0, implies that the seond term in the polarisation sum does

not ontribute to physial observables. For the same reason, we an add an arbitrary term

�k

�

k

�

. We use this freedom to eliminate the

~

k dependene and to set

J

��

 

X

r

"

(r)�

�

"

(r)

�

!

J

�

= J

��

�

��

��

+ (1� �)

k

�

k

�

k

2

�

J

�

: (7.29)

Now we an read o� the photon propagator as

D

��

F

(k) =

��

��

+ (1� �)k

�

k

�

=k

2

k

2

+ i"

: (7.30)

A spei� hoie of the parameter � alled gauge �xing parameter orresponds to the hoie

of a gauge in Eq. (7.13). In partiular, the Feynman gauge � = 1, whih leads to a form

of the propagator often most onvenient in alulations, orrespond to the Lorenz gauge

in Eq. (7.13). In this gauge,

P

3

r=0

"

(r)�

�

"

(r)

�

= diagf�1; 1; 1; 1g: the propagator ontains

nonphysial degrees of freedom, time-like and longitudinal photons, whih ontributions anel

however in physial observables. Similarly, for all other values � the propagator is expliitly

Lorentz invariant but ontains unphysial degrees of freedom. We will see later that it is

a general feature of gauge theories as eletrodynamis that we have to hoose between a

ovariant gauge whih introdues unphysial degrees of freedom and a gauge whih ontains

only the transverse degree of freedom but selets a spei� frame.
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Repulsive Coulomb potential by vetor exhange We onsider as in the salar ase two

stati point harges as external soures, but use now a vetor urrent J

�

= J

�

1

(x

1

) + J

�

2

(x

2

).

Sine J

�

= (�; j), only the zero omponent, J

�

i

= Æ

�

0

Æ(x�x

i

), ontributes for a stati soure

to W [J ℄. Moreover, we an neglet the longitudinal part k

�

k

�

=m

2

of the propagator. This

is justi�ed, sine the onept of a potential energy makes only sense in the non-relativisti

limit, i.e. for V � m or equivalently r � 1=m. Hene

W

12

[J ℄ = �

1

2

Z

d

4

xd

4

x

0

Z

d

4

k

(2�)

4

J

�

1

(x)

��

��

e

�ik(x�x

0

)

k

2

�m

2

+ i"

J

�

2

(x

0

) (7.31)

=

1

2

Z

dtdt

0

Z

d

4

k

(2�)

4

e

�ik(x�x

0

)

k

2

�m

2

+ i"

: (7.32)

Comparing with our earlier result for salar exhange in Eq. (3.37), it beomes lear without

further alulation that spin-1 exhange between equal harges is repulsive. In the limit m!

0, we obtain the Coulomb potential with the orret sign for eletromagneti interations.

7.3. Gravity

Wave equation From Newton's law we know that gravity is fundamentally attrative and

of long range. Thus the gravitational fore has to be mediated by a massless partile whih

an not be a spin s = 1 partile. Analog to the eletri �eld E = �r� we an introdue a

lassial gravitational �eld g as the gradient of the gravitational potential, g = �r�. We

obtain then r � g(x) = �4�G�(x) and as Poisson equation

��(x) = 4�G�(x) ; (7.33)

where � is the mass density, � = dm=d

3

x.

Speial relativity gives us two hints how we should transfer this equation into a relativis-

ti framework: First, the Laplae operator � on the LHS is the  ! 1 limit of minus the

d'Alembert operator �. Seond, the RHS should be the v= ! 0 limit of something inor-

porating not only the mass density but all types of energy densities. To proeed, onsider

�rst how the mass density � transforms under a Lorentz transformation: An observer moving

with the speed � relative to the rest frame of the matter distribution � measures the energy

density �

0

= dm=(

�1

dV ) = 

2

�, with  = 1=

p

1� �

2

. This is the transformation law of

the 00 omponent of a tensor of rank two and � as 00 omponent, alas the energy-momentum

stress tensor T

��

.

Thus the �eld equation for a purely salar theory of gravity would be

�� = �4�GT

�

�

: (7.34)

Suh a theory predits no oupling between photons and gravitation, beause the trae of the

stress tensor of the eletromagneti �eld vanishes, T

�

�

= 0, and is therefore in ontradition

to the observed gravitational lensing of light. A purely vetor theory for gravity fails too,

sine it predits not attration but repulsion of two masses. Hene we are fored to onsider

a symmetri spin-2 �eld

�

h

��

as mediator of the gravitational fore; its soure is the energy-

momentum stress tensor

�

�

h

��

= �2�T

��

: (7.35)
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The normalisation onstant � / G

N

has to be determined suh that in the non-relativisti

limit the Poisson equation (7.33) holds.

Let us onsider as a warm-up �rst the ase of a massive partile: A symmetri, massive

spin-2 �eld has ten independent omponents, but only 2s + 1 = 5 physial spin degrees of

freedom. Thus we have to impose �ve onstraints additional to the soure-free equation

(�+m

2

)

�

h

��

= 0 : (7.36)

Proeeding as in the s = 1 ase, (7.8), we use as onstraint �

�

�

h

��

= 0 whih provides now

four onditions. We an use them to set

�

h

0�

= 0. We obtain the missing �fth onstraint

subtrating the trae

�

h

ii

whih transforms as a salar from

�

h

ij

.

We move now to the massless ase onsidering a plane wave

�

h

��

= "

��

exp(�ikx). In

analogy to the photon ase, we expet that also the graviton has only two, transverse degrees

of freedom. If we hoose the plane wave propagating in the z diretion, k = ke

z

, then we

expet that the polarisation tensor an be expressed as

"

��

=

0

B

B

�

0 0 0 0

0 "

11

"

12

0

0 "

12

�"

11

0

0 0 0 0

1

C

C

A

: (7.37)

Here we used that the polarisation tensor has to be symmetri and traeless. The hoie

(7.37) is alled the transverse traeless (TT) gauge.

Metri perturbations as a tensor �eld In the ase of the photon, we ould redue the de-

grees of freedom from four to two, beause of the redundany implied by the gauge symmetry

of eletromagnetism. Moreover, the gauge symmetry lead to the onservation of the eletro-

magneti urrent. The two obvious questions to address next are whih symmetry and whih

onservation law are onneted to gravitation.

The seond question is the simpler one, sine we know already that in at spae �

�

T

��

= 0

holds. Thus for gravity energy-momentum onservation will play the role of urrent onserva-

tion, implying that a gravitational wave is transverse, k

�

T

��

(k) = 0. In order to answer the

�rst question, we have to onsider the properties of h

��

. The equivalene priniple implies

that all test-partiles move along the same world-line, if they are released at the same initial

point and move only under the inuene of the gravitational fore. This universality moti-

vated Einstein to desribe the e�et of gravity by the urvature of spae-time. We assoiate

therefore the symmetri tensor �eld

2

h

��

with small perturbations around the Minkowski

metri �

��

,

g

��

= �

��

+ "h

��

; "� 1 : (7.38)

We hoose a Cartesian oordinate system x

�

and ask ourselves whih transformations are om-

patible with the splitting (7.38) of the metri. If we onsider global Lorentz transformations

�

�

�

, then x

0�

= �

�

�

x

�

, and the metri tensor transforms as

g

0

��

= �

�

�

�

�

�

g

��

= �

�

�

�

�

�

(�

��

+ h

��

) = �

��

+�

�

�

�

�

�

h

��

= �

0

��

+�

�

�

�

�

�

h

��

: (7.39)

2

We drop the bar, antiipating that

�

h

��

may di�er from h

��

in Eq. (7.35). We will derive their relation,

�

h

��

� h

��

�

1

2

�

��

h

�

�

, in setion 18.3.
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Sine h

0

��

= �

�

�

�

�

�

h

��

, we see that global Lorentz transformations respet the splitting

(7.38). Thus h

��

transforms as a rank-2 tensor under global Lorentz transformations. We an

view therefore the perturbation h

��

as a symmetri rank-2 tensor �eld de�ned on Minkowski

spae that satis�es the wave equation (7.35), similar as the photon �eld is a rank-1 tensor

�eld ful�lling Maxwell's equations.

The splitting (7.38) is however learly not invariant under general oordinate transforma-

tions, as they allow e.g. the �nite resaling g

��

! 
g

��

. We restrit therefore ourselves to

in�nitesimal oordinate transformations,

�x

�

= x

�

+ "�

�

(x

�

) (7.40)

with "� 1. Then the Killing equation (6.72) simpli�es to

h

0

��

= h

��

+ �

�

�

�

+ �

�

�

�

; (7.41)

beause the term �

�

�

�

h

��

is quadrati in the small quantities "h

��

and "�

�

and an be

negleted. Reall that the �

�

�

�

h

��

term appeared, beause we ompared the metri tensor at

di�erent points. In its absene, it is more fruitful to view Eq. (7.41) not as a oordinate but as

a gauge transformation analogous to (7.12): In this interpretation, we stay in Minkowski spae

and the �elds h

0

��

and h

��

desribe the same physis, sine the gravitational �eld equations

do not �x uniquely h

��

for a given soure. In momentum spae, Eq. (7.41) spei�es how the

polarisation tensor transforms under gauge transformations,

"

0

��

= "

��

+ �

�

k

�

+ �

�

k

�

: (7.42)

We an use this gauge freedom to eliminate four omponents of "

��

. After that, we an

perform another gauge transformation (7.42) using any four funtions �

�

satisfying the wave

equation ��

�

= 0, eliminating thereby four additional omponents. This justi�es the use of

the TT gauge.

Graviton propagator We follow the same approah as in the derivation of the photon prop-

agator. For a graviton propagating in z diretion, k

�

= (!; 0; 0; !), we hoose as the two po-

larisation states "

(1)

��

setting "

11

= 1=

p

2 and "

12

= 0 and "

(2)

��

setting "

11

= 0 and "

12

= 1=

p

2,

respetively. They satisfy the normalisation "

(a)

��

"

��(b)

= Æ

ab

. Now we should perform the sum

over the two polarisation states,

P

r

"

(r)

��

"

(r)

��

, and express the result as a linear ombination of

�

��

and k

�

~

k

�

+

~

k

�

k

�

. A straightforward way to do this is to ombine �rst the ten independent

quantities of the symmetri tensors in ten-dimensional vetors, "

��

! E

a

, �

��

! N

a

, and

k

�

~

k

�

+

~

k

�

k

�

! K

a

, to alulate the tensor produts of these vetors and to ompare then

the resulting 10 
 10 matries. An alternative, shorter way is to use the requirement that

the propagator is transverse in all indies, k

�

P

r

"

(r)

��

"

(r)

��

= : : : = k

�

P

r

"

(r)

��

"

(r)

��

= 0, beause

of energy-momentum onservation, �

�

T

��

(x) = 0. This implies that the graviton propagator

should be omposed of the projetion operators �

��

used for the photon (f. Eq. (7.28)) as

follows

X

r

"

(r)

��

"

(r)

��

= A�

��

�

��

+B [�

��

�

��

+ �

��

�

��

℄ : (7.43)

The last two terms have a ommon oeÆient, sine the LHS is invariant under exhanges

of � $ � or � $ �. We �x A and B by evaluating this expression for two sets of indies.
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Sine the only non-zero elements of �

��

are �

11

= �

22

= �1, we obtain hoosing e.g. f1212g

as indies

X

r

"

(r)

12

"

(r)

12

=

1

2

= B�

11

�

22

and thus B = 1=2. Similarly, it follows A = �1=2 hoosing e.g. as indies f1111g. Thus we

found|with surprising ease|the polarisation sum required for the graviton propagator,
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1
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: (7.44)

We ontinue to proeed in the same way as for the photon. Energy-momentum onservation,

k

�

T

��

(k) = 0, implies that the k

�

~

k

�

+

~

k

�

k

�

term in �

��

does not ontribute to physial

observables. We drop therefore again all terms proportional to the graviton momentum k

�

,

T

���
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r

"

(r)�

��
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!
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��
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�
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: (7.45)

Thus the graviton propagator in the Feynman gauge is given by

D

��;��

F

(k) =

1

2

(��

��

�

��

+ �

��

�

��

+ �

��

�

��

)

k

2

+ i"

: (7.46)

Other gauges are obtained by the replaement �

��

! �

��

� (1 � �)k

�

k

�

=k

2

. In the ase of

gravity, the Feynman gauge � = 1 is most often alled harmoni gauge, but also the names

Hilbert, Loren(t)z, de Donder and onfusingly many others are in use.

Attrative potential by spin-2 exhange We onsider now the potential energy reated by

two point masses as external soures interating via a tensor urrent T

��

= T

��

1

(x

1

)+T
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2

(x

2

).

Speialising to stati soures, only the zero-zero omponent, T
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i

= Æ

�

0

Æ

�
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Æ(x�x
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), ontributes

to W [J ℄. Hene
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) : (7.47)

Looking at the numerator of the graviton propagator, we �nd �1 + 1 + 1 = 1 > 0. Thus

spin-2 exhange is attrative, as required for the fore mediating gravity. Comparing

Eq. (7.47) to Newton's gravitational potential, we see that the graviton ouples with the

strength (8�G)

1=2

� �

1=2

to the stress tensor T

��

of matter, f. problem 7.??.

Heliity We determine now how a metri perturbation h

��

transforms under a rotation with

the angle �. We hoose the wave propagating in z diretion, k = ke

z

, the TT gauge, and the

rotation in the xy plane. Then the general Lorentz transformation �

�

�

beomes

�

�

�

=

0

B

B

�

1 0 0 0

0 os� sin� 0

0 � sin� os� 0

0 0 0 1

1

C

C

A

: (7.48)

97



7. Spin-1 and spin-2 �elds

Sine k = ke

z

and thus �

�

�

k

�

= k

�

, the rotation a�ets only the polarisation tensor. We

rewrite "

0

��

= �

�

�

�

�

�

"

��

in matrix notation, "

0

= �"�

T

. It is suÆient to perform the

alulation for the xy sub-matries. The result after introduing irular polarisation states

"

�

= "

11

� i"

12

is

"

0��

�

= exp(�2i�)"

��

�

: (7.49)

The same alulation for a irularly polarised photon gives "

0�

�

= exp(�i�)"

�

�

. Any plane

wave  whih is transformed into  

0

= e

�ih�

 by a rotation of an angle � around its prop-

agation axis is said to have heliity h. Thus if we say that a photon has spin 1 and a

graviton has spin 2, we mean more preisely that eletromagneti and gravitational plan

waves have heliity one and two, respetively. Doing the same alulation in an arbitrary

gauge, one �nds that the remaining, unphysial degrees of freedom transform as heliity one

and zero (problem 7.??). In general, a tensor �eld of rank (n;m) ontains states with heliity

h = 0; : : : ; n+m. Thus we an rephrase the statement that tensor �elds follow Bose-Einstein

statistis as �elds with integer heliity (or spin) are bosons.

7.4. Soure of gravity

The dynamial energy-momentum tensor If we ompare the wave equation for a photon

and a graviton, then there is an important di�erene: The former is in the lassial limit exat.

The photon arries no harge and does not ontribute to its soure term. As a result, the

wave equation is linear. In ontrast, a gravitational wave arries energy-momentum and ats

thus as its own soure. The LHS of (7.35) should be therefore the limit of a more ompliated

equation, whih we write symbolially as G

��

= ��T

��

. The tensor G

��

should be given as

the variation of an appropriate ation of gravity, alled the Einstein-Hilbert ation S

EH

, with

respet to the metri tensor g

��

. Even without knowing the ation S

EH

, we an derive an

important onlusion: If the total ation is the sum of S

EH

and the ation S

m

inluding all

relevant matter �elds,

S =

1

2�

S

EH

+ S

m

;

then the variation of the matter ation S

m

should give the stress tensor as the soure of the

gravitational �eld,

2

p

jgj

ÆS

m

Æg

��

= �T

��

: (7.50)

Here we inluded a fator

p

jgj beause T

��

is a density, while the fator 2 is required to

obtain agreement with the usual de�nition of T

��

. Sine the presene of gravity implies a

urved spae-time, the replaements f�

�

; �

��

;d

4

xg ! fr

�

; g

��

;d

4

x

p

jgjg have to performed

in S

m

before the variation is performed. The tensor T

��

de�ned by this equation is alled

dynamial energy-momentum stress tensor. In order to show that this de�nition makes sense,

we have to prove that the tensor is loally onserved, r

�

T

��

= 0, and we have to onvine

ourselves that this de�nition reprodues the standard results we know already.

Conservation of the stress tensor We start by proving that the dynamial energy-

momentum tensor de�ned by Eq. (7.50) is loally onserved. We onsider the hange of
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7.A. Appendix: Large extra dimensions and massive gravity

the matter ation under a variation of the metri

3

,

ÆS

m

= �

1

2

Z




d

4

x

p

jgj T

��

Æg

��

=

1

2

Z




d

4

x

p

jgj T

��

Æg

��

: (7.51)

We allow in�nitesimal but otherwise arbitrary oordinate transformations,

�x

�

= x

�

+ �

�

(x) : (7.52)

For the resulting hange in the metri Æg

��

we an use Eqs. (6.68b) and (6.69),

Æg

��

= r

�

�

�

+r

�

�

�

: (7.53)

We use that T

��

is symmetri and that general ovariane guarantees that ÆS

m

= 0 for a

oordinate transformation,

ÆS

m

= �

Z




d

4

x

p

jgj T

��

r

�

�

�

= 0 : (7.54)

Next we apply the produt rule,

ÆS

m

= �

Z




d

4

x

p

jgj (r

�

T

��

)�

�

+

Z




d

4

x

p

jgj r

�

(T

��

�

�

) = 0 : (7.55)

The seond term is a four-divergene and thus a boundary term that we an neglet. The

remaining �rst term vanishes for arbitrary �

�

only, if the energy-momentum tensor is on-

served,

r

�

T

��

= 0 : (7.56)

Hene the loal onservation of energy-momentum is a onsequene of the general ovariane of

the gravitational �eld equations, in the same way as urrent onservation follows from gauge

invariane in eletromagnetism. You should onvine yourself that the dynamial energy-

momentum stress tensor evaluated for the examples of the Klein-Gordon and the Maxwell

�eld agrees with the symmetrised anonial stress tensor, f. problem 7.??.

7.A. Appendix: Large extra dimensions and massive gravity

Large extra dimensions As mentioned in hapter 5, quantum orretions break the onformal

invariane of string theory exept we live in a world with d = 10 or 26 spae-time dimensions. There

are two obvious answers to this result: First, one may onlude that string theory is disproven by

nature or, seond, one may adjust reality. Consisteny of the seond approah with experimental data

ould be ahieved, if the d � 4 dimensions are ompati�ed with a suÆiently small radius R, suh

that they are not visible in experiments sensible to wave-lengths �� R.

Let us hek what happens to a salar partile with mass m, if we add a �fth ompat dimension

y. The Klein-Gordon equation for a salar �eld �(x

�

; y) beomes

(�

5

+m

2

)�(x

�

; y) = 0 (7.57)

3

We should view g

��

(and not g

��

) as \the" gravitational �eld: In the Lagrangian of a point partile or the

line-element, the oordinates x

�

are ontrated with g

��

. Having understood this point, we use simply the

seond relation in (7.51) in the future.
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with the �ve-dimensional d'Alembert operator�

5

= ���

2

y

. The equation an be separated, �(x

�

; y) =

�(x

�

)f(y), and sine the �fth dimension is ompat, the spetrum of f is disrete. Assuming periodi

boundary onditions, f(x) = f(x+R), gives

�(x

�

; y) = �(x

�

) os(n�y=R) : (7.58)

The energy eigenvalues of these solutions are !

2

k;n

= k

2

+m

2

+(n�=R)

2

. From a four-dimensional point

of view, the term (n�=R)

2

appears as a mass term, m

2

n

= m

2

+ (n�=R)

2

. Sine we usually onsider

states with di�erent masses as di�erent partiles, we see the �ve-dimensional partile as a tower of

partiles with mass m

n

but otherwise idential quantum numbers. Suh theories are alled Kaluza-

Klein theories, and the tower of partiles Kaluza-Klein partiles. If R� �, where � is the length-sale

experimentally probed, only the n = 0 partile is visible and physis appears to be four-dimensional.

Sine string theory inludes gravity, one often assumes that the radius R of the extra-dimensions is

determined by the Plank length, R = 1=M

Pl

= (8�G

N

)

1=2

� 10

�34

m. In this ase it is diÆult to

imagine any observational onsequenes of the additional dimensions. More interesting is the possibility

that some of the extra dimensions are large,

R

1;:::;Æ

� R

Æ+1;:::;6

= 1=M

Pl

:

Sine the 1=r

2

behaviour of the gravitational fore is not tested below d

�

�mm sales, one an

imagine that large extra dimensions exists that are only visible to gravity: Relating the d = 4 and

d > 4 Newton's law F �

m

1

m

2

r

2+Æ

at the intermediate sale r = R, we an derive the \true" value of the

Plank sale in this model: Mathing of Newton's law in 4 and 4 + Æ dimensions at r = R gives

F (r = R) = G

N

m

1

m

2

R

2

=

1

M

2+Æ

D

m

1

m

2

R

2+Æ

: (7.59)

This equation relates the size R of the large extra dimensions to the true fundamental sale M

D

of

gravity in this model,

G

�1

N

= 8�M

2

Pl

= R

Æ

M

Æ+2

D

; (7.60)

while Newton's onstant G

N

beomes just an auxiliary quantity useful to desribe physis at r

>

�

R.

(You may ompare this to the ase of weak interations where Fermi's onstant G

F

/ g

2

=m

2

W

is

determined by the weak oupling onstant g and the mass m

W

of the W -boson).

Next we ask, if M

D

� TeV is possible, i.e. if one may test suh theories at aelerators as LHC?

Inserting the measured value of G

N

and M

D

= 1TeV in Eq. (7.60) we �nd the required value for the

size R of the large extra dimension as 10

13

m and 0:1 m for Æ = 1 and 2, respetively, Thus the ase

Æ = 1 is exluded by the agreement of the dynamis of the solar system with 4-dimensional Newtonian

physis. The ases Æ � 2 are possible, beause Newton's law is experimentally tested only for sales

r

>

�

1mm.

Massive gravity Theories with extra dimensions ontain often from our 4-dimensional point of view

a Kaluza-Klein tower of massive gravitons. Suh modi�ed theories of gravity have found large interest

sine one may hope to �nd an alternative explanation for the aelerated expansion of the Universe.

A striking di�erene between the spin-2 and the spin-0 and 1 ases is that the limit m ! 0 of the

massive spin-2 propagator and thus of the potential energy V

12

is not smooth: In problem 7.??, you

are asked to derive the massive spin-2 propagator. As result, you should �nd

D

��;��

F

(k) =

1

2

�

2

3

G

��

G

��

+G

��

G

��

+G

��

G

��

k

2

�m

2

+ i"

; (7.61)

where

G

��

(k) = ��

��

+ k

�

k

�

=m

2

(7.62)

is the polarisation tensor for a massive spin-1 partile. Thus the nominator in the massive spin-

2 propagator is as in the massless ase a linear ombination of the tensor produts of two spin-1
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7.A. Appendix: Large extra dimensions and massive gravity

polarisation tensors. However, the oeÆients of the �rst term di�er and thus the m ! 0 limit of

the massive propagator does not agree with the massless ase. In partiular, the di�erene annot be

ompensated by a resaling of the oupling onstant

~

G

N

, beause it is not an overall fator: Imagine for

instane that we determine the value of

~

G

N

by alulating the potential energy of two non-relativisti

soures like the Sun and the Earth. This requires in massive gravity|for an arbitrarily small graviton

mass|a gravitational oupling onstant

~

G

N

a fator 3=4 smaller than in the massless ase. Having

�xed

~

G

N

, we an predit the deetion of light by the Sun. Sine the �rst term in the propagator

ouples the traes T

�

�

of two soures, it does not ontribute to the deetion of light. As a result of

the redued oupling strength, the deetion angle of light by the Sun dereases by the same fator

and any non-zero graviton mass would be in onit with observations.

When this result was �rst derived in 1970, its authors explained this disontinuity by the di�erent

number of degrees of freedom in the two theories: Even if the Compton wave-length of a massive

graviton is larger than the observable size of the Universe, and thus the Yukawa fator exp(�mr)

indistinguishable from one, the additional spin states of a massive graviton may hange physis. Two

years later, Vainshtein realised that perturbation theory may break down in massive gravity and thus

a alulation using one-graviton exhange is not reliable. More preisely, a theory of massive gravity

ontains an additional length sale R

V

= (GM=m

4

)

1=5

and for distanes r � R

V

the theory has to

be solved exatly.

Summary

Tensor �elds satisfy seond-order di�erential equations; their propagators are quadrati in p

and thus even funtions of x. As a result, tensor �elds desribe bosons, i.e. their �eld operators

are ommuting operators. Massless �elds have only two, transverse degrees of freedom. A

Lorentz invariant desription for suh �elds is only possible, if the remaining number of non-

physial degrees of freedom is redundant. This redundany implies that �elds onneted by

a gauge transformation are equivalent and desribe the same physial system. In the ase of

photons, the gauge symmetry implies that they ouple to a onserved urrent, in the ase of

gravitons that they ouple to the onserved energy-momentum onservation tensor.

Further reading

[Mag07℄ disusses in detail (massive) gravity as a spin-2 �eld in Minkowski spae. The history

of the gauge priniple is reviewed by [JO01℄.
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8. Fermions and the Dira equation

Up to now we have disussed �elds whih transform as tensors under Lorentz transformations.

Suh partiles have integer spin or heliity. Sine we an boost massive partiles into their

rest-frame, we an use our knowledge of non-relativisti quantum mehanis to antiipate

that additional representations of the rotation group SO(3) and thus also of the Lorentz

group SO(1; 3) exist whih orrespond to partiles with half-integer spin. Suh partiles are

desribed by anti-ommuting variables what is the fundamental reason for the Pauli priniple

and thus the stability of matter.

8.1. Spinor representation of the Lorentz group

In order to introdue spinors we have to �nd the orresponding representation of the Lorentz

group. As always it is simpler to work at linear order, whih is in this ase the Lie algebra.

The Lie algebra of the Poinar�e group

1

ontains ten generators, the three generators J of

rotations, the three generatorsK of Lorentz boosts and the four generators T of translations.

The Killing vetor �elds V of Minkowski spae generate these symmetries, and therefore the

generators are given by the Killing vetor �elds. Thus we an use Eqs. (6.79) and (6.80) to

alulate their ommutation relations as (problem 8.??)

[J

i

; J

j

℄ = i"

ijk

J

k

; (8.1a)

[J

i

;K

j

℄ = i"

ijk

K

k

; (8.1b)

[K

i

;K

j

℄ = �i"

ijk

J

k

: (8.1)

Here we followed physiist's onvention and identi�ed iV as the generators, so that they are

Hermitian. Moreover, we restrit our attention to the Lorentz group whih is suÆient to

derive the onept of a Weyl spinor. Note that the algebra of the boost generators K is not

losed. Thus in ontrast to rotations, boosts do not form a subgroup of the Lorentz group.

The struture onstants in all these ommutation relations are �"

ijk

, suggesting that we

an rewrite the Lorentz group as a produt of two SU(2) fators. We try to deouple the two

sets of generators J and K by introduing two non-Hermitian ladder operators

J

�

=

1

2

(J � iK) : (8.2)

Their ommutations relations are

[J

+

i

; J

+

j

℄ = i"

ijk

J

+

k

; (8.3a)

[J

�

i

; J

�

j

℄ = i"

ijk

J

�

k

; (8.3b)

[J

+

i

; J

�

j

℄ = 0 i; j = 1; 2; 3 : (8.3)

1

See the Appendies B.3 and B.4 for a brief review of the Poinar�e group.
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8.1. Spinor representation of the Lorentz group

Thus J

�

and J

+

ommute with eah other and generate eah a SU(2) group. The Lorentz

group is

2

therefore � SU(2) 
 SU(2), and states transforming in a well-de�ned way are la-

belled by a pair of angular momenta, (j

�

; j

+

), orresponding to the eigenvalues of J

�

z

and

J

+

z

, respetively. From our knowledge of the angular momentum algebra in nonrelativis-

ti quantum mehanis, we onlude that the dimension of the representation (j

�

; j

+

) is

(2j

�

+ 1)(2j

+

+ 1). Beause of J = J

�

+ J

+

, the representation (j

�

; j

+

) ontains all possi-

ble spins j in integer steps from jj

�

� j

+

j to j

�

+ j

+

.

The representation (0; 0) has dimension one, transforms trivially, J = K = 0, and orre-

sponds therefore to the salar representation. The two smallest non-trivial representations are

J

+

= 0, i.e. (j

�

; 0) with J

(1=2)

= �iK

(1=2)

, and J

�

= 0, i.e. (0; j

+

) with J

(1=2)

= iK

(1=2)

.

Both representations have spin 1/2 and dimension two. We de�ne therefore two types of

two-omponent spinors,

�

L

: (1=2; 0); J

(1=2)

= �=2; K

(1=2)

= +i�=2 ; (8.4a)

�

R

: (0; 1=2); J

(1=2)

= �=2; K

(1=2)

= �i�=2 ; (8.4b)

whih we all left-hiral and right-hiral Weyl spinors. These Weyl spinors form the fun-

damental representation of the Lorentz group: All higher spin states an be obtained as

tensor produts involving them. Their transformation properties under an (ative) �nite

Lorentz transformation with parameters � and � follow by exponentiating their generators

as exp(�iJ�+ iK�) (ompare to appendix B.3 for our hoie of signs),

�

L

! �

0

L

= exp

�

�

i��

2

�

��

2

�

�

L

� S

L

�

L

; (8.5a)

�

R

! �

0

R

= exp

�

�

i��

2

+

��

2

�

�

R

� S

R

�

R

: (8.5b)

While the transformation matries S

L

and S

R

agree for rotations, the terms desribing Lorentz

boosts have opposite signs. Note also that only rotations are desribed by a unitary trans-

formation, while Lorentz boosts lead to a non-unitary transformation of the Weyl spinors.

We ask now if we an onvert a left- into a right-hiral spinor and vie versa. Thus we

should �nd a spinor

~

�

L

onstruted out of �

L

whih transforms as S

R

~

�

L

. Changing S

L

into

S

R

requires reversing the relative sign between the rotation and the boost term, whih we

ahieve by omplex onjugating �

L

,

�

�0

L

=

�

1 +

i�

�

�

2

�

�

�

�

2

+ : : :

�

�

�

L

: (8.6)

Beause of �

�

1

= �

1

, �

�

2

= ��

2

, �

�

3

= �

3

, and �

1

�

2

= ��

2

�

1

, �

2

�

3

= ��

3

�

2

, we obtain the

desired transformation property multiplying �

�0

L

with �

2

,

�

2

�

�0

L

= �

2

�

1 +

i(�

1

;��

2

; �

3

)�

2

�

(�

1

;��

2

; �

3

)�

2

+ : : :

�

�

�

L

(8.7a)

=

�

1�

i��

2

+

��

2

+ : : :

�

�

2

�

�

L

= S

R

�

2

�

�

L

: (8.7b)

2

More preisely, they have the same Lie algebra and are thus loally isomorphi but di�er globally.
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Thus �

L

and �

R

are onneted by a non-unitary transformation, and therefore �

L

and �

R

desribe di�erent physis. Obviously, we an add to �

2

�

�

L

an arbitrary phase e

iÆ

without

hanging the transformation properties. We de�ne

�



R

� �i�

2

�

�

L

and �



L

� i�

2

�

�

R

; ; (8.8)

whih ensures (�



L

)



= �

L

and (�



R

)



= �

R

. When we disuss later the oupling of a fermion

to an external �eld, we will see that �



L

is the harge onjugated spinor of �

L

.

For the onstrution of a Lagrangian we need for the mass term salars and for the kineti

energy vetors built out of the Weyl �elds. Both the kineti and the mass terms should be

real to provide a real Lagrangian. In ontrast to the real Lorentz transformation �

�

�

ating

on tensor �elds, the matries S

L=R

are however omplex and thus the Weyl �elds are omplex

too. This suggests together with the fat that a measurement devie should be the same after

a rotation by 2� that observables are bilinear quantities in the fermion �elds, suh that they

transform tensorial and their eigenvalues are real.

Out of the two Weyl spinors, we an form four di�erent produts �

y

L=R

�

L=R

leading to the

ombinations S

y

L

S

L

, S

y

R

S

R

, S

y

L

S

R

, and S

y

R

S

L

. The rotation i��=2 anels in all four produts,

sine it enters with the same sign in S

L

and S

R

, and the Pauli matries are Hermitian, �

y

= �.

By ontrast, the anellation of the boost ��=2 requires a ombination of a left- and right-

hiral �eld,

�

0y

L

�

0

R

= �

y

L

h

1 + i

��

2

�

��

2

+ : : :

i h

1� i

��

2

+

��

2

+ : : :

i

�

R

= �

y

L

�

R

; (8.9)

and similarly for �

y

R

�

L

. Thus �

y

L

�

R

and �

y

R

�

L

transform as Lorentz salars, but not �

y

L

�

L

and �

y

R

�

R

. So what are the transformation properties of the latter two produts? Performing

an in�nitesimal boost along the z axis, we �nd

�

0y

R

�

0

R

= �

y

R

h

1 +

�

3

�

2

+ : : :

i h

1 +

�

3

�

2

+ : : :

i

�

R

= �

y

R

�

R

+ ��

y

R

�

3

�

R

: (8.10)

This looks like an in�nitesimal Lorentz transformation of the time-like omponent j

0

= �

y

R

�

R

of a four-vetor j

�

. If this interpretation is orret, we should be able to assoiate the spatial

part j with �

y

R

��

R

. Cheking thus how j transforms, we �nd using �

i

�

j

= Æ

ij

+ i"

ijk

�

k

that

j

1

and j

2

are invariant, while j

3

transforms as

�

0y

R

�

3

�

0

R

= �

y

R

h

1 +

�

3

�

2

+ : : :

i

�

3

h

1 +

�

3

�

2

+ : : :

i

�

R

= ��

y

R

�

R

+ �

y

R

�

3

�

R

: (8.11)

Thus �

y

R

�

�

�

R

with �

�

� (1;�) transforms as a four-vetor, j

0

! j

0

+ �j

3

and j

3

! �j

0

+ j

3

.

Performing the same alulation for the left-hiral �elds reprodues the same result exept

for an opposite sign of �. We aount for this sign hange setting now ��

�

� (1;��), so that

a four-vetor bilinear in �

L

is given by �

y

L

��

�

�

L

.

The transformations S

L

and S

R

that belong to the restrited Lorentz group do not mix the

left- and right-hiral Weyl spinors. Consider however the e�et of a parity transformation,

Px = �x, on the generators K and J . The veloity hanges sign, v ! �v, i.e. transforms as

a polar vetor, while the angular momentum J as axial vetor remains invariant. Thus parity

interhanges (1=2; 0) and (0; 1=2) and hene �

L

and �

R

, as one would expet from a left- and

right-hiral objet. If parity is a symmetry of the theory examined, one an therefore not
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8.2. Dira equation

onsider separately the two spinors �

L

and �

R

. Instead, it proves useful to ombine them

into a four-spinor alled Dira (or bi-spinor)

 =

�

�

L

�

R

�

: (8.12)

Another reason to onsider Dira spinors is that the salar terms �

y

L

�

R

and �

y

R

�

L

that qualify

as mass terms ombine a left- and a right-hiral �eld: Thus the desription of a partile with

suh a mass term seems to require the use of both left- and right-hiral Weyl spinors. Next

we will derive a �eld equation for this type of spinor and disuss its properties.

8.2. Dira equation

From Weyl spinors to the Dira equation We an obtain the spinor desribing a partile

with momentum p by boosting the one desribing a partile at rest,

�

R

(p) = exp

h

��

2

i

�

R

(0) = exp

h

��n

2

i

�

R

(0) = [osh(�=2) + �n sinh(�=2)℄ �

R

(0) : (8.13)

If we replae the boost parameter � by the Lorentz fator

3

 = osh � and use the identities

osh(�=2) =

p

(osh � + 1)=2 and sinh(�=2) =

p

(osh � � 1)=2, we an express the spinor as

�

R

(p) =

"

�

 + 1

2

�

1=2

+ �p̂

�

 � 1

2

�

1=2

#

�

R

(0) : (8.14)

Here p̂ = p=jpj is the unit vetor in diretion of p. Inserting  = E=m and ombining the

two terms in the angular braket, we arrive at

�

R

(p) =

E +m+ �p

p

2m(E +m)

�

R

(0) : (8.15)

Similarly, we �nd

�

L

(p) =

E +m� �p

p

2m(E +m)

�

L

(0) : (8.16)

Thus �

L

and �

R

di�er only by the sign of the operator �p whih measures the projetion of

the spin � on the momentum p of the partile. For a partile at rest, this di�erene disappears

and we set therefore �

L

(0) = �

R

(0). This allows us to eliminate the zero momentum spinors,

giving

�

R

L

(p) =

E � �p

m

�

L

R

(p) : (8.17)

In matrix form, these two equations orrespond to

�

�m E � �p

E + �p �m

��

�

L

(p)

�

R

(p)

�

=

�

�m �

�

p

�

��

�

p

�

�m

��

�

L

(p)

�

R

(p)

�

= 0 : (8.18)

We introdue the 4� 4 matries



�

=

�

0 �

�

��

�

0

�

: (8.19)

3

Reall the relations E = m osh � and p = m sinh � onneting E, p, and the rapidity �.
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8. Fermions and the Dira equation

Then we arrive with 

�

p

�

= 

0

E � p at the ompat expression

(

�

p

�

�m) (p) = 0 : (8.20)

Setting p

�

= i�

�

we obtain the Dira equation (i�

�



�

�m) (x) = 0 in oordinate spae.

The representation used for the Dira spinor and the gamma matries is alled hiral or Weyl

representation. Other representations an be obtained performing a unitary transformation,

U~

�

U

y

= 

�

and U

~

 =  .

We an apply the tensor method to derive a de�nition of the gamma matries and their

properties whih is independent of the onsidered representation. The only invariant tensor at

our disposal is the metri tensor �

��

and thus the gamma matries have to satisfy f

�

; 

�

g =

A�

��

. Considering f

0

; 

0

g shows that A = 2, or

f

�

; 

�

g = 2�

��

: (8.21)

These anti-ommutation relations de�ne a Cli�ord algebra, implying

�



0

�

2

= 1 ;

�



i

�

2

= �1 and 

�



�

= �

�



�

(8.22)

for � 6= �. The last ondition shows that the Cli�ord algebra annot be satis�ed by normal

numbers.

The de�nition (8.21) implies that we an apply in the usual way the metri tensor to raise

or to lower the indies of the gamma matries, 

�

= �

��



�

. Thus we an write 

�

�

�

= 

�

�

�

.

Sine the ontration of the gamma matries 

�

with a four-vetor A

�

will appear frequently,

we introdue the so-alled Feynman slash,

A= � A

�



�

; (8.23)

as useful shortut. This notation also stresses that the gamma matries 

�

allow us to map

a four-vetor A

�

onto an element A= of the Cli�ord algebra whih then an be applied on a

spinor  . Although we suppress the spinor indies, you should keep in mind that the matries

(

ab

)

�

arry both tensor and spinor indies.

Dira's way towards the Dira equation The Klein-Gordon equation was historially the

�rst wave equation derived in relativisti quantum mehanis. Applied to the hydrogen atom,

it failed to reprodue the orret energy spetrum. Dira tried to derive as an alternative

an equation linear in the derivatives �

�

. Sine Lorentz invariane requires that �

�

has to be

ontrated with another objet arrying the Lorentz index �, a �rst order equation has the

form

(i

�

�

�

�m) (x) = 0 : (8.24)

Main task for Dira was to unover the nature of the quantities 

�

in this equation. They

annot be normal numbers, sine then they would form a four-vetor, speify one diretion in

spae-time and thus break Lorentz invariane. Multiplying the Dira equation with �(i

�

�

�

+

m) and omparing the result to the Klein-Gordon equation, we �nd

� (i

�

�

�

+m)(i

�

�

�

�m) = (

�



�

�

�

�

�

+m

2

) = (�+m

2

) = 0 : (8.25)

Using the symmetry of partial derivatives, we an rewrite



�



�

�

�

�

�

=

1

2

f

�

; 

�

g�

�

�

�

: (8.26)

Remembering next the de�nition of the d'Alembert operator, � = �

��

�

�

�

�

, we re-derive that

the 

�

form a Cli�ord algebra.
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8.2. Dira equation

Lagrange density For a omplex salar �eld, we ould rewrite after a partial integration the

Lagrange density as L = ��

y

(�+m

2

)�. This expression orresponds to the Klein-Gordon

operator �(� +m

2

) sandwihed between the quadrati form �

y

�, as the orrespondene of

the propagator and a two-point Green funtion requires. This suggests to try for the Dira

�eld as Lagrangian

L =  

y

A(i

�

�

�

�m) =

�

 (i

�

�

�

�m) ; (8.27)

where we have used as quadrati from  

y

A with a matrix A yet to be determined. In the

seond step, we de�ned the adjoint spinor

�

 �  

y

A. Varying then the ation S[ ;

�

 ℄, we

obtain

ÆS =

Z

d

4

n

Æ

�

 (i

�

�

�

�m) �

�

 (i

�

 �

�

�

+m)Æ 

o

: (8.28)

Here we made a partial integration of the �

�

Æ term, and thus the derivative

 �

�

�

ats to

the left. Sine we treat  and

�

 as two independent variables, we obtain from ÆS = 0 two

equations of motion,

�

 (i

�

 �

�

�

+m) = 0 and (i

�

�

�

�m) = 0 : (8.29)

Next we determine the unknown matrix A: Taking the Hermitian onjugate of the RHS of

(8.29) results in

 

y

(�i

�y

 �

�

�

�m) = 0 : (8.30)

This agrees with the LHS of (8.29), if A satis�es

A

�1



�y

A = 

�

: (8.31)

One an readily hek that the 

�

matries in the Weyl representation ful�l this relation, if

we set A = 

0

. With (

0

)

2

= 1 and (

0

)

�1

= (

0

)

y

= 

0

, we an express this ondition as



�y

= 

0



�



0

=

�

(

0

)

2



0

= 

0

;

�

i

(

0

)

2

= �

i

:

(8.32)

Thus the ation priniple implies that 

0

is Hermitian, while the 

i

are anti-Hermitian ma-

tries.

Using the gamma matries and the Dira spinor in the hiral representation it is straight-

forward to express the Dira Lagrangian (8.27) by Weyl �elds,

L = i�

y

R

�

�

�

�

�

R

+ i�

y

L

��

�

�

�

�

L

�m(�

y

L

�

R

+ �

y

R

�

L

) : (8.33)

This implies that the Dira Lagrangian and the Dira equation are invariant under Lorentz

transformations, beause we have already heked that all ingredients of (8.33) are invariant.

Note also that out of the two possible ombinations of the two Lorentz salars we found, only

the one invariant under parity entered the mass term. Moreover, P (�

�

�

�

) = ��

�

�

�

, and thus

the ombination of the kineti energies of �

L

and �

R

is also invariant under parity.

Hamiltonian form The Dira equation an be transformed into Hamiltonian form by mul-

tiplying with 

0

,

i�

t

 = H

D

 = (�i

0



i

�

i

+ 

0

m) : (8.34)
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Looking bak at the (anti-) Hermitiity properties (8.32) of the 

�

matries, we see that they

orrespond to the one required to make the Dira Hamiltonian Hermitian. By tradition, one

re-writes H

D

often with � = 

0

and �

i

= 

0



i

as

i�

t

 = H

D

 = (� � p+ �m) : (8.35)

Considering the semi-lassial limit, one sees that the matrix � has the meaning of a veloity

operator, see problem 8.??.

Cli�ord algebra and bilinear quantities We now determine the minimal matrix represen-

tation for the Cli�ord algebra de�ned by Eq. (8.21). We �nd �rst the maximal number of

independent produts that we an form out of the four gamma matries. Five obvious ele-

ments are the unit matrix 1 = (

0

)

2

and the four gamma matries 

�

themselves. Beause of

(

�

)

2

= �1, the remaining produts should onsist of 

�

matries with di�erent indies. Thus

the only produt of four 

�

matries that we have to onsider is 

0



1



2



3

. This ombination

will appear very often and deserves therefore a speial name. Inluding the imaginary unit

to make it Hermitian, we de�ne



5

� 

5

� i

0



1



2



3

: (8.36)

Beause the four gamma matries in 

5

anti-ommute, we an rewrite its de�nition introduing

the ompletely anti-symmetri tensor "

��Æ

in four dimensions as



5

=

i

24

"

��Æ



�



�







Æ

: (8.37)

This suggests that bilinear quantities ontaining one 

5

matrix transform as pseudo-tensors,

i.e. hange sign under a parity transformation x! �x. Two important properties of the 

5

matrix are (

5

)

2

= 1 and f

�

; 

5

g = 0.

Next we onsider produts of three 

�

matries. For instane,



1



2



3

= 

0



0

|{z}

1



1



2



3

= �i

0



5

: (8.38)

Hene these produts are equivalent to 

�



5

, giving us four more basis elements.

Finally, we are left with produts of two di�erent 

�

matries. We an assoiate these six

produts with the ommutator [

�

; 

�

℄. Adding again for later onveniene a fator i=2, we

de�ne the anti-symmetri tensor �

��

as

�

��

�

i

2

[

�

; 

�

℄ : (8.39)

The six matries �

��

are the remaining independent elements we hoose as basis for our

matrix representation of the Cli�ord algebra. All together, the basis has dimension 16,

� = f1; 

5

; 

�

; 

5



�

; �

��

g ; (8.40)

as the 4 � 4 matries. Hene an arbitrary 4 � 4 matrix an be deomposed into a linear

ombination of these basis elements. Moreover, the smallest matrix representation of the

Cli�ord algebra is given by 4 � 4 matries. Some useful properties of gamma matries are

olleted in the Appendix A.2.
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8.2. Dira equation

Knowing the dimension of the  matries, we an ount the number of degrees of freedom

represented by a Dira spinor  . As the  matries and the Lorentz transformation ating

on spinors are omplex, the �eld  is omplex too and has thus four omplex degrees of

freedom. We know already that the Dira equation desribes spin 1/2 partiles, whih ome

with 2s + 1 = 2 spin degrees of freedom for a partile plus 2 for its anti-partile. Thus in

this ase the number of physial states mathes the four omponents of the �elds  . Note

also the di�erene to the ase of a omplex salar or vetor �eld: There we introdued two

omplex �elds �

�

= (�

1

� i�

2

)=

p

2, whih are onneted by (�

�

)

�

= �

�

. The real �elds �

1

and �

2

are not mixed by Lorentz transformations and thus we ount them as two real degrees

of freedom.

We ome now to the onstrution of bilinear quantities out of the Dira spinors. Sine the

Lagrangian is a salar, we know already that

�

  transforms as a salar while j

�

=

�

 

�

 is

vetor. In general, bilinear quantities are onstruted as

 

y



0

� �

�

 � ; (8.41)

where

�

 =  

y



0

is the adjoint spinor and � is any of the 16 basis elements given in Eq. (8.40).

In this way, the omplex onjugated of a bilinear beomes

(

�

 � 

0

)

�

= (

�

 � 

0

)

y

=  

0y

�

y



0

 =  

0y



0



0

�

y



0

 �

�

 

0

� (8.42)

with

� � 

0

�

y



0

: (8.43)

For  =  

0

, these bilinears are real as desired. The analogue  

y

 to the probabil-

ity density  

�

 of the Shr�odinger equation is thus the zero-omponent of a four-urrent,

 

y

 =  

y



0



0

 =

�

 

0

 = j

0

, as one should expet in a relativisti theory.

Finally, we note that 

0

and 

5

are involutory matries, i.e. they satisfy the relation A

2

= 1.

Beause of (1 � A)

2

= 2(1 � A), we an onstrut the projetion operators P

�

= (1 � A)=2,

satisfying

P

2

�

= P

�

; P

�

P

�

= 0; and P

+

+ P

�

= 1 :

Thus we should be able to lassify the four independent solutions of the Dira equation with

the help of (1� 

0

)=2 and (1� 

5

)=2, or their suitable ovariant generalisations.

Lorentz transformations Our derivation of the Weyl spinors as the fundamental represen-

tation of the Lorentz group provided automatially their transformation properties under a

�nite Lorentz transformation. Using the Weyl representation, the transformation law for a

Dira spinor follows as

 (x)!  (x

0

) = S(�) (x) =

�

�

L

(x

0

)

�

R

(x

0

)

�

=

�

S

L

0

0 S

R

��

�

L

(x)

�

R

(x)

�

: (8.44)

We want to express the transformation matrix S(�) by gamma matries, suh that it is

representation independent and manifestly Lorentz invariant. We set

S(�) = exp (�i!

��

J

��

=2) ; (8.45)

where the antisymmetri matrix !

��

parametrises the Lorentz transformation and the six

generators (J

ab

)

��

have to be determined. Sine the generators are the ovariant generalisation
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of �, we suspet that they are onneted to �

��

. Using Eq. (8.19), we obtain as expliit

expression for the �

��

matries in the Weyl representation

�

0i

= i

�

��

i

0

0 �

i

�

; and �

ij

= "

ijk

�

�

k

0

0 �

k

�

: (8.46)

We split J

��

into boosts and rotations,

1

2

!

��

J

��

= !

i0

J

i0

+ !

12

J

12

+ !

13

J

13

+ !

23

J

23

: (8.47)

Identifying �

i

= !

i0

and �

i

= (1=2)"

ijk

!

jk

, we obtain J

��

= �

��

=2. In ontrast to (8.44), the

expression S(�) = exp (�i�

��

!

��

=4) is valid for any representation of the gamma matries.

Solutions We searh for plane wave solutions ue

�ipx

and ve

+ipx

of the Dira equation with

m > 0 and E = p

0

= jpj > 0. The algebra is simpli�ed, if we onstrut the solutions �rst in

the rest frame of the partile. Then p= = m

0

, and thus the use of the Dira representation,



0

= 1
 �

3

=

�

1 0

0 �1

�

; and 

i

= �

i


 i�

2

=

�

0 �

i

��

i

0

�

; (8.48)

where 

0

is diagonal is most onvenient. Here �

i

and �

i

are the Pauli matries, 
 denotes

the tensor produt, 0 and 1 are 2� 2 matries. In the Dira representation, the 

5

matrix is

o�-diagonal,



5

= 1
 �

1

=

�

0 1

1 0

�

: (8.49)

The Dira equation beomes

(p= �m)u = m(

0

� 1)u = 0 (8.50a)

(p=+m)v = m(

0

+ 1)v = 0 : (8.50b)

The RHS shows that (1� 

0

)=2 projet a general spinor at rest on the subspaes of solutions

with positive or negative energy. Inserting the expliit form of 

0

into (8.50), the four solutions

in the rest frame of the partile follow as

u(m;+) /

0

B

B

�

1

0

0

0

1

C

C

A

; u(m;�) /

0

B

B

�

0

1

0

0

1

C

C

A

; v(m;�) /

0

B

B

�

0

0

1

0

1

C

C

A

; v(m;+) /

0

B

B

�

0

0

0

1

1

C

C

A

:

(8.51)

The additional � label should be the quantum number of a suitable operator labelling the

two spin states of a Dira partile. Note the opposite order of the spin label in the v spinor

ompared to u. We will see later that this hoie is required by the struture of the relativisti

spin operator s

�

. As an intuitive argument, we add that this labelling orresponds to our

interpretation of antipartiles as partiles moving bakwards in time: The spinor v desribes

two states with negative energy, negative 3-momentum p and negative spin s relative to u.

The solutions are orthogonal,

�u(p; s)u(p; s

0

) = N

2

Æ

s;s

0

and �v(p; s)v(p; s

0

) = �N

2

Æ

s;s

0

; (8.52)
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but not normalised to one. Note also the minus sign introdued in �vv by the orresponding

minus in the (3,4) orner of 

0

. Sine we know that  

y

 is the zero omponent of a four-vetor,

the normalisation of the orresponding spinor produts is

u

y

(p; s)u(p; s

0

) = N

2

E

p

m

Æ

s;s

0

and v

y

(p; s)v(p; s

0

) = �N

2

E

p

m

Æ

s;s

0

: (8.53)

Summing over spins, we obtain in the rest frame

X

s

u

a

(m; s)�u

b

(m; s) =

�

1 0

0 0

�

ab

N

2

=

1

2

(

0

+ 1)

ab

N

2

; (8.54)

X

s

v

a

(m; s)�v

b

(m; s) =

�

0 0

0 �1

�

ab

N

2

=

1

2

(

0

� 1)

ab

N

2

: (8.55)

We saw that 

0

� 1 orresponds in an arbitrary frame to (p= �m)=m. Thus in general these

relations beome

�

+

�

X

s

u

a

(p; s)�u

b

(p; s) = N

2

�

p=+m

2m

�

ab

; (8.56)

�

�

� �

X

s

v

a

(p; s)�v

b

(p; s) = N

2

�

�p=+m

2m

�

ab

; (8.57)

where we de�ned �

�

as the projetion operator on states with positive and negative energy,

respetively.

The two most ommon normalisation onventions for the Dira spinors are N =

p

2m and

N = 1. We will use the former, N =

p

2m, whih has three advantages: First, the expressions

for �

�

whih appear frequently beome more ompat. Seond, spurious singularities in the

limit m! 0 disappear. Finally, the normalisation of fermion states and thus also the phase

spae volume beomes idential to the one of bosons.

The solutions of the Dira equation for an arbitrary frame an be simplest obtained re-

membering (p=�m)(p= +m) = p

2

�m

2

= 0, i.e.

u(p;�) =

p=+m

p

m+E

u(0;�) and v(p;�) =

�p=+m

p

m+E

v(0;�) : (8.58)

Here, the normalisation was �xed using (8.52).

Spin We have seen that the Dira equation desribes a partile with heliity one-half. Thus

the � degeneray of the u and v spinors should orrespond to the di�erent heliity or spin

states of a Dira partile. We introdue the spin operator

� =

�

� 0

0 �

�

; (8.59)

as an obvious generalisation of the non-relativisti spin matries. This operator has the

eigenvalues �

z

u(m;�) = �u(m;�) and �

z

v(m;�) = �v(m;�) and an therefore be used to

lassify the spin states of a Dira partile in the rest frame, where [H

D

;�

z

℄ / [

0

;�

z

℄ = 0.

Note however that [H

D

;�

z

℄ 6= 0 for p

2

6= m

2

, and thus the eigenvalue of �

z

is not onserved
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8. Fermions and the Dira equation

for a moving partile. This omes not as a surprise, beause the total angular momentum

L+ s and not only the spin s should be onserved.

We are looking now for the relativisti generalisation of the three-dimensional spin operator

�. It should be a produt of gamma matries whih ontains in the rest frame of the partile

� in the diagonal. We note �rst that 

5

 =

�

0 1

1 0

��

0 �

�� 0

�

has the required struture. Then

we de�ne the spin vetor s

�

with the properties s

2

= �1, s

�

= (0; s)j

p=m

and thus s � p = 0.

Sine



5

s=j

p=m

= �

5

s =

�

�s 0

0 ��s

�

; (8.60)

we see that 

5

s= measures in the rest frame the projetion of the spin along the hosen axis

s. Moreover, 

5

s= ommutes with the Dira Hamiltonian, [

5

s=; p=℄ = 0, and has beause of

(

5

s=)

2

= 1 as eigenvalues �1. If we apply 

5

s= on the spinor v(p; s)|what is easiest done in

the rest frame|



5

s= v(m; s) =

�

�s 0

0 ��s

��

0

�

�

=

�

0

��s�

�

= s

j

�

0

�

�

; (8.61)

we see that �

1

has the eigenvalue s

1

= �1, while �

2

has the eigenvalue s

2

= +1. This

explains the \wrong" order of the two spin states of v(p; s) in (8.51). Finally, we an de�ne

a projetion operator on a de�nite spin state by

�

s

=

1

2

(1 + 

5

s=) : (8.62)

Thus we an obtain from an arbitrary Dira spinor  a state with de�nite sign of the energy

and spin by applying the two projetion operators �

�

and �

s

.

Heliity An important speial ase of the spin operator 

5

s= is the heliity operator h �

sp=jpj whih measures the projetion of the spin s = �=2 on the momentum p of a partile,

� � p

2jpj

 = h : (8.63)

The heliity operator and the Dira Hamiltonian ommute, [H

D

;�p℄ = 0, beause there is

no orbital angular momentum in the diretion of p. Therefore ommon eigenfuntions of H

D

and h alled heliity states an be onstruted, f. problem 8.??. Positive heliity partiles are

alled right-handed, negative heliity partiles left-handed. For a massive partile, heliity is

a frame-dependent quantity: If we hoose e.g. a frame with �kp and � > p, then the partiles

moves in the opposite diretion and h hanges sign. Sine we annot \overtake" a massless

partile, heliity beomes in this ase a Lorentz invariant quantity.

Axial and vetor U(1) symmetries Out of the 16 bilinear forms, two transform as vetors

under proper Lorentz transformations, j

�

=

�

 

�

 and j

�

5

=

�

 

5



�

 . We now want to hek

if these two urrents are onserved. Inspetion of the Lagrange density shows immediately

that global U(1) transformations,

 (x)!  

0

(x) = e

i�

 (x) and

�

 (x)!

�

 

0

(x) = e

�i�

�

 (x) ; (8.64)
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8.2. Dira equation

keep the Lagrangian invariant, ÆL = 0. Noether's theorem leads then to the onserved vetor

urrent j

�

=

�

 

�

 . In the seond ase, the underlying symmetry is using f

5

; 

�

g = 0,

 

0

(x)! e

i�

5

 (x) and

�

 (x)!

�

 

0

(x) = (e

i�

5

 (x))

y



0

=

�

 (x)e

i�

5

: (8.65)

The resulting (in�nitesimal) hange is

ÆL = 2mi

�

 

5

 : (8.66)

Thus the axial or hiral symmetry U

A

(1) is broken by the mass term, leading to the non-

onservation of the axial urrent j

�

5

for a massive fermion.

Chirality To understand this better we re-express the Dira Lagrangian using eigenfuntions

of 

5

. We an split any solution  of the Dira equation into

 

L

=

1

2

(1� 

5

) � P

L

 and  

R

=

1

2

(1 + 

5

) � P

R

 : (8.67)

Sine 

5

 

L

= � 

L

and 

5

 

R

=  

R

,  

L;R

are eigenfuntions of 

5

with eigenvalue �1.

Expressing the mass term through these �elds as

�

  =

�

 

�

P

2

L

+ P

2

R

�

 =  

y

�

P

R



0

P

L

+ P

L



0

P

R

�

 =

�

 

R

 

L

+

�

 

L

 

R

(8.68)

and similarly for the kineti term,

�

 �= =

�

 

�

P

2

L

+ P

2

R

�

�= =  

y

�

P

R



0



�

P

R

+ P

L



0



�

P

L

�

�

�

 =

�

 

L

�= 

L

+

�

 

R

�= 

R

; (8.69)

the Dira Lagrange density beomes

L = i

�

 

L

�= 

L

+ i

�

 

R

�= 

R

�m(

�

 

L

 

R

+

�

 

R

 

L

) : (8.70)

Comparing this expression to (8.33), we see that we an identify the Dira �elds  

L=R

in the

hiral representation with the Weyl �elds �

L=R

as follows,

 

L

=

�

�

L

0

�

and  

R

=

�

0

�

R

�

: (8.71)

Thus the projetion operators (8.67) allows us to de�ne the left- and right-hiral omponents

of a Dira �eld in an arbitrary representation. If the mass or interation terms treat  

L

and

 

R

not symmetrially, one alls them hiral fermions.

The two kineti terms whih are invariant under hiral transformations onnet left- to left-

hiral and right- to right-hiral �elds, while the mass term mixes left- and right-hiral �elds.

Suh a mass term is alled Dira mass. The distintion between left- and right-hiral �elds is

Lorentz invariant: In terms of Weyl spinors, we saw that the Lorentz transformations S

L

and

S

R

do not mix �

L

and �

R

|whih quali�ed them to form the irreduible representation of the

Lorentz group. In terms of Dira spinors, the relation [

5

; �

��

℄ = 0 guarantees that left and

right hiral �elds transform separately under a Lorentz transformation,  

0

L=R

= S(�) 

L=R

.

However, the mass term of a massive Dira partile will mix left- and right-hiral �elds as

they evolve in time.

Heliity and hirality eigenstates an be seen as omplimentary states. The former one is

a onserved, frame-dependent quantum number, while the latter is frame-independent, but

not onserved. Thus heliity states are e.g. useful to desribe sattering proesses where

the detetor measures spin in a de�nite frame. If on the other hand the interations of a

fermion are spin-dependent, then one should hoose hiral �elds, sine the Lagrangian should

be Lorentz invariant.
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8. Fermions and the Dira equation

Charge onjugation From L =

�

 (i

�

�

�

�m) and [L ℄ = m

4

in four dimensions, we see

that the dimension of a fermion �eld in four dimension is [ ℄ = m

3=2

. Thus we an order

possible ouplings of a fermion to spin-1 partiles aording to their dimension as

L

I

= 

1

A

�

�

 

�

 + 

2

A

�

�

 

5



�

 +



3

M

F

��

�

 �

��

 + : : : ; (8.72)

where the oupling onstants 

i

are dimensionless and we introdued the mass sale M . The

only oupling to the photon �eld with a dimensionless oupling that also respets parity is

L

I

= �qj

�

A

�

= �q

�

 

�

 A

�

. Solving the Lagrange equations for L

0

+L

I

gives the Dira

equation inluding a oupling to the eletromagneti �eld as

[i

�

(�

�

+ iqA

�

)�m℄ (x) = 0 : (8.73)

This orresponds to the \minimal oupling" presription known from quantum mehanis.

Having de�ned the oupling to an external eletromagneti �eld, we an ask ourselves how

the Dira equation for a harged onjugated �eld  



should look like. In the ase of a salar

partile, omplex onjugation transformed a positively harged partile into a negative one

and vie versa. We try the same for the Dira equation,

[�i

��

(�

�

� iqA

�

)�m℄ 

�

(x) = 0 : (8.74)

The matrix 

��

satis�es also the Cli�ord algebra. Hene we should �nd the unitary transfor-

mation U

�1



�

U = �

��

or setting U � C

0

(C

0

)

�1



�

C

0

= �

��

: (8.75)

If it exists, then the harge-onjugated �eld  



� C

0

 

�

satis�es the Dira equation with �q,

[i

�

(�

�

� iqA

�

)�m℄C

0

 

�

(x) = 0 : (8.76)

Expliit alulation shows that we may hoose C = i

2



0

, see problem 8.??. In the hiral

representation,  



= C

0

 

�

= i

2

 

�

beomes

 



=

�

0 i�

2

�i�

2

0

��

�

�

L

�

�

R

�

=

�

i�

2

�

�

R

�i�

2

�

�

L

�

; (8.77)

whih is in agreement with �



L

= i�

2

�

�

R

and �



R

= �i�

2

�

�

L

found earlier.

Example 8.1: Sine the 

2

matrix has the same form in the Dira and the hiral representation,

we �nd applying C on the spinors u(p;�) and v(p;�) immediately that

u



(p; s) = C

0

u

�

(p; s) = v(p; s) and v



(p; s) = C

0

v

�

(p; s) = u(p; s) :

Inserted into Eq. (8.85) this implies that S

T

F

(x) = CS

F

(�x)C

�1

.
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8.2. Dira equation

Feynman propagator The Green funtions of the free Dira equation are de�ned by

(i�= �m)S(x; x

0

) = Æ(x � x

0

) ; (8.78)

where we omit on the RHS a unit matrix in spinor spae. Translation invariane implies

S(x; x

0

) = S(x� x

0

) and, performing a Fourier transformation, the Fourier omponents S(p)

have to obey

(p=�m)S(p) = 1 : (8.79)

After multipliation with p= +m and use of a=

2

=

1

2

f

�

; 

�

ga

�

a

�

= a

2

, we an solve for the

propagator in momentum spae,

iS

F

(p) = i

p=+m

p

2

�m

2

+ i"

=

i

p=�m+ i"

; (8.80)

where the last step is only meant as a symbolial short-ut. Here, we hose again with the

�i" presription the ausal or St�ukelberg-Feynman propagator for the eletron and, more

generally, for spin 1/2 partiles. Note also the onnetion to the salar propagator �

F

,

iS

F

(x) = �(i�= +m)i�

F

(x) : (8.81)

Example 8.2: Express the Feynman propagator as sum over the solutions u(p; s) and v(p; s): We

follow the steps from (3.25a) to (3.28) in the salar ase, �nding now

S

F

(x) =

Z

d

3

p

(2�)

3

Z

dp

0

2�

(p=+m)e

�ip

0

t

e

ipx

(p

0

�E

p

+ i")(p

0

+ E

p

� i")

(8.82)

=

Z

d

3

p

(2�)

3

�

�i

p=+m

2E

p

e

�iE

p

t

#(x

0

) + i

�E

p



0

� p +m

�2E

p

e

iE

p

t

#(�x

0

)

�

e

ipx

: (8.83)

Next we hange as in the bosoni ase the integration variable as p! �p in the seond term,

iS

F

(x) =

Z

d

3

p

2E

p

(2�)

3

h

(p=+m)e

�i(E

p

t�px)

#(t) + (�p=+m)e

i(E

p

t�px)

#(�t)

i

: (8.84)

Using �nally (8.56), we arrive at

iS

F

(x) =

Z

d

3

p

2E

p

(2�)

3

X

s

h

u(p; s)�u(p; s)e

�i(E

p

t�px)

#(x

0

)� v(p; s)�v(p; s)e

i(E

p

t�px)

#(�x

0

)

i

: (8.85)

Thus the phase spae volume of fermioni states is the same as the one of bosons for the normalisation

of the Dira spinors hosen by us. The minus sign between the positive energy solution propagating

forward in time and the negative energy solution propagating bakward in time is a diret onsequene

of our �i" presription. It implies that fermioni �elds anti-ommute,

iS

F;ab

(x) = h0jTf 

a

(x)

�

 

b

(0)gj0i = h0j 

a

(x)

�

 

b

(0)j0i#(t)� h0j

�

 

b

(0) 

a

(x)j0i#(�t) ; (8.86)

(we have added for larity the spinor indies) and explains thereby the Pauli exlusion priniple and

thus the stability of matter.

Let us have a look bak to understand why the sign appears. To simplify the disussion, we neglet

the inessential mass term. In the positive frequeny term (p

0



0

� p)e

ipx

, we pik up an additional

minus relative to the bosoni ase from the variable hange p! �p, resulting in p=! �p= and

S

F

(x) / p= e

�ipx

#(t)� p= e

ipx

#(�t) :

Thus the relative minus sign has its origin in the fat that the fermion propagator S

F

(p) is odd in

the momentum, while a bosoni propagator is even. In turn, the fermion propagator is linear in the

momentum, beause the fermion wave equation is a �rst-order equation.
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8.3. Quantizing Dira fermions

Spin-statisti onnetion We have noted that fermioni �elds should anti-ommute exam-

ining the Feynman propagator in example 8.2. In a relativisti quantum �eld theory the spin

and the statistis of a �eld is onneted:

� The wave equations of bosons are seond-order di�erential equations. Therefore the

propagators of bosoni �elds are even in the momentum p. As a result, bosoni �elds

ommute and satisfy Bose-Einstein statistis.

� In ontrast, fermions satisfy �rst-order di�erential equations and therefore the fermion

propagator S

F

(p) is odd in p. This implies that fermions are desribed by antiommuting

lassial spinors or operators, and satisfy Fermi-Dira statistis.

This leads to a pratial and a prinipal question: First, the pratial one: How do we

implement that lassial funtions whih enter the path integral do anti-ommute? And

seond, does the antiommutation of fermioni variables lead to a onsistent piture? In

partiular is the Hamiltonian of suh a theory bounded from below?

We will start to address the latter question alulating the energy density � = H of the

Dira �eld assuming that the lassial spinors u and v do ommute. We determine �rst the

anonially onjugated momenta as

� =

�L

�

_

 

= i

�

 

0

= i 

y

(8.87)

and �� = 0. Thus the Hamilton density is

H = �

_

 �L = i 

y

�

t

 �

�

 (i

�

�

�

�m) = i 

y

�

t

 ; (8.88)

where we used the Dira equation in the last step. To make this expression more expliit, we

express now  by plane wave solutions,

 (x) =

X

s

Z

d

3

p

p

(2�)

3

2E

p

h

b

s

(p)u

s

(p)e

�ipx

+ d

y

s

(p)v

s

(p)e

+ipx

i

; (8.89a)

 

y

(x) =

X

s

Z

d

3

p

p

(2�)

3

2E

p

h

b

y

s

(p)u

y

s

(p)e

+ipx

+ d

s

(p)v

y

s

(p)e

�ipx

i

: (8.89b)

Inserting these expressions into (8.88) gives shematially (b

y

+ d)(b� d

y

), where the relative

minus sign omes from �

t

ating on  . Sine the spinors u and v are orthonormal, f. (8.53),

only the diagonal terms survive, (b

y

+ d)(b � d

y

) ! b

y

b � dd

y

. Hene the energy of a Dira

�eld is given by

H =

Z

d

3

xH =

X

s

Z

d

3

pE

p

h

b

y

s

(p)b

s

(p)� d

s

(p)d

y

s

(p)

i

: (8.90)

If d and d

y

would be normal Fourier oeÆients of an expansion into plan waves, the seond

term would be negative and the energy density of a fermion �eld ould be made arbitrarily

negative.
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This onlusion is avoided if the fermion �elds antiommute: In anonial quantisation, one

promotes the Fourier oeÆients to operators. Requiring then anti-ommutation relations

between the reation and annihilation operators for partiles and anti-partiles,

fb

s

(p); b

y

s

0

(p

0

)g = Æ

s;s

0

Æ(p� p

0

) and fd

s

(p); d

y

s

0

(p

0

)g = Æ

s;s

0

Æ(p� p

0

) ; (8.91)

ompensates the sign in the seond term. Repeating the disussion in setion 3.3 one an show

that these anti-ommutation relations implement also orretly ausality for fermioni �elds.

If we restore units, then we have to add a fator ~ on the RHS of the anti-ommutation rela-

tions (8.91). Sine the RHS vanishes in the lassial limit ~! 0, lassial spinors should anti-

ommute. Thus we should perform the path integral of fermioni �elds over anti-ommuting

numbers whih are alled Gra�mann numbers.

Gra�mann variables We now proeed to the question how we an implement the analogue

of the antiommutation relations for operators into the path integral formalism. We de�ne a

Gra�mann algebra G requiring that for a; b 2 G the antiommutation rules

fa; ag = fa; bg = fb; bg = 0 (8.92)

and thus a

2

= b

2

= 0 are valid. Then any smooth funtion f of a and b an be expanded into

a power-series as

f(a; b) = f

0

+ f

1

a+

~

f

1

b+ f

2

ab

= f

0

+ f

1

a+

~

f

1

b� f

2

ba :

(8.93)

De�ning the derivative as ating to the right, � �

!

�

, we �nd

�f

�a

= f

1

+ f

2

b ;

�f

�b

=

~

f

1

� f

2

a ; (8.94)

and

�

2

f

�a�b

= �

�

2

f

�b�a

= �f

2

: (8.95)

As integration rules for Gra�mann variables, we require linearity and that the in�nitesimals

da, db are also Gra�mann variables,

fa;dag = fb;dbg = fa;dbg = fda; bg = fda;dbg = 0 : (8.96)

Multiple integrals are iterated,

Z

dadbf(a; b) =

Z

da

�

Z

dbf(a; b)

�

: (8.97)

We have to determine the value of

R

da and

R

daa. For the �rst, we write

�

Z

da

�

2

=

�

Z

da

��

Z

db

�

=

Z

dadb = �

Z

dbda = �

�

Z

da

�

2

(8.98)

and �nd thus

R

da = 0. We are left with

R

daa: Sine there is no intrinsi sale|states are

empty or oupied|we are free to set

Z

daa = 1 : (8.99)
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8. Fermions and the Dira equation

This implies also that there is no di�erene between de�nite and inde�nite integrals for

Gra�mann variables. Moreover, di�erentiation and integration are equivalent for Gra�mann

variables.

Assume now that �

1

and �

2

are real Gra�mann variables and A 2 R. Then

Z

d�

1

d�

2

e

�

2

A�

1

=

Z

d�

1

d�

2

(1 + �

2

A�

1

) =

Z

d�

1

d�

2

�

2

A�

1

=

Z

d�

1

A�

1

= A : (8.100)

Next we onsider a two-dimensional integral with an anti-symmetri matrixA and � = (�

1

; �

2

).

Then

A =

�

0 a

�a 0

�

(8.101)

and �

T

A� = 2a�

1

�

2

. Using an arbitrary matrix would lead to the same result, sine its

symmetri part anels. Expanding again the exponential gives

Z

d

2

� exp

�

1

2

�

T

A�

�

= a = (det(A))

1=2

: (8.102)

An arbitrary antisymmetri matrix an be transformed into blok diagonal form, where the

diagonal is omposed of matries of the type (8.101). Thus the last formula holds for arbitrary

n.

Finally, we introdue omplex Gra�mann variables � = (�

1

; : : : ; �

n

) and their omplex

onjugates �

�

= (�

�

1

; : : : ; �

�

n

). For any omplex matrix A,

Z

d

n

�d

n

�

�

exp

�

�

y

A�

�

=

n

Y

i=1

a

i

= det(A) : (8.103)

We an ompare this to the result over ommuting omplex variables, z

i

= (x

i

+ iy

i

)=

p

2 and

�z

i

= (x

i

� iy

i

)=

p

2, with dxdy = dzdz

�

and

Z

d

n

zd

n

z

�

exp

�

�z

y

Az

�

=

(2�)

n

det(A)

: (8.104)

Thus for Gra�mann variables the determinant appearing in the evaluation of a Gaussian

integral is in the numerator, while it is in the denominator for real or omplex valued funtions.

Path integral for fermions In the bosoni ase, the ation S[�; �℄ is quadrati in the anon-

ially onjugated momenta �. The path integral over the momenta an thus be performed

and we started diretly with the path integral in on�guration spae. For a fermion, � = i 

y

,

and thus the path integral in phase spae is

Z[0℄ =

Z

D D

�

 e

iS[ ;

�

 ℄

=

Z

D D

�

 e

i

R

d

4

x

�

 (i�=�m) 

; (8.105)

where we hanged to

�

 as integration variable. For its evaluation, we use (8.103) in the limit

n!1. Sine the ation is quadrati in the �elds, we an perform the path integral formally,

Z[0℄ = Det(i�= �m) = expTr ln(i�= �m) : (8.106)
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8.3. Quantizing Dira fermions

Using the yli property of the trae, we write

Tr ln(i�= �m) = Tr ln

5

(i�= �m)

5

= Tr ln(�i�= �m) = (8.107a)

=

1

2

[Tr ln(i�= �m) + Tr ln(�i�= �m)℄ =

1

2

[Tr ln(�+m

2

)℄ : (8.107b)

Thus Z[0℄ = exp[+Tr ln(� + m

2

)=2℄: We have found the remarkable result that the zero-

point energy of fermions has the opposite sign ompared to the one of bosons. We arrive at

the same onlusion, using anti-ommutation relations fd

s

(p); d

y

s

0

(p

0

)g = Æ

s;s

0

Æ(p� p

0

) in the

Hamiltonian (8.90),

H =

X

s

Z

d

3

pE

p

h

b

y

b+ d

y

d� Æ

(3)

(0)

i

: (8.108)

With Æ

(3)

(0) =

R

d

3

x=(2�)

3

we see that the last term orresponds to the negative zero-point

energies of a fermion.

Note that this opens the possibility that the zero-point energies of (groups of) bosons and

fermions anel exatly, provided that the degrees of freedom of fermions and bosons agree.

For instane, the trae in Eq. (8.107b) inludes the trae over the 4�4 matrix in spinor spae,

leading to a fator four larger results than for a single salar. Moreover, their masses have

to be the same, m

f

= m

b

. And �nally their interations have to math, so that also higher-

order orretions are idential for fermions and bosons. The orresponding symmetry that

guarantees automatially that the onditions i)-iii) are satis�ed is alled \supersymmetry".

As result, the vauum energy would be zero in an unbroken supersymmetri theory, Clearly,

the seond ondition is most problemati, sine e.g. no bosoni partner of the eletron has

been found (yet). Hene supersymmetry must be a broken symmetry, but as long as the mass

spitting m

2

f

�m

2

b

between fermions and bosons is not too large, it might be still \useful".

Feynman rules Next we add Gra�mannian soures � and �� to the ation, S[ ;

�

 ℄+ �� +

�

 �.

Then we omplete the square,

�

 A + �� +

�

 � = (

�

 + ��A

�1

)A( +A

�1

�)� ��A

�1

� ; (8.109)

obtaining

Z[�; ��℄ =

Z

D D

�

 e

i

R

d

4

x

�

 A +�� +

�

 �

= Z[0℄ e

�i��A

�1

�

(8.110a)

= Z[0℄ exp

�

�i

Z

d

4

x d

4

x

0

��(x)S

F

(x� x

0

)�(x

0

)

�

: (8.110b)

Here, A

�1

(x; x

0

) = S

F

(x� x

0

) = �S

T

F

(x

0

� x) whih orresponds to the fat that the matrix

A is antisymmetri.

The propagator of a Dira fermion is a line with an arrow representing the ow of the

onserved harge whih distinguishes partiles and antipartiles. Thus a fermion line annot

split, and the arrow annot hange diretion,

�

p

= iS

F

(p) =

i

p=�m+ i"

:
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8. Fermions and the Dira equation

Next we look at possible interation terms of a Dira fermion with salars and photons,

restriting ourselves to dimensionless oupling onstants,

L

I

= �g

s

S

�

  � g

a

P

�

 

5

 � e

�

 

�

 A

�

: (8.111)

Both interation terms of the fermion with the salars respet parity, if the �eld S is a

true salar and the �eld P a pseudo-salar. Analogous to the �i� oupling in the ase of a

salar self-interations, we read o� from the Lagrangian the following interation verties in

momentum spae,

S
−igs

P
−igaγ

5

ǫµ
−iqγµ

2

Fermion loops A losed fermion loop with n propagators orresponds to

 (x

1

) (x

1

) (x

2

) (x

2

) � � �  (x

n

) (x

n

) :

In order to ombine

�

 (x

1

) and  (x

n

) into Tf (x

n

)

�

 (x

1

)g, we have to antiommute

�

 (x

1

)

with the 2n�1 �elds  (x

1

) � � � (x

n

), generating a minus sign. Thus we have to add to our set

of Feynman rules that eah fermion loop generates a minus sign. Another way to understand

the minus sign of fermion loops is to look at the generating funtional for onneted graphs

setting the soures to zero, iW [0℄ = lnZ[0℄ = lndetA. The generated graphs are single-losed

loops with n Feynman propagators. The hange from 1=detA in Z for bosoni �elds to detA

in Z for fermioni �elds implies an additional minus sign for losed fermion loops. Similarly,

diagrams ontributing to the same proess whih di�er only by the exhange of two idential

external fermion lines arry a relative minus sign. This applies also the exhange of a partile

and anti-partile in the initial and �nal state (f. also the disussion of rossing symmetry in

setion 9.3.1).

Furry's theorem What is the relation between diagrams ontaining fermion loops with op-

posite orientation in QED? A fermion loop with n external photons attahed orresponds to

a trae over n fermion propagators separated by gamma matries,

G

1

= tr[

�

1

S

F

(y

1

; y

n

)

�

n

S

F

(y

n

; y

n�1

) � � � 

�

2

S

F

(y

2

; y

1

)℄ : (8.112)

If we insert CC

�1

= 1 between all fators in the trae, use C

�

C

�1

= �

�T

and

CS

F

(�x)C

�1

= S

T

F

(x), then we �nd

G

1

= (�1)

n

tr[

T

�

1

S

T

F

(y

n

; y

1

)

T

�

n

S

T

F

(y

n�1

; y

n

) � � � 

T

�

2

S

T

F

(y

1

; y

2

)℄ (8.113)

= (�1)

n

tr[

�

1

S

F

(y

1

; y

2

) � � � 

�

n

S

F

(y

n

; y

1

)℄ = (�1)

n

G

2

: (8.114)

Here we used B

T

A

T

= (AB)

T

in the last step. Exept for the fator (�1)

n

, the last ex-

pression orresponds to the loop G

2

with opposite orientation. Hene for an odd number

of propagators, the two ontributions anel, while they are equal for an even number of

propagators.
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Figure 8.1.: The six topologially distint diagrams ontributing to the photon four-point

funtion.

Symmetry fators in QED The last issue we want to address in this setion is the question

if the interations in (8.111) lead to symmetry fators. We reall that drawing Feynman

diagrams we should inlude only diagrams whih are topologially distint after the integration

over internal oordinates. For instane, the two diagrams

x1 x2 x1 x2

are not topologially distint, beause a rotation around the x

1

{x

2

axis interhanges them.

Therefore, the orresponding two-point funtion G(x

1

; x

2

) has to be invariant under a hange

of the orientation of the fermion loop { as it is guarantied by the Furry theorem. The two-point

funtion G(x

1

; x

2

) onsists of two idential diagrams obtained by exhanging the integration

variables y

1

and y

2

. Thus the fator 2! ompensates the 1=2! from the Taylor expansion of

exp(iL

int

), if we draw only one diagram, and its symmetry fator is one.

Next we onsider the four-point funtion G(x

1

; x

2

; x

3

; x

4

) whih desribes photon-photon

sattering. The four-point funtion G(x

1

; x

2

; x

3

; x

4

) ontains 4! � 3! diagrams, obtained by

permutating y

1

; y

2

; y

3

; y

4

and x

2

; x

3

; x

4

. After integration over the free y

i

variables, the fator

4! ompensates the 1=4! from the Taylor expansion of exp(iL

int

). In on�guration spae, the

3! = 6 topologially distint diagrams shown in Fig. 8.1 remain whih arry no additional

symmetry fator. Thus the resulting rule for QED is very simple: We do not need symmetry

fators, if we draw all diagrams whih are topologially distint after the integration over

internal oordinates. Fermion loops with an odd number of fermions are zero and an be

omitted. Independent of the type of interation, any fermion loop leads to an additional

minus sign.
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8. Fermions and the Dira equation

8.4. Weyl and Majorana fermions

Up to now we have disussed the Dira equation, having in mind a massive partile arrying a

onserved U(1) harge that allows us to distinguish partiles and anti-partiles. We all suh

partiles Dira fermions. In the SM, all partiles exept neutrinos arry a non-zero eletri

harge, are massive and are therefore Dira fermions. In this setion, we onsider the ase

where one of these two onditions is not ful�lled.

Weyl fermions, q 6= 0 and m = 0: The Dira equation (8.18) in the hiral representation

deouples for m = 0 into two equations alled Weyl equations,

(E + �p)�

L

(p) = 0 and (E � �p)�

R

(p) = 0 : (8.115)

A fermion desribed by the Weyl equations is alled a Weyl fermion. The orret dispersion

relation, E = jpj, requires that �

L

is an eigenstate of the heliity operator h = �p=(2jpj)

with eigenvalue h = �1=2, while �

R

has the eigenvalue h = +1=2. Reall also that heliity

is frame independent for a massless partile; in this ase positive heliity agrees with right

hirality

4

. Until the 1990's, the experimental data on neutrino masses were onsistent with

zero and neutrinos were inorporated into the SM as Weyl fermions. Sine only left-hiral

partiles and right-hiral antipartiles partiipate in weak interations, one set � =

�

�

L

0

�

,

while antineutrinos were desribed by the CP transformed state. The lepton number L

�

of

the three avours � = fe; �; �g of leptons played the role of the onserved U(1) harge that

distinguishes neutrinos and antineutrinos. As result, the di�erene in the number of leptons

and antileptons of eah individual avour was onserved. Neutrino osillations that our

if neutrinos are massive onserve the total lepton number L =

P

�

L

�

but interhange the

individual neutrino avours L

�

. Thus the observation of neutrino osillations showed that

neutrinos are not Weyl fermions.

Majorana fermions, m > 0 and q = 0: The Dira �eld  

D

has to be omplex, beause

it transforms under the omplex representation S(�) of the Lorentz group. In the ase of

a neutral fermion, where we annot distinguish partiles and antipartiles, we should have

only half of the degrees of freedom of a harged Dira �eld. By analogy with the salar

ase, we expet that we an halve the number of degrees of the omplex Dira �eld by

imposing a reality ondition,  

M

=  

�

M

. But this ondition an be Lorentz invariant only in

a speial representation of the gamma matries where �

�

��

= ��

��

and thus S(�) is real. This

ondition de�nes the Majorana representation of the  matries in whih all 

�

and thus �

��

are imaginary, and the harge onjugation matrix C is the unity matrix, C = 1. Then also the

Dira equation beomes real and thus the time-evolution preserves the reality ondition. Sine

the spinors are real in this representation, no phase invariane  (x) !  

0

(x) = exp(i�) (x)

as in (8.64) an be implemented for a Majorana fermion

5

and thus they annot arry any

onserved U(1) harge.

4

Most authors all  

L=R

and �

L=R

not left and right-hiral but left and right-handed, although this identi�-

ation holds only for massless partiles.

5

This argument does not forbid that a Majorana fermion arries onserved harges whih transform under a

real representation of a symmetry group: An example are gluinos, the suggested supersymmetri partners

of the gluons, whih are Majorana fermions and transform under the adjoint representation of SU(3).
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8.4. Weyl and Majorana fermions

We an halve the number of degrees of freedom of a Dira fermion in a representation

independent way by using a self-onjugated �eld  



=  . A fermion desribed by a self-

onjugated �eld  

M

is alled a Majorana fermion and the orresponding spinor a Majorana

spinor. The �eld operator of a Majorana �eld ontains only one type of annihilation and

reation operators,

 

M

(x) =

X

s

Z

d

3

p

p

(2�)

3

2E

p

h

a

s

(p)u

s

(p)e

�ipx

+ a

y

s

(p)v

s

(p)e

+ipx

i

: (8.116)

Using then

 



M

(x) = C

0

 

�

M

(x) =

X

s

Z

d

3

p

p

(2�)

3

2E

p

h

a

y

s

(p)C

0

u

�

s

(p)e

ipx

+ a

s

(p)C

0

v

�

s

(p)e

�ipx

i

;

(8.117)

we on�rm immediately the Majorana property  



M

(x) =  

M

(x). Expressed by Weyl spinors,

a Majorana spinor beomes

 



=  =

�

�

L

�i�

2

�

�

L

�

=

�

i�

2

�

�

R

�

R

�

: (8.118)

Thus a Majorana fermion (m > 0, q = 0) ontains two degrees of freedom, whih we may

hoose either as a left-hiral or or a right-hiral two-spinor with both heliities.

We an replae any Dira �eld  

D

by a pair of self-onjugated �elds,

 

M;1

=

1

p

2

( 

D

+  



D

) ; (8.119a)

 

M;2

=

1

p

2

( 

D

�  



D

) : (8.119b)

and vie versa inverting these relations. Thus it is only a question of taste, if one desribes

fermions by Dira, Weyl or Majorana spinors.

Dira versus Majorana mass terms Charge onjugated Dira spinors were de�ned by

 



= C

0

 

�

= C

�

 

t

;

�

 



=  

t

C :

We de�ne also

 



L

� ( 

L

)



=

1

2

(1 + 

5

) 



= ( 



)

R

; (8.120)

whih is onsistent with our previous de�nition for Weyl spinors. As we saw, a Dira mass

term onnets the left- and right-hiral omponents of the same �eld and  =  

L

+  

R

is a

mass eigenstate. We now use the observation that ( 

L

)



= ( 



)

R

allows us to obtain new

mass terms

6

alled Majorana mass terms,

�L

L

=m

L

(

�

 



L

 

L

+

�

 

L

 



L

) (8.121)

�L

R

=m

R

(

�

 



R

 

R

+

�

 

R

 



R

) (8.122)

6

Note that terms like

�

 



L

 

L

=  

t

L

C 

L

vanish beause of C

T

= �C, if one does not already assumes on the

lassial level that �elds are antiommuting Gra�mann variables.
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8. Fermions and the Dira equation

whih onnet the left- and right-hiral omponents of harge-onjugated �elds. The orre-

sponding mass eigenstates are the self-onjugated �elds

� =  

L

+  



L

= �



and ! =  

R

+  



R

= !



(8.123)

with L

L

= �m

L

��� and L

R

= �m

R

�!!. In the general ase, both Dira and Majorana mass

terms may be present,

�L

DM

= m

D

�

 

L

 

R

+m

L

�

 



L

 

L

+m

R

�

 



R

 

R

+ h:: (8.124a)

=

1

2

m

D

(��! + �!�) +m

L

���+m

R

�!! ; (8.124b)

or in matrix form

�L

DM

= (��; �!)

�

m

L

m

D

=2

m

D

=2 m

R

��

�

!

�

: (8.125)

Physial states have a de�nite mass and thus we have to diagonalise the mass matrix. Its

eigenvalues are

m

1;2

=

1

2

�

(m

L

+m

R

)�

q

(m

L

�m

R

)

2

+m

2

D

�

(8.126)

and its eigenvetors

�

1

= os#�� sin#! (8.127a)

�

2

= sin#�+ os#! (8.127b)

with tan 2# = m

D

=(m

L

�m

R

). Thus the most general mass term L

DM

for a four-omponent

fermion spinor orresponds to two Majorana partiles with di�erent masses. Therefore we

an view a Dira partile as a speial ase of two Majorana partiles with idential masses

and interations.

The seesaw model tries to explain why neutrinos have muh smaller masses than all other

partiles in the standard model. Let us assume that there exist both left- and right-hiral

neutrinos and that they obtain Dira masses as the other fermions, say of order m

D

�

100GeV. The right-hiral �

R

does not partiipate in any SM interation and su�ers the same

fate as a salar partile: Its mass will be driven by quantum orretions to a value lose to

the uto� sale used, and so we expet m

R

� m

D

. Moreover, in many models it is m

L

= 0.

Expanding then

m

1;2

�

1

2

�

m

R

�m

R

q

1 +m

2

D

=m

2

R

�

; (8.128)

the two eigenvalues are m

1

� m

2

D

=(4m

R

) and m

2

� m

R

. For m

R

� 10

14

GeV, the light

neutrino mass is in the eV or sub-eV range as required by experimental data.

Summary

The fundamental representation of the proper Lorentz group for massive partiles is given

by left and right-hiral Weyl spinors. These two-spinors are mixed by parity and thus one

ombines them into a Dira four-spinor for parity onserving theories like eletromagneti

and strong interations.
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8.4. Weyl and Majorana fermions

Fermions satisfy �rst-order di�erential equations and have mass dimension 3=2. Therefore

the fermion propagator S

F

(p) is linear in p and thus S

F

(x) is an antisymmetri funtion in x.

As a result, fermions satisfy Fermion-Dira statistis and are desribed either by Gra�mann

variables or by antiommuting operators.

A Weyl fermion has m = 0 and q 6= 0 and satis�es the Weyl equation; its solution has

two degrees of freedom, a left-hiral �eld with negative heliity and a right-hiral �eld with

positive heliity. A Majorana fermion is a self-onjugated �eld with m 6= 0 and q = 0 whih

has therefore also only two degrees of freedom. It is desribed either by a left-hiral or a

right-hiral 2-spinor with both heliities. In the Majorana representation, this spinor an be

hosen to be real.

Further reading

The symmetries of the Dira equation as well as of other relativisti wave equations are

extensively disussed by [Gre00℄. More details on two-omponent Weyl and Majorana spinor

an be found e.g. in [Sre07℄.
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9. Sattering proesses

Most information about the properties of fundamental interations and partiles is obtained

from sattering experiments. In a sattering proess, the initial and �nal state ontain widely

separated partiles whih an be approximated as free, real partiles whih are on mass-

shell. By ontrast, n-point Green funtions desribe the propagation of virtual partiles. In

order to make ontat with experiments, we have to �nd therefore the link between Green

funtions and experimental results from sattering experiments. The latter an be predited

knowing the sattering matrix S whih is an unitary operator mapping an initial state at

t = �1 on a �nal state at t = +1. We introdue �rst the S-matrix and show then that

its unitarity restrits the analyti struture of Feynman amplitudes; in partiular it implies

the optial theorem. Then we derive the onnetion between n-point Green funtions and

sattering amplitudes, before we perform some expliit alulations of few tree-level proesses.

Finally, we onsider the speial ase when in a sattering event additional soft partiles are

emitted. The relation between Feynman amplitudes and ross setions or deay widths whih

is essentially the same as in non-relativisti quantum mehanis is reviewed in the appendix

of this hapter.

9.1. Unitarity of the S-matrix and its onsequenes

A sattering proess is fully desribed in the Shr�odinger piture by the knowledge how initial

states ji; ti at t ! �1 are transformed into �nal states jf; ti at t ! 1. This knowledge is

enoded in the S-matrix elements

jf; t =1i = S

fi

ji; t = �1i : (9.1)

An intuitive, but mathematially deliate de�nition of the sattering operator S is the t!1

limit of the time-evolution operator U(t;�t),

S = lim

t!1

U(t;�t) : (9.2)

Thus the sattering operator S evolves an eigenstate jn; ti of the Hamiltonian from t = �1

to t = +1,

S jn;�1i = jn;1i : (9.3)

The unitarity of the sattering operator, S

y

S = SS

y

= 1, expresses the fat that we (should)

use a omplete set of states for the initial and �nal states in a sattering proess,

1 =

X

n

jn;+1i hn;+1j =

X

n

S jn;�1i hn;�1jS

y

= SS

y

: (9.4)
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9.1. Unitarity of the S-matrix and its onsequenes

Optial theorem We split the sattering operator S into a diagonal part and the transition

operator T , S = 1 + iT , and thus

1 = (1 + iT )(1� iT

y

) = 1 + i(T � T

y

) + TT

y

(9.5)

or

iTT

y

= T � T

y

: (9.6)

Note that in perturbation theory the LHS is O(g

2n

), while the RHS is O(g

n

). Hene this

equation implies a non-linear relation between the transition operator evaluated at di�erent

orders. At lowest order perturbation theory, the LHS vanishes and T is real, T = T

y

.

We onsider now matrix elements between the initial and �nal state,

hf jT � T

y

jii = T

fi

� T

�

if

= i hf jTT

y

jii = i

X

n

T

fn

T

�

in

: (9.7)

If we set jii = jfi, we obtain a onnetion between the forward sattering amplitude T

ii

and

the total ross setion �

tot

alled the optial theorem,

2=T

ii

=

X

n

jT

in

j

2

: (9.8)

The optial theorem relates the attenuation of a beam of partiles in the state i, dN

i

/

�j=T

ii

j

2

N

i

, to the probability that they satter into all possible states n. Its RHS is given

by the total ross setion �

tot

up to a fator depending on the ux of initial partiles and

possible symmetry fators. For the ase of two partiles in the initial state, omparison with

Eqs. (9.149) and (9.153) from the appendix shows that

=A

ii

= 2p

ms

p

s �

tot

: (9.9)

Note also that the forward sattering amplitude T

ii

means sattering without hange in any

onserved quantum number, sine we extrated already the identity part, T

ii

= (S

ii

� 1)=i.

Imaginary part of the amplitude Let us onsider the Feynman amplitude A as a omplex

funtion of the squared enter-of-mass (.m.) energy s. The threshold energy

p

s

0

in the .m.

system equals the minimal energy for whih the reation is kinematially allowed. The optial

theorem implies that A is real for s < s

0

and s 2 R. Thene s = s

�

and A(s) = [A(s)℄

�

and

therefore

A(s) = [A(s

�

)℄

�

for s < s

0

: (9.10)

If A(s) is an analyti funtion, then also [A(s

�

)℄

�

is analyti and we an ontinue this relation

into the omplex s plane. In partiular, along the real axis we have for s > s

0

<A(s+ i") = <A(s� i") and =A(s+ i") = �=A(s� i") : (9.11)

Thus starting from s

0

, the amplitude A has a disontinuity along the real s axis. Sine the

amplitude A should be single-valued, it has to ontain a branh ut along the real s axis

starting at s

0

. Feynman's m

2

� i" presription tells us then whih side of the ut we should

pik out as the \physial" one.
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9. Sattering proesses

The seond relation in (9.11) allows us to obtain the imaginary part of a Feynman amplitude

from its disontinuity,

dis(A) � A(s+ i")�A(s� i") = 2i=A(s+ i") : (9.12)

The prototype of a funtion having a disontinuity and a branh ut (along R

�

) is the loga-

rithm,

Ln(z) = Ln(re

i#

) = ln(re

i#

) + 2k�i = ln(r) + (#+ 2k�)i (9.13)

with = ln(x+ i") = �. How does an imaginary part in a Feynman diagram arise? Comparing

the relation

1

x� i"

= P

�

1

x

�

� i�Æ(x) (9.14)

with the propagator of a virtual partile, we see that virtual partiles whih propagate on-shell

lead to poles and to imaginary terms in the amplitude.

Example 9.1: Verify the optial theorem for ��! �� sattering in the ��

4

theory at O(�

2

):

The logarithmi terms in the sattering amplitude (4.74b) for �� ! �� sattering at one-loop have

the form

F (q

2

;m) =

Z

1

0

dz ln

�

m

2

� q

2

z(1� z)

�

(9.15)

with q

2

= fs; t; ug. In the physial region, the relation q

2

> 4m

2

holds only for the s hannel diagram.

The argument of the logarithm beomes negative for

z

1=2

=

1

2

h

1�

p

1� 4m

2

=s

2

i

=

1

2

�

1

2

� (9.16)

with � =

p

1� 4m

2

=s

2

as the veloity of the � partiles in the enter of mass system. Using now

=[ln(�q

2

� i")℄ = ��, the imaginary part follows as

=(A) = �

�

2

32�

2

Z

1

2

+

1

2

�

1

2

�

1

2

�

dz =

�

2

32�

� : (9.17)

The optial theorem implies thus that the total ross setion �

tot

(�� ! all) at O(�

2

) equals

�

tot

=

=A

ii

2p

ms

p

s

=

�

2

32�s

; (9.18)

where we used 2p

ms

=

p

s�. On the other hand, the Feynman amplitude at tree level is simply

A = �� and thus the elasti ross setion for �� ! �� sattering follows as �

el

= �

2

=(32�s). At

O(�

2

), the only reation ontributing to the total ross setion is elasti sattering, and thus the

two ross setions agree. Note also the treatment of the symmetry fators: In the loop diagram, the

symmetry fator S = 1=2! is already inluded, while the orresponding fator for the two idential

partiles in the �nal state is added only integrating the ross setion.

9.2. LSZ redution formula

We de�ned the generating funtional Z[J ℄ = h0;1j0;�1i

J

as the vauum-vauum transition

amplitude in the presene of a lassial soure J . Thus the generating funtional ontains the

boundary ondition �(x) ! 0 for t ! �1. We have two options to �nd a bridge between
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9.2. LSZ redution formula

S-matrix elements and the formalism we have derived up to now: One possibility is to �nd the

onnetion between the Green funtions derived from Z[J ℄ and S-matrix elements. Another

one is to de�ne �rst a new funtional Z

0

[J ℄ with the orret boundary onditions, and to

establish then the onnetion between Z[J ℄ and Z

0

[J ℄. We hoose the �rst way, restriting

ourselves for simpliity to the ase of a real salar �eld.

Let us start with the ase of a 2! 2 sattering proess. We an generate a free two-partile

1

state omposed of plane-waves by applying two reation operators on the vauum,

jk

1

;k

2

i = a

y

(k

1

)a

y

(k

2

) j0i : (9.19)

We obtain loalised wave pakets de�ning new reation operators

a

y

i

=

Z

d

3

k f

i

(k)a

y

(k) ; (9.20)

where f

i

(k) is e.g. a Gaussian entered around k

i

,

f

i

(k) / exp[�(k � k

i

)

2

=(2�

2

)℄ : (9.21)

We assume that the initial state of the sattering proess at t = �1 an be desribed by

freely propagating wave pakets,

jii = lim

t!�1

a

y

1

(t)a

y

2

(t) j0i = jk

1

;k

2

;�1i ; (9.22)

and similarly the �nal state as

jfi = lim

t!1

a

y

1

0

(t)a

y

2

0

(t) j0i = jk

1

0

;k

2

0

; +1i : (9.23)

Here we hanged to the Heisenberg piture, sine our Green funtions are time-dependent.

Our task is to onnet this transition amplitude hf jii to the orresponding four-point Green

funtion. The latter is the time-ordered vauum expetation value of �eld operators. The �rst

property, time-ordering, is automatially satis�ed for the transition amplitude hf jii, sine we

an write

hf jii = lim

t!1

h0j a

1

0

(t)a

2

0

(t)a

y

1

(�t)a

y

2

(�t) j0i (9.24a)

= lim

t!1

h0jTfa

1

0

(t)a

2

0

(t)a

y

1

(�t)a

y

2

(�t)g j0i : (9.24b)

Thus we only have to re-express the reation and annihilation operators as (projeted) �eld

operators. We de�ne a salar produt for solutions of the Klein-Gordon equation as follows,

(�; �) = i

Z

d

3

x �

�

(x)

 !

�

0

�(x) � i

Z

d

3

x

�

�

�

(x)

��(x)

�t

�

��

�

(x)

�t

�(x)

�

: (9.25)

Comparing this de�nition to Eq. (5.13), we see that the salar produt is the zero omponent

of the onserved urrent j

�

. Thus the value of the salar produt (�; �) is time-independent

and orresponds to the number of partiles minus the number of anti-partiles.

1

To redue lutter, we assume k

1

6= k

2

.
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9. Sattering proesses

For plane-wave omponents with de�nite momentum,

�

k

(x) =

1

p

(2�)

3

2!

k

e

�ikx

= N

k

e

�ikx

; (9.26)

the salar produt is given by

(�

k

; �

k

0

) = iN

k

N

k

0

Z

d

3

x

h

e

ik

0

x

(�i!

k

)e

�ikx

� i!

k

0

e

ik

0

x

e

�ikx

i

(9.27a)

= N

2

k

(2�)

3

Æ(k � k

0

)2!

k

e

i(!

k

�!

k

)t

= Æ(k � k

0

) : (9.27b)

Similarly it follows (�

�

k

; �

�

k

0

) = �Æ(k � k

0

), while the two terms in the salar produt anel

otherwise,

(�

k

; �

�

k

0

) = (�

�

k

; �

k

0

) = 0:

Thus we an invert the free �eld operator

�(x) =

Z

d

3

k

h

a(k)�

k

(x) + a

y

(k)�

�

k

(x)

i

=

Z

d

3

k

p

(2�)

3

2!

k

h

a(k)e

�ikx

+ a

y

(k)e

+ikx

i

(9.28)

to obtain

a

y

(k) = �(�

�

k

; �) = �iN

k

Z

d

3

x e

�ikx

 !

�

t

�(x) : (9.29)

Next we want to rewrite this expression in a way that shows expliitly its Lorentz invariane.

Using the identity

a

y

(k;1)� a

y

(k;�1) =

Z

1

�1

dt

�

�t

a

y

(k; t) (9.30)

we insert �rst (9.29) assuming a wave-pakage loalised around k

1

and perform then the time

di�erentiation,

a

y

(k

1

;1)� a

y

(k

1

;�1) = �i

Z

d

3

kf

1

(k)

Z

d

4

x �

t

�

e

�ikx

 !

�

t

�(x)

�

(9.31)

= �i

Z

d

3

kf

1

(k)

Z

d

4

x

�

e

�ikx

�

2

t

�(x)� �(x)�

2

t

e

�ikx

�

;

where the two terms linear in �

t

anelled. Then we use that the �eld is on-shell, k

2

= m

2

,

for the replaement

�

2

t

e

�ikx

= (r

2

�m

2

)e

�ikx

:

Sine the �eld is loalised in spae, we an perform two partial integrations moving thereby

r

2

to the left, obtaining

a

y

(k

1

;1)� a

y

(k

1

;�1) = �i

Z

d

3

kf

1

(k)

Z

d

4

x e

�ikx

�

�+m

2

�

�(x) : (9.32)

In a free theory, �(x) satis�es the Klein-Gordon equation and the RHS would vanish.

In an interating theory with e.g. L

I

= ���

4

=4!, the RHS is however proportional to

�

�+m

2

�

�(x) = ��

3

=3! 6= 0.

Having performed the partial integrations, we an forget the wave-pakets, � ! 0, and

write simply

a

y

(k;�1) = a

y

(k;1) + iN

k

Z

d

4

x e

�ikx

�

�+m

2

�

�(x) : (9.33)
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9.2. LSZ redution formula

Taking the Hermitian onjugate, we obtain for the annihilation operator

a(k;1) = a(k;�1) + iN

k

Z

d

4

x e

ikx

�

�+m

2

�

�(x) : (9.34)

When we insert these expressions into hf jii, we obtain a four-point funtion ombining the

seond terms from the RHS of (9.33) and (9.34). Inluding the terms a

y

(k;1) and a(k;�1)

generates partiles propagating from t = �1 to t = +1 with momenta unhanged, i.e.

to terms orresponding to disonneted graphs. Hene we do not need to onsider these

ontributions, restriting ourselves to onneted Green funtions. For n partiles in the initial

and m partiles in the �nal state, we obtain

hk

0

1

; : : : ;k

0

m

; +1jk

1

; : : : ;k

n

;�1i = i

n+m

n

Y

i=1

Z

d

4

x

i

N

k

i

e

�ik

i

x

i

�

�

x

i

+m

2

�

�

m

Y

j=1

Z

d

4

y

j

N

k

j

e

ik

0

j

y

j

�

�

y

j

+m

2

�

h0jTf�(x

1

) � � � �(y

m

) j0i :

(9.35)

This is the redution formula of Lehmann, Symanzik and Zimmermann (LSZ): For eah

external partile we obtained the orresponding plan wave omponent and a Klein-Gordon

operator. Sine the latter is the inverse of the free 2-point funtion, we an rephrase the

ontent of the LZS formula simply as follows: Replae the 2-point funtions of external lines

by appropriate wave funtions, e.g. �

k

(x) for salar partiles in the initial state and �

�

k

(x) for

salar partiles in the �nal state.

Sine we started from �eld operators in the Heisenberg piture, the matrix element is in

the Heisenberg piture, too. In the Shr�odinger piture, it is

hk

0

1

; : : : ;k

0

m

jiT jk

1

; : : : ;k

n

i � iT

fi

;

where we used also S = 1+ iT and the fat that we negleted disonneted parts. Finally, we

de�ne the Fourier transformed n-point funtion as

G(x

1

; : : : ; x

n

) =

Z

n

Y

i=1

d

4

k

i

(2�)

4

exp

 

�i

X

i

k

i

x

i

!

G(k

1

; : : : ; k

n

) : (9.36)

Then we obtain the LSZ redution formula in momentum spae,

iT

fi

= i

n+m

N

k

1

� � �N

k

n

N

k

0

1

� � �N

k

0

m

(k

2

1

�m

2

) � � � (k

2

n

�m

2

)(k

02

1

�m

2

) � � � (k

02

m

�m

2

)

�G(k

1

; � � � ; k

n

;�k

0

1

; : : : ;�k

0

m

) : (9.37)

The Green funtion G(k

1

; � � � ; k

n

;�k

0

1

; : : : ;�k

0

m

) is multiplied by zeros, sine the exter-

nal partiles satisfy k

2

= m

2

. Thus T

fi

vanishes, exept when poles 1=(k

2

� m

2

) of

G(k

1

; � � � ; k

n

;�k

0

1

; : : : ;�k

0

m

) anel these zeros. In the ase of external salar partiles, only

their normalisation fators are left. As they are not essential for the alulation of the tran-

sition amplitudes, one inlude these normalisation fators into the phase spae of �nal state

partile and in the ux fator of initial partiles. This explains our Feynman rule to replae

the salar propagator by one for amplitudes in momentum spae.

The derivation of the LSZ formula for partiles with spin s > 0 proeeds in the same

way. Their wave-funtions ontain additionally polarisation vetors "

�

(k), tensors "

��

(k), or
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9. Sattering proesses

spinors u(p) and �u(p) and their harge onjugated states. In the ase of a photon (graviton),

we have to add "

�

(k) ("

��

(k)) in the initial state and the omplex onjugated "

��

(k) ("

���

(k))

in the �nal state. In the ase of Dira fermions, we have to assign four di�erent spinors to the

four possible ombinations of partile and anti-partiles in the initial and �nal state. Having

hosen u(p) as partile state with an arrow along the diretion of time, the simple rule that a

fermion line orresponds to a omplex number

�

 � � � �xes the designation of the other spinors

as shown in Fig. 9.1: Conneting the upper fermion lines, �u(p

0

) � � � u(p), orresponds to the

sattering e

�

(p) + X ! e

�

(p

0

) + X

0

, while �v(q) � � � u(p) desribes the annihilation proess

e

+

(q)+e

�

(p)! X+X

0

. Conneting the lower fermion lines, �v(q) � � � v(q), orresponds to the

sattering e

+

(q) + X ! e

+

(q

0

) + X

0

, while �u(p

0

) � � � v(q) desribes the pair reation proess

X + X

0

! e

+

(q

0

) + e

�

(p

0

). Reall that the Feynman amplitude A is de�ned omitting the

normalisation fator N

p

= [2!

p

(2�)

3

℄

�1=2

from all wave-funtions|the splitting of S-matrix

elements into Feynman amplitudes and phase spae is disussed in appendix 9.A.

v̄(q)

εµ(k)

u(p)

v(q)

ε∗µ(k′)

ū(p′)

Figure 9.1.: Feynman rules for external partiles in momentum spae; initial state on the left,

�nal state on the right.

Wave funtion renormalisation Up to now we have pretended that we an desribe the �elds

in the initial and �nal state as free partiles. Although e.g. Yukawa interations between two,

by assumption, widely separated partiles at t = �1 are negligibly small, self-interations

persist. These interations lead to a renormalisation of the external wave-funtions.

We an rephrase the problem as follows: If the reation operator orresponds to the one

of a free theory, a

y

0

(k;�1), then it an only onnet one-partile states with the vauum.

In ontrast, the interating �eld an also onnet many-partile states to the vauum and

therefore its overlap with single-partile states is redued,

a

y

(k;�1) j0i =

p

Z jki+

p

1� Z

�

�

�

k

0

;k

00

;k

000

�

+ : : :

	

(9.38a)

=

p

Za

y

0

(k

1

) j0i+

p

1� Z

�

�

�

k

0

;k

00

;k

000

�

+ : : :

	

: : (9.38b)

Therefore the free and the interating �elds are onneted by

�(x)!

p

Z�

0

(x) (9.39)

for t ! �1, where we all the fator Z the wave-funtion (or the �eld-strength) renormal-

isation onstant. We will show in setion 11.4.2 that this fator an be extrated from the
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self-energy diagrams of the orresponding �eld. More preisely, inluding a fator

p

Z

k

for

eah external line of type k takes into aount self-energy orretions in the external lines.

Therefore it is enough to alulate the self-energy and to extrat

p

Z

k

one; after that we an

omit self-energy orretions in the external lines adding simply fators

p

Z

k

. Finally, note

that we an set Z = 1 in tree-level proesses, sine in perturbation theory Z = 1+O(g) holds.

9.3. Spei� proesses

We onsider now in detail a few spei� proesses. First, we derive the Klein-Nishina for-

mula for the Compton sattering ross setion using the standard \trae method". Then we

alulate polarised e

+

e

�

! �

+

�

�

and e

+

e

�

!  sattering applying heliity methods.

9.3.1. Trae method and Compton sattering

Matrix element The Feynman amplitude A of Compton sattering e

�

(p)+(k)! e

�

(p

0

)+

(k

0

) at O(e

2

) onsists of the two diagrams shown in Fig. 9.2 and is given by

iA = �ie

2

�u(p

0

)

�

"=

�0

p=+ k= +m

(p+ k)

2

�m

2

"=+ "=

p=� k=

0

+m

(p� k

0

)

2

�m

2

"=

�0

�

u(p) : (9.40)

Sine the denominator is a non-zero light-like vetor, we have omitted the i". Note that

the two amplitudes an be transformed into eah other replaing " $ "

�0

and k $ �k

0

.

This symmetry alled rossing symmetry relates proesses where a partile is replaed by an

anti-partile with negative momentum on the other side of the reation.

p+ k

p

k

p′

k′

p− k′

p

k

k′

p′

Figure 9.2.: The two Feynman diagrams ontributing to Compton sattering at O(e

2

).

We evaluate the proess in the rest-frame of the initial eletron. Then p

�

= (m;0) and

hoosing "

�

= (0; ") as well as "

0�

= (0; "

0

), it follows

p � " = p � "

0

= 0 : (9.41)

Moreover, the photons are transversely polarised,

k � " = k

0

� "

0

= 0 ; (9.42)

and we hoose real polarisation vetors. We anti-ommute p= in the numerator to the right,

p="=

0

= 2p � "

0

� "=

0

p= = �"=

0

p= and use the Dira equation, p=u(p) = mu(p). Then we simplify also
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the denominator using p

2

= m

2

and obtain

A = �e

2

�u(p

0

)

�

"=

0

k="=

2p � k

+

"=k=

0

"=

0

2p � k

0

�

u(p) : (9.43)

Typially the eletron target is not polarised, and the spin of the �nal eletron is not

measured. Thus we sum the squared matrix element over the �nal and average over the

initial eletron spin,

�

�

A

�

�

2

=

1

2

X

s;s

0

jAj

2

=

e

4

2

X

s;s
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�

�

�

�

�u(p
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)
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0
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2p � k

+
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0
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0

�

u(p)

�

�

�

�

2

: (9.44)

Calulating jAj

2

= AA

�

requires the knowledge of A

�

= A

y

. Reall that we de�ned

�

 =  

y



0

suh that a general amplitude A omposed of spinors,

A =

�

 (p

0

)� (p) =  

y

(p

0

)

0

� (p) (9.45)

with � denoting a produt of the basis elements given in Eq. (8.40), beomes

A

�

=

�

 (p)

0

�

y



0

 (p

0

) �

�

 (p)� (p

0

) : (9.46)

Important speial ases worth to memorise are 

�

= 

�

, 

5

= �

5

, and a=b= � � � z= = z= � � � b=a=.

We now write out the spinor indies,

�

�

A

�

�

2

=

e

4

2

X

s;s

0

�u

a

(p

0

)

�

"=

0
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2p � k

+
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�
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�
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2p � k
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�

d

u

d

(p

0

) : (9.47)

Using the property (8.56) of the Dira spinors,

P

s

u

a

(p; s)�u

b

(p; s

0

) = (p=+m)

ab

, we obtain

�

�
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�
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: (9.48)

Sine p=+m ombines one spinor inA and one inA

�

, the result is a trae over gamma matries,

�

�

A

�

�

2

=

e

4

8

tr

�
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+m)

�
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0
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�
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0
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+
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0

k=

0

"=

p � k

0

��

: (9.49)

Working out some more examples of this type (e.g. in problem 9.??), you should onvine

yourself that eah fermion line in A is onverted into a trae in jAj

2

. Useful identities for the

evaluation of suh traes are given in the appendix A.2.

We simplify this trae by anti-ommuting idential variables, suh that they beome neigh-

bours. Then we an use a=a= = a

2

and redue thereby the number of gamma matries in eah

step by two. Multiplying out the terms in the trae, we obtain three ontributions that we

denote by

tr f g =

S

1

(p � k)

2

+

S

2

(p � k

0

)

2

+

2S

3

(p � k) (p � k

0

)

: (9.50)

We onsider only the �rst term S

1

in detail. Starting from

S

1

= tr
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(9.51)
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we arrive at an expression with only six gamma matries. We ontinue the work,

S
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= 2 (k � p) tr
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= (9.52a)
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= 8 (k � p)
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0

� �

p
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�

+

�

p

0

� k

��

: (9.52)

where we have used "="= = "=

0

"=

0

= �1. We want to eliminate as next step the two salar produts

that inlude p

0

. Four-momentum onservation implies (p

0

� k)

2

= (p� k

0

)

2

and thus

p

0

� k = p � k

0

: (9.53)

Multiplying the four-momentum onservation equation by "

0

, it follows moreover

p+ k = p

0

+ k
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+"

0

� k = "

0

� p
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: (9.54)

Thus our �nal result for S

1

is

S

1

= 8 (k � p)

h

2

�

k � "

0

�

2

+ k

0

� p

i

: (9.55)

S

2

an be obtained observing the rossing symmetry of the amplitude by the replaements

"$ "

0

and k $ �k

0

. The ross term S

3

has to be alulated and we give here only the �nal

result for the ombination of the three terms, where some terms anel

�
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�

: (9.56)

Cross setion To obtain the ross setion, we have to alulate the ux fator and to perform

the integration over the phase spae of the �nal state,

d� =
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; (9.57)

with the �nal state phase spae d�

(n)

. The ux fator I in the rest system of the eletron is

simply

I � v
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p

1

� p

2

=m! : (9.58)

Using Eq. (??),
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the phase spae integration beomes
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The argument of the delta funtion is

�
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) : (9.62b)
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In order to evaluate the delta funtion we have to determine the derivative f

0

(!

0

),

f

0

(!

0

) = �2m� 2! (1� os#) ; (9.63)

and the zeros of f(!

0

),

0 = 2m
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0
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(1� os#) : (9.64)

Solving for !

0

gives !

0

[! (1� os#) +m℄ = m! and

!

0
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!

1 +

!

m

(1� os#)

: (9.65)

This is the famous relation for the frequeny shift of a photon found �rst experimentally

in the sattering of X-rays on eletrons by Compton 1921. The observed energy hange of

photons was ruial in aepting the quantum nature (\partile-wave duality") of photons.

Combining everything, we obtain
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and thus as di�erential Klein-Nishina ross setion
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with � � e

2

=(4�). For satterings in the forward diretion, # ! 0 and thus !

0

! !,

the sattered photon retains (in the lab frame) its energy even in the ultra-relativisti limit

! � m. The same holds in the lassial limit, ! � m, but now for all diretions. Thus we

obtain as lassial limit of the Klein-Nishina formula the polarised Thomson ross setion

d�

d
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2
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2

�

" � "

0

�

2
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2

0

�

" � "

0
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2

; (9.68)

with r

0

= �=m as the lassial eletron radius.

Averaging and summing over the photon polarisation vetors is simplest, if we hoose the

angle between " and "

0

as #. Then

X

r;r

0

�

" � "

0

�

2

= 1 + os

2

# : (9.69)

The integration over the sattering angle # an be done analytially. We use x = os# and

set ~! � !=m,

� =
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2

m

2
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(9.70a)

=
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� ln(1 + 2~!)

�

+
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2~!

�

1 + 3~!
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2

�

: (9.70b)

Sine in the eletron rest frame s = (p + k)

2

= m

2

+ 2m! = m

2

(1 + 2~!), we an use

~! = (s=m

2

� 1)=2 to express � in an expliit Lorentz invariant form.
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Approximations for the non-relativisti and the ultra-relativisti limit are

� = �

Th

�

(

1� 2~! +O(~!

2

) for ~! � 1 ;

3

8~!

�

ln(2~!) +

1

2

�

+O(~!

�2

) for ~! � 1 ;

(9.71)

where the Thomson ross setion is given by �

Th

= 8��

2

=(3m

2

). These approximations are

shown together with the exat result in the left panel of Fig. 9.3. In the ultra-relativisti

limit s � m

2

, the total ross setion for Compton sattering dereases as � / 1=s. On the

other hand, the di�erential ross setion in the forward diretion is onstant. As a result, the

relative importane of the forward region # � 0 inreases for inreasing s: While d�=dx is

symmetri around x = 0 in the lassial limit ! ! 0, it beomes more and more asymmetri

with a a shrinking peak around the forward region at # � 0, f. the right panel of Fig. 9.3.
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Figure 9.3.: Left: The total ross setion �=�

Th

as funtion of ~! together with the lassial

and ultra-relativisti limits given in Eq. (9.71). Right: The normalised di�erential

ross setion �

�1

Th

d�=dx as funtion of x = os# for ~! = 0:01, 0.1, 1, and 10 (from

top to down).

Crossing symmetry We notied that the two amplitudes in Compton sattering an be

transformed into eah other replaing "$ "

�0

and k $ �k

0

. This is an example of a general

symmetry of relativisti quantum �eld theories alled rossing symmetry. Using the Feynman

rules for in and out partiles, it follows that matrix elements where an in-going partile is

replaed by an out-going anti-partile or vie versa are related by the following substitutions,

� exhange the momentum k $ �k

0

;

� exhange partile and anti-partile wave funtions; thus in momentum spae, 1$ 1 for

spinless partiles, "$ "

�0

for spin-1 and u$ v for fermions.

� multiply by �1 for eah exhanged fermion pair.

The additional minus for fermions is required, beause the spin sums of fermions and an-

tifermions are related by

X

s

u(p; s)�u(p; s) = (p=+m) = �

�

p=

0

�m

�

= �

X

s

v(p

0

; s)�v(p

0

; s) : (9.72)
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Note that this symmetry allows us to obtain the matrix elements of di�erent proesses: For

instane, we an relate the proesses e

�

e

+

! �

�

�

+

with e

�

�

�

! e

�

�

�

and �

�

�

+

! e

�

e

+

.

Using a more formal approah, one an derive the rossing symmetry not relying on per-

turbation theory and the Feynman rules, but using the analytial properties of S-matrix

elements: The LSZ redution formula distinguishes in and out partiles only by the sign of

the momenta used in the Fourier transformation. If one an analytially ontinue the residue

of a pole in an S-matrix element from p

0

to �p

0

, then one onverts the S-matrix for a parti-

le with �(p) into the one for an anti-partile with �

�

(�p). Remarkably, the basi properties

of a relativisti quantum �eld theory, loality and ausality, are suÆient to proof that this

analytial ontinuation is possible.

Finally, note that the fator �1 for eah exhanged external fermion pair implies a relative

minus sign for diagrams onneted by rossing whih ontribute to the same proess. Thus

there is a relative minus sign between e.g. the t and the u hannel diagrams for e

�

e

�

! e

�

e

�

sattering.

9.3.2. Heliity method and polarised QED proesses

Using the trae method, the number of terms that have to be alulated grows as � n

2

with

the number n of diagrams. For large n, it should be therefore favourable to alulate the

amplitude A(s

1

; : : : ; s

f

) for �xed polarisations s

i

of the external partiles: The amplitude

is a omplex number and an be trivially squared. An eÆient way to alulate polarised

amplitudes uses heliity spinors, an approah used also in most modern omputer programs

for the alulation of sattering proesses.

Massless fermions We restrit our short introdution into heliity methods to massless

partiles. In the ase of fermions, we know that then the use of Weyl spinors in the hiral

representation is most onvenient,

u

L

(p) =

�

�

L

(p)

0

�

and u

R

(p) =

�

0

�

R

(p)

�

: (9.73)

We do not need to onsider v

L;R

(p), sine they orrespond to partile spinors of opposite

heliity, u

R;L

(p). Moreover, two out of the fours possible salar produts involving u

L;R

are

zero for massless fermions,

�u

L

(p)u

L

(q) = �u

R

(p)u

R

(q) = 0 : (9.74)

This motivates us to introdue a braket notation for the heliity spinors as follows

�u

L

(p) = hp ; �u

R

(p) = [p ; u

L

(p) = p℄ ; u

R

(p) = pi : (9.75)

We all the quantities on the RHS angle and square brakets. The only non-zero Lorentz-

invariant spinor produts are given by a pair of brakets of the same type,

�u

L

(p)u

R

(q) = hpqi and �u

R

(p)u

L

(q) = [pq℄ : (9.76)

Next we onsider the tensor produt of the spinors,

pi[p = u

R

(p)�u

R

(p) = P

R

p= ; and p℄hp = u

L

(p)�u

L

(p) = P

L

p= : (9.77)
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p2

p1

p4

p3

Figure 9.4.: Feynman diagrams for the proess e

�

e

+

! �

+

�

�

.

These identities onnet the massless spinors pi and [p to the light-like four-vetor p

�

.

We are now in position to derive some basi properties of the brakets. First, we an

onnet the two types of spinor produts as

hpqi = �u

L

(p)u

R

(q) = [�u

R

(q)u

L

(p)℄

�

= [qp℄

�

: (9.78)

Multiplying then pi[p and q℄hq and taking the trae gives

hpqi[qp℄ = trfP

R

q=P

L

p=g = trfP

R

q=p=g = 2p � q ; (9.79)

so that

jhpqij

2

= j[qp℄j

2

= 2p � q : (9.80)

Next, we express the spinor produts through Weyl spinors and use u

R

(p) = i�

2

u

�

L

(p),

hpqi = �

y

L

(p)�

R

(q) = �

�

La

(p)(i�

2

)

ab

�

�

Lb

(q) : (9.81)

Then the antisymmetry of (i�

2

)

ab

= "

ab

implies

hpqi = �hqpi and [pq℄ = �[qp℄ : (9.82)

Thus the brakets are square roots of the orresponding Lorentz vetor produts whih are

antisymmetri in their two arguments. Finally, we note that the Fierz identity applied to the

sigma matries (f. with problem 8.??),

(��

�

)

ab

(��

�

)

d

= 2(i�

2

)

a

(i�

2

)

bd

; (9.83)

allows the simpli�ation of ontrated spinor expressions,

hp

�

q℄hk

�

`℄ = 2hpki[`q℄ ; hp

�

q℄[k

�

`i = 2hp`i[kq℄ : (9.84)

e

�

e

+

! �

�

�

+

sattering It is now time to apply this new \braket" formalism. We

onsider the tree-level amplitude for, e.g., e

�

L

(1)e

+

R

(2) ! �

�

L

(3)�

+

R

(4) in QED, given by the

single diagram shown in Fig. 9.4. As it is standard using this formalism, we onsider all

momenta as outgoing. Then the amplitude is

iA = (�ie)

2

�i

q

2

�u

L

(3)

�

u

L

(4) �u

L

(2)

�

u

L

(1) (9.85a)

=

ie

2

q

2

h3

�

4℄h2

�

1℄ =

2ie

2

q

2

h32i[14℄ ; (9.85b)
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where we have employed the Fierz identity (9.83) in the last step. Sine h32i and [14℄ are

both square roots of

u = (k

2

+ k

3

)

2

= (k

1

+ k

4

)

2

; (9.86)

we an replae them by the Mandelstam invariant u. We onsider the proess in the m frame

of the e

+

e

�

pair. With u = �2E

2

(1 + os#), and q

2

= s = 4E

2

, the amplitude beomes

jiAj

2

= e

4

(1 + os#)

2

: (9.87)

You should re-derive this result using the more familiar trae formalism and ompare the

amount of algebra required in the two approahes (problem 9.??).

Massless gauge bosons In the next step, we inorporate massless gauge bosons as the

photon into this framework. We laim that the polarisation vetors of a massless vetor

boson in the �nal-state an be represented as

�

��

R

(k) =

1

p

2

hr

�

k℄

hrki

; �

��

L

(k) = �

1

p

2

[r

�

ki

[rk℄

: (9.88)

Here, k is the momentum of the vetor boson, and r is a �xed light-like 4-vetor, alled the

referene vetor, whih is assumed to be not ollinear with k.

Now we show that this de�nition makes sense: First, we note that the vetors satisfy

["

�

R

(k)℄

�

= "

�

L

(k). One an also hek that the polarisation vetors are orretly normalised.

Moreover, the Dira equation, k= k℄ = 0, guaranties that the polarisation vetors (9.88) are

transverse,

k

�

"

��

R;L

(k) = 0 : (9.89)

Finally, we have to show that a hange from one referene vetor r to another light-like vetor

s orresponds to a gauge transformation and thus does not a�et physis. The hange of a

polarisation vetor under a hange of referene vetor r! s is

"

��

R

(k; r)� "

��

R

(k; s) =

1

p

2

�

hr

�

k℄

hrki

�

hs

�

k℄

hski

�

(9.90a)

=

1

p

2

1

hrkihski

�

� hr

�

k℄hksi+ hs

�

k℄hkri

	

: (9.90b)

Now we use �rst the tensor produts (9.77), and then the antisymmetry of the brakets,

"

��

R

(k; r)� "

��

R

(k; s) =

1

p

2

1

hrkihski

�

� hr

�

k=si+ hs

�

k=ri

	

(9.91a)

=

1

p

2

1

hrkihski

�

hs(k=

�

+ 

�

k=)ri

	

(9.91b)

=

1

p

2

1

hrkihski

hsri 2k

�

: (9.91)

In the last line, we have applied the Cli�ord algebra of Dira matries. Thus the di�erene of

the polarisation vetors indued by a hange of the referene vetor is a funtion proportional

to the photon momentum,

"

��

R

(k; r)� "

��

R

(k; s) = f(r; s)k

�

: (9.92)

Contrated into an on-shell amplitude, A = "

�

A

�

, urrent onservation implies that this

expression vanishes. Thus we an use the most onvenient referene vetor s whih an be

hosen di�erently in any gauge-invariant subset of Feynman diagrams.
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p1

p2

p3

p4

p1

p2

p4

p3

Figure 9.5.: Feynman diagrams for the proess e

�

e

+

! .

e

�

e

+

!  sattering As seond example, we onsider now a sattering proess with

photons as external partiles, e

�

e

+

! , as illustration for the use of the polarisation

vetors. We label the momenta as in Fig. 9.5, taking all momenta as outgoing. Then the

amplitude for this proess is

iA = (�ie)

2

h2

�

"=(4)

i(2=+ 4=)

s

24

"=(3) + "=(3)

i(2=+ 3=)

s

23

"=(4)

�

1℄ ; (9.93)

where we use the shorthand 2=+ 4= for k=

2

+ k=

4

and de�ne s

ij

= (i+ j)

2

.

There are four possible hoies for the photon polarisations. Exhanging the momenta

3 and 4 relates the ases 

R



L

and 

L



R

, while parity onnets 

R



R

and 

L



L

. We start

showing that the latter two amplitudes are zero in the massless limit we onsider. Considering



R



R

, we hoose as referene vetor r = 2 for both polarisation vetors,

"

�

(3) =

1

p

2

[2

�

3i

[23℄

; "

�

(4) =

1

p

2

[2

�

4i

[24℄

: (9.94)

Inserting the polarisation vetors into Eq. (9.93), we obtain using the Fierz identity (9.83)

h2

�

"

�

(4) / h2

�

[2

�

4i = 2h22i[4 = 0 : (9.95)

In the last step, we used the antisymmetry of the brakets, h22i = 0. A similar anellation

ours with "(3) and hene the entire matrix element vanishes. Parity implies then that the

amplitudeA(

L



L

)vanishes too. Alternatively, we an show the same anellation using r = 1

in both polarisation vetors.

Next we ompute the amplitude for the ase 

R



L

, hoosing

"

�

(3) =

1

p

2

[2

�

3i

h23i

and "

�

(4) = �

1

p

2

[1

�

4i

[14℄

: (9.96)

Then the seond diagram in Fig. 9.5 vanishes beause of (9.95). Using the Fierz identity, the

�rst diagram results in

iA =

�ie

2

s

24

2 � 2

(�2)h23i[14℄

h24i[1(2=+ 4=)2i[31℄ : (9.97)

Now we use the Dira equation, 2=2i = 0, and replae the vetor 4=

L

by an angle braket,

iA =

2ie

2

s

13

h23i[14℄

h24i[14℄h42i[31℄ =

2ie

2

h13i[31℄h23i

h24ih42i[31℄ = 2ie

2

h24i

2

h23i

2

: (9.98)
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Finally, we introdue Mandelstam variables, s

23

= u, s

13

= s

24

= t, reproduing the standard

result

jiAj

2

= 4e

4

t

u

= 4e

4

1� os#

1 + os#

: (9.99)

This short introdution into heliity methods onvined you hopefully of their eÆieny.

The advantage of this method over the traditional trae method inreases with the number of

diagrams involved, sine the step A ! jAj

2

is trivial in this approah. Massive fermions an

be treated using the heliity states (A.17), and eÆient extensions to massive gauge bosons

exist.

9.4. Soft photons and gravitons

The addition of a vertex introdues typially a fator �=� � 0:2% into a QED ross setion.

Thus one may hope that perturbation theory in QED onverges, at least initially, reasonably

fast. An exeption to this rule is the emission of an additional soft or ollinear photon from

an external line shown in Fig. 9.6. The denominator of the additional propagator goes for

k ! 0 to

1

(p+ k)

2

�m

2

!

1

2p � k

�

1

2E!(1 � os#)

; (9.100)

where we assumed jpj � m in the last step. Hene the denominator an blow up in two

di�erent limits: Firstly, in ase of emission of soft photons, ! ! 0. Seondly, in ase of

ollinear emission of photons, # ! 0, if the mass of the emitting partile an be negleted.

We have seen in the example of Compton sattering that both soft and ollinear emission

orrespond to the lassial limit.

p+k
p

k

Figure 9.6.: Emission of an additional soft or ollinear photon from an external line in the

�nal state.

Universality and fatorisation The fat that a photon sees in the soft limit k ! 0 a lassial

urrent should lead to onsiderable simpli�ations: In partiular, interferene e�ets should

disappear and the amplitude A

n+1

for the emission of an additional soft photon should fa-

tories into an universal fator "

�

S

�

and the amplitude A

n

for the original proess.

Let us start onsidering the emission of a soft photon by a spinless partile. If a salar in

the �nal state with momentum p and harge q emits a photon with momentum k ! 0, then

2

A

n+1

= q

"

�

(2p

�

+ k

�

)

(p� k)

2

�m

2

+ i"

A

n

! �q

" � p

p � k � i"

A

n

: (9.101)

2

We use the Feynman rule for a ��A

�

vertex derived in problem 7.??.
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9.4. Soft photons and gravitons

For the emission of a soft photon from an initial state partile, the orresponding fator is

+q " � p=(p � k + i"). In the ase of an internal line, in general no fator (p � k)

�1

appears for

k ! 0, sine the virtual partile is o�-shell.

For a spin-1/2 partile in the initial state, the emission of a soft photon adds the fator

q

"

�

�u(p; s)

�

(p= + k= +m)

(p� k)

2

�m

2

+ i"

! �q

"

�

�u(p; s)

�

(p= +m)

�2p � k + i"

(9.102)

to the amplitude A

n

. Now we replae p=+m by the spin sum

P

s

u(p; s)�u(p; s), and use

�u(p; s)

�

u(p; s

0

) = 2E

p

p

�

p

0

Æ

s;s

0

= 2p

�

Æ

s;s

0

: (9.103)

This relation an be heked by diret alulation, or by noting that the urrent j

�

=

�u(p; s)

�

u(p; s) should beome j

�

= (�; �v) in the lassial limit k ! 0. Thus we obtain

the same universal fator desribing the emission of a soft photon,

S

�

= �q

p

�

p � k � i"

; (9.104)

as in the ase of a salar. Moreover, we on�rmed that the amplitude indeed fatorises,

A

n+1

= "

�

S

�

A

n

� "

�

A

�

n+1

. If we allow for the emission of m soft photons from external

partiles with harge q

i

, then

A

�

1

����

m

n+m

!

m

X

i=1

s

i

q

i

p

�

m

p � k + is

i

"

A

n

; (9.105)

where the signs are s

i

= �1 for an initial and s

i

= +1 for a �nal state partile.

We have seen that the polarisation vetor "

�

(k) of a photon does not transform as a four-

vetor, f. Eq. (7.23), but aquires a term proportional to k

�

. As we exploited already at

various plaes, amplitudes ontaining polarisation vetors "

�

(k) of external photons have to

vanish therefore when ontrated with k

�

. Thus Eq. (9.105) implies in the limit k ! 0

k

�

j

A

�

1

����

m

n+m

!

m

X

i=1

s

i

q

i

A

n

= 0 : (9.106)

The prefator of A

n

is the total harge in the �nal state minus the total harge in the initial

state. In order to obtain a Lorentz invariant matrix element for the soft emission of massless

spin-1 partiles, we have therefore to require that suh partiles ouple to a onserved harge,

X

i

q

i

=

X

f

q

f

:

Thus Lorentz invariane is suÆient to guaranty the onservation of the eletromagneti

urrent in the low-energy limit. While this argument does not rely on gauge invariane, it

tells us nothing about the behaviour of \hard" photons.
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Spin s > 1 We an apply the same line of arguments to the emission of massless partiles

with spin s > 1. In the ase of gravitons, s = 2, one �nds that the universal fator beomes

S

��

= �f

p

�

p

�

p � k � is"

; (9.107)

where f denotes the oupling to the graviton. Requiring again that an amplitude ontaining

the polarisation tensor "

��

(k) of external gravitons vanishes when ontrated with k

�

gives

the onstraint

k

�

j

A

�

1

����

m

n+m

!

m

X

i=1

s

i

f

i

p

�

i

A

n

= 0 : (9.108)

Now the sum

P

i

f

i

p

�

i

is onserved. For f

i

6= f

j

, a linear ombination of the individual

four-momenta other than the total four-momentum would be onserved in the sattering

proess|a ondition whih is not possible to satisfy in a non-trivial sattering proess. Thus

we have to onlude that any massless s = 2 partile has a universal oupling to all types

of partile. Realling from (5.21) the form of the stress tensor, T

��

= 2N

2

p

�

p

�

, we see

moreover that a massless spin-2 partiles ouples with universal strength to the stress tensor,

S

��

/ T

��

. This result an be viewed as the basis of the weak equivalene priniple. Going

further to s = 3, the universal fator beomes S

���

/ p

�

p

�

p

�

, requiring that sums quadrati

in the momenta,

P

i

~

f

i

p

�

i

p

�

i

, are onserved. This is not possible for any sattering angles

exept # = 0 and 180

Æ

, and thus no onsistent theory of interating massless partiles with

spin s � 2 is possible.

Bremsstrahlung We disuss now as a onrete example the ase of bremsstrahlung, i.e.

the emission of a real photon in the sattering of a harged partile in the Coulomb �eld

A

0

= �Ze=(4�jxj) of a stati nulei with harge Ze. The S-matrix element of this proess is

iS

fi

= 2�Æ(E

0

+ ! �E

0

)

�Ze

3

jqj

2

�u(p

0

)

�

"=

p=

0

+ k= +m

2p

0

� k



0

+ 

0

p=� k= +m

�2p � k

"=

�

u(p) ; (9.109)

where 1=jqj

2

is the Fourier transform of A

0

. Note that the external �eld breaks translation

invariane and the momentum is not onserved. We ommute now p= and p=

0

,

iS

fi

/ e

2

�u(p

0

)

�

2" � p

0

� (p=

0

�m)"=+ k="=

2p

0

� k



0

+ 

0

2" � p� "=(p=�m) + k="=

�2p � k

�

u(p) ; (9.110)

suh that we an use in the next step the Dira equation. Negleting additionally in the soft

limit the k= term in the numerator, we �nd

iS

fi

/ e

2

�u(p

0

)

0

u(p)

�

" � p

0

p

0

� k

�

" � p

p � k

�

: (9.111)

As we have shown in the previous paragraph in general, the amplitude fatorises into the

amplitude desribing the \hard" proess and the universal orretion term. The latter onsists

of the two terms expeted for the emission of a soft photon from an initial line with momentum

p and a �nal line with momentum p

0

. The probability P for the emission of an additional soft

photon is given integrating the square braket over the phase spae,

dP

n+1

=

d�

n+1

d�

n

=

�

" � p

0

p

0

� k

�

" � p

p � k

�

2

d

3

k

(2�)

3

2!

k

/

d!

k

!

k

: (9.112)
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This probability diverges for ! ! 0 and therefore the proess is alled infrared (IR) divergent.

The resolution to this IR problem lies in the fat that soft photons with energy below the

energy resolution E

th

of the used detetor are not detetable. Therefore the emission of n real

soft photons with E < E

th

is indistinguishable from the sattering proess inluding virtual

photons and thus these ross setions should be added. The IR divergenes in the real and

virtual orretions anel, leading to a �nite result for the ombined ross setion. We will

disuss a detailed example for how this anellation works in hapter 17.3.

9.A. Appendix: Deay rates and ross setions

We establish �rst the onnetion between the normalised transition matrix elementM and the Feyn-

man amplitude A, where the normalisation fators of external partiles are omitted. Then we derive

deay rates and ross setions desribing 1! n and 2! n proesses.

Normalisation We have split the sattering operator S into a diagonal part and the transition

operator T , S = 1 + iT . Taking matrix elements, we obtain

S

fi

= Æ

fi

+ (2�)

4

Æ

(4)

(P

i

� P

f

)iM

fi

(9.113)

where we set also T

fi

= (2�)

4

Æ

(4)

(P

i

� P

f

)M

fi

.

The Feynman amplitude A neglets all normalisation fators of external partiles, while the matrix

element T

fi

de�ned by (9.37) and thus M

fi

ontains a fator N

k

for eah external partile. Thus

the transition between the matrix element M

fi

and the Feynman amplitude A for a proess with n

partiles in the initial and m in the �nal states is given by

M

fi

=

n

Y

i=1

(2E

i

V )

�1=2

m

Y

f=1

(2E

f

V )

�1=2

A

fi

: (9.114)

Here we hanged also to a �nite normalisation volume, 2E

p

(2�)

3

! 2E

p

V what makes de�ning deay

rates and ross setions easier.

9.A.1. Deay rate

We onsider the deay of a partile into n partiles in the �nal state. Squaring the sattering amplitude

S

fi

for i 6= f using (2�)

4

Æ

(4)

(0) = V T gives as di�erential transition probability

dW

fi

= (2�)

4

Æ

(4)

(P

i

� P

f

)V T jM

fi

j

2

n

Y

f=1

V d

3

p

f

(2�)

3

: (9.115)

The deay rate or deay width d� is the transition probability per time,

d�

fi

= lim

T!1

dW

fi

T

= (2�)

4

Æ

(4)

(P

i

� P

f

)V jM

fi

j

2

n

Y

f=1

V d

3

p

f

(2�)

3

: (9.116)

Going over to the Feynman amplitude A eliminates the volume fators V ,

d�

fi

= (2�)

4

Æ

(4)

(P

i

� P

f

)

1

2E

i

jA

fi

j

2

n

Y

f=1

d

3

p

f

2E

f

(2�)

3

: (9.117)
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Moreover, the phase spae integrals in the �nal state are now Lorentz invariant, d

3

p

f

=(2E

f

). Intro-

duing the n-partile phase spae volume

d�

(n)

= (2�)

4

Æ

(4)

(P

i

� P

f

)

n

Y

f=1

d

3

p

f

2E

f

(2�)

3

; (9.118)

the deay rate beomes

d�

fi

=

1

2E

i

jA

fi

j

2

d�

(n)

: (9.119)

Sine both jA

fi

j

2

and the phase spae d�

(n)

are Lorentz invariant, the deay rate � / 1=E

i

= 1=(

i

m

i

)

shows expliitly the time dilation e�et for a moving partile. Finally, we note that a symmetry fator

S = 1=n! has to be added to the total deay width or ross setion, if there are n idential partiles in

the �nal state.

Two-partile deays We evaluate the two partile phase spae d�

(2)

in the rest frame of the

deaying partile,

d�

(2)

= (2�)

4

Æ(M �E

1

�E

2

) Æ

(3)

(p

1

+ p

2

)

d

3

p

1

2E

1

(2�)

3

d

3

p

2

2E

2

(2�)

3

(9.120)

We perform the integration over d

3

p

1

using the momentum delta funtion. In the resulting expression,

d�

(2)

=

1

(2�)

2

1

4E

1

E

2

Æ(M �E

1

�E

2

) d

3

p

2

; (9.121)

E

1

is now a funtion of p

2

, E

2

1

= p

2

2

+m

2

1

. Introduing spherial oordinates, d

3

p

2

= d
p

2

2

dp

2

,

d�

(2)

=

1

(2�)

2

d


Z

1

0

Æ(M �E

1

�E

2

)

p

2

2

dp

2

4E

1

E

2

; (9.122)

and evaluating the delta funtion with M �E

1

�E

2

=M � x and dp

2

=dx = p

2

x=(E

1

E

2

) gives

d�

(2)

=

jp

0

ms

j

4�

2

d
 ; (9.123)

where

p

2

ms

=

�(s;m

2

1

;m

2

2

)

4s

=

1

4M

2

�

M

2

� (m

1

+m

2

)

2

� �

M

2

� (m

1

�m

2

)

2

�

(9.124)

is the ms momentum of the two �nal state partiles. The Kibble funtion �(x; y; z) satis�es

�(x; y; z) =

�

(x

2

+ y

2

+ z

2

)� 2xy � 2yz � 2xz

�

1=2

(9.125a)

=

�

x

2

� (

p

y +

p

z)

2

�

1=2

�

x

2

� (

p

y �

p

z)

2

�

1=2

: (9.125b)

Three-partile deays The three partile phase spae d�

(3)

is in the rest-frame of the deaying

partile given by

d�

(3)

= (2�)

4

Æ(M �E

1

�E

2

�E

3

) Æ

(3)

(p

1

+ p

2

+ p

3

)

d

3

p

1

2E

1

(2�)

3

d

3

p

2

2E

2

(2�)

3

d

3

p

3

2E

3

(2�)

3

: (9.126)

We an use again the momentum delta funtion to perform the integration over d

3

p

3

,

d�

(3)

=

1

(2�)

5

Æ(M �E

1

�E

2

�E

3

)

d

3

p

1

d

3

p

2

8E

1

E

2

E

3

; (9.127)
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To proeed we have to know the dependene of the matrix element on the integration variables. If

there is no preferred diretion (either for salar partiles or after averaging over spins), we obtain

d�

(3)

=

1

8(2�)

5

4�p

2

1

dp

1

2�d os#dp

2

E

1

E

2

E

3

Æ(M �E

1

�E

2

�E

3

) (9.128a)

=

1

32�

3

p

1

dp

1

(p

1

p

2

d os#)(p

2

dp

2

)

E

1

E

2

E

3

Æ(M �E

1

�E

2

�E

3

) : (9.128b)

We rewrite next the momentum integrals as energy integrals. The energy-momentum relation E

2

i

=

m

2

i

+ p

2

i

gives E

i

dE

i

= p

i

dp

i

for i = 1; 2. Furthermore,

E

2

3

= (p

1

+ p

2

)

2

+m

2

3

= p

2

1

+ p

2

2

+ 2p

1

p

2

os#+m

2

3

(9.129)

and thus E

3

dE

3

= p

1

p

2

d os# for �xed p

1

;p

2

. Performing the angular integral, we obtain

d�

(3)

=

1

32�

3

dE

1

dE

2

dE

3

Æ(M �E

1

�E

2

�E

3

) ; (9.130)

and �nally

d�

(3)

=

1

32�

3

dE

1

dE

2

: (9.131)

The last step is only valid, if the argument of the delta funtion is non-zero. Thus the remaining task

is to determine the boundary of the integration domain. Let us hoose E

1

as the outer integration

variable. Then we have to determine the allowed range of E

2

for a given value of E

1

. Inserting energy

and momentum onservation into E

2

3

= p

2

3

+m

2

3

, we obtain

(M �E

1

�E

2

)

2

= m

2

3

+ p

2

1

+ p

2

2

+ 2p

1

� p

2

: (9.132)

The extrema orrespond to

p

1

� p

2

= �jp

1

jjp

2

j = �

q

(E

2

1

�m

2

1

)(E

2

2

�m

2

2

) : (9.133)

Inserting them into Eq. (9.132), we obtain the urve de�ning the boundary of the integration area as

funtion of E

1

and E

2

,

M

2

� 2M(E

1

+E

2

) + 2E

1

E

2

+m

2

1

+m

2

2

�m

2

3

= �

q

(E

2

1

�m

2

1

)(E

2

2

�m

2

2

) : (9.134)

In order to visualise the integration area easier, we set �rst m

1

= m

2

= 0. Then the equation with

the plus sign beomes E

2

=M=2+m

2

3

=(4E

1

� 2M), while the equation with the minus sign simpli�es

to a straight line E

2

= �E

1

+M=(2� 2m

2

3

=M

2

). The resulting integration area is shown in Fig. 9.7

for m

3

=M = 0:1. Setting also m

3

= 0, the integration area is a triangle in the E

1

{E

2

plane.

If one prefers Lorentz invariant integration variables, one an introdue the invariant mass of the

pair (i; j)

m

2

23

= (p� p

1

)

2

= (p

2

+ p

3

)

2

=M

2

� 2ME

1

+m

2

1

(9.135a)

m

2

13

= (p� p

2

)

2

= (p

1

+ p

3

)

2

=M

2

� 2ME

2

+m

2

2

(9.135b)

m

2

12

= (p� p

3

)

2

= (p

1

+ p

2

)

2

=M

2

� 2ME

3

+m

2

3

; (9.135)

Beause of m

2

23

+m

2

13

+m

2

12

= M

2

+m

2

2

+m

2

3

, only two out of the three variables are independent.

They an be used to to replae E

1

and E

2

in Eq. (9.131).
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Figure 9.7.: Phase-spae boundary for m

3

=M = 0:1 (left). and m

3

= 0 (right); in both ases

we set m

1

= m

2

= 0.

9.A.2. Cross setions

We onsider now the interation of two partiles in the rest system of either partile 1 or 2. For

simpliity, we onsider two uniform beams. They may produe n �nal state partiles. The total

number of suh satterings is

dN / v

M�l

n

1

n

2

dV dt (9.136)

where n

i

is the density of partile type i = 1; 2. The M�ller veloity v

M�l

is a quantity whih oinides

in the rest frame of partile 1 or 2 with jv

2

j and jv

1

j, respetively. Therefore it is often denoted simply

as relative veloity v

rel

. The proportionality onstant in (9.136) has the dimension of an area and is

alled ross setion �. We de�ne in the rest system of either partile 1 or 2

dN = �v

M�l

n

1

n

2

dV dt ; (9.137)

while we set in an arbitrary frame

dN = An

1

n

2

dV dt : (9.138)

We determine now A. Sine both dN and dV dt = d

4

x are Lorentz invariant, the expression An

1

n

2

has to be Lorentz invariant too. The densities transform as

n

i

= n

i;0

 = n

i;0

E

i

m

i

; (9.139)

and thus the expression

A

E

1

E

2

p

1

� p

2

(9.140)

is also Lorentz invariant. In the rest system of partile 1, it beomes

A

E

1

E

2

E

1

E

2

� p

1

p

2

= A = �v

M�l

: (9.141)

Thus we found that A in an arbitrary frame is given by

A = �v

M�l

p

1

� p

2

E

1

E

2

: (9.142)

We still have to determine v

M�l

: In the rest frame 1, we have

p

1

� p

2

= m

1

E

2

= m

1

m

2

q

1� v

2

M�l

: (9.143)
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Thus the M�ller veloity is given in general by

v

M�l

=

s

1�

m

2

1

m

2

2

(p

1

� p

2

)

2

: (9.144)

Sine this expression is Lorentz invariant, we see that the notion of the M�ller veloity as relative

veloity is misleading.

Next we de�ne the ux fator

I � v

M�l

p

1

� p

2

=

q

(p

1

� p

2

)

2

�m

2

1

m

2

2

: (9.145)

Inserting (9.142) for A together with the de�nition of I into (9.138), we obtain

dN = �

I

E

1

E

2

V

(n

1

V )(n

2

dV )dt : (9.146)

Here, we re-grouped the terms to make lear that after integration the total number N of sattering

events is proportional to the number N

1

= n

1

V and N

2

=

R

n

2

dV of partiles of type 1 and 2,

respetively. The number N of sattering events per time and per partiles 1 and 2 is however simply

the transition probability per time,

dW

fi

T

=

dN

N

1

N

2

T
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I

E

1

E

2

V

: (9.147)

Inserting the expression (9.116) for dW

fi

, we �nd

d� =
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: (9.148)

Changing from the normalised matrix element M to the Feynman amplitude A introdues a fator

(2E

1

V )

�1

(2E

2

V )

�1

for the initial state and

Q

f

(2E

f

V )

�1

for the �nal state. Thus the arbitrary

normalisation volume V anels and we obtain
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4I
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i
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f

2E

f
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4I

jA

fi

j

2

d�
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(9.149)

with the �nal state phase spae d�

(n)

. The three piees omposing the di�erential ross setion, the

ux fator I , the Feynman amplitude A, and the �nal state phase spae d�

(n)

, are eah Lorentz

invariant.

2{2 sattering For a 1+2! 3+4 sattering proess, it is useful to introdue Mandelstam variables

s; t, and u as

s = (p

1

+ p

2

)

2

= (p

2

+ p

4

)

2

; (9.150)

t = (p

1

� p

3

)

2

= (p

2

� p

4

)

2

; (9.151)

u = (p

1

� p

4

)

2

= (p

2

� p

3

)

2

: (9.152)

Sine s+ t+ u =

P

4

i=1

m

2

i

, the sattering amplitude A depends only on two variables, e.g A(s; t). In

the ms, the ux fator beomes

I

2

= (p

1

� p

2

)

2

�m

2

1

m

2

2

= p

2

ms

(E

1

+E

2

)

2

= p

ms

p

s : (9.153)

Adding the expression for the 2-partile phase spae gives

d�

d


=

1

64�

2

s

p

0

ms

p

ms

jA

fi

j

2

: (9.154)
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Here the m momentum of the initial state is p

2

ms

= �(s;m

2

1

;m

2

2

)=(4s), while p

02

ms

= �(s;m

2

3

;m

2

4

)=(4s)

is the one of the �nal state. Using as variable the momentum transfer t, the di�erential ross setion

beomes

d�

dt

=

1

64�sp

2

ms

jA

fi

j

2

; (9.155)

where the allowed range of t has to be determined from Eq. (9.151) and �1 � os# � 1.

The optial theorem onnets the imaginary part of the forward amplitude =T

ii

with the total ross

setion as

�

tot

=

=T

ii

�

1=2

(s;m

2

1

;m

2

2

)

: (9.156)

Summary

The LSZ redution formula shows that S-matrix elements are obtained from onneted Green

funtions by a replaement of the propagators on external lines with the orresponding wave-

funtions times the wavefuntion renormalisation onstant

p

Z. Cross setions are alulated

from the squared Feynman amplitude A, the �nal state phase spae d�

(n)

and the ux fator

I, whih are all three Lorentz-invariant. Squared Feynman amplitudes an be obtained using

\Casimir's trik". If the number of diagrams inreases, it is more onvenient to alulate

diretly the amplitude using heliity methods.

The amplitude for the emission of additional soft partiles fatorises in the amplitude of

the hard proess and an universal fator. Lorentz invariane requires that a massless spin-1

partile ouples in the low-energy limit to a onserved harge, while a massless spin-2 partile

has to ouples with universal strength to the energy-momentum stress tensor.

Further reading

[Ste93℄ disusses the optial theorem and its onnetion to ut diagrams in more detail. The

LSZ formula for partiles with spin s > 0 is presented e.g. in [GR08℄, while [BL93℄ derive

S-matrix elements de�ning a new funtional Z

0

[J ℄ with the orret boundary onditions.

For additional information about the heliity formalisms see [Hab94℄ and [Pes11℄ from whih

our examples are taken. [A

+

12℄ provide a tutorial for several software tools useful for the

alulation of sattering proesses. The disussion of soft photon emission follows losely the

original disussion of [Wei65℄, for an introdution see [Whi15℄.
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10. Gauge theories

We disuss in this hapter �eld theories in whih the Lagrangian is invariant under a on-

tinuous group of loal transformations in internal �eld spae. The symmetry group of these

transformations is alled the gauge group and the vetor �elds assoiated to the generators of

the group the gauge �elds. We introdue as a �rst step unbroken gauge theories, i.e. theories

with massless gauge bosons, and defer the more omplex ase of broken gauge symmetries to

the hapters 13 and ??. The Standard Model (SM) of partile physis ontains with quantum

eletrodynamis (QED) and quantum hromodynamis (QCD) two examples for unbroken

gauge theories. While QED is an abelian gauge theory based on the gauge group U(1), QCD

whih desribes the strong interations is an non-abelian gauge theory with group SU(3).

Non-abelian gauge theories were �rst studied by Yang and Mills and are therefore also often

alled Yang-Mills theories. The struture of Yang-Mills theories has many similarities with

gravity. We use this property to introdue the urvature of a spae-time as the analogue of

the �eld-strength in the Yang-Mills ase.

10.1. Eletrodynamis as abelian gauge theory

In lassial eletrodynamis, the �eld-strength tensor F

��

= �

�

A

�

� �

�

A

�

is an observable

quantity, while the potential A

�

is merely a onvenient auxiliary quantity. From its de�nition

as an antisymmetri tensor, it is lear that F

��

is invariant under loal gauge transformations

A

�

(x)! A

0

�

(x) = A

�

(x)� �

�

�(x) (10.1)

of the potentials. Thus A

0

�

(x) is for any smooth �(x) physially equivalent to A

�

(x), leading

to the same �eld-strength tensor and thus e.g. to the same Lorentz fore on a partile.

Consider now e.g. a free Dira �eld  (x) with eletri harge q. We saw already that this

�eld is invariant under global phase transformations exp[iq�℄ 2 U(1), implying a onserved

urrent j

�

=

�

 

�

 via Noether's theorem. Can we promote this global U(1) symmetry to a

loal one,

 (x)!  

0

(x) = U(x) (x) = exp[iq�(x)℄ (x) ; (10.2)

by making the phase U spae-time dependent as in (10.1)? The partial derivatives in the

Dira Lagrangian will lead to an additional term / �

�

U(x), destroying the invariane of the

free Lagrangian. However, if we add a �eld A

�

(x) whih transforms as de�ned in (10.1) and

ouples to the Noether urrent j

�

of the omplex �eld as L

I

= �q j

�

A

�

, the two gauge-

dependent terms will anel. Thus loal U(1) gauge invariane of the Dira �eld requires the

existene of a massless gauge boson and �xes its interation with matter: The oupling of

matter to photons is obtained by replaing the normal derivative by the ovariant derivative,

�

�

! D

�

= �

�

+ iqA

�

; (10.3)
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whih transforms as the matter �elds,

D

�

 (x)! D

0

�

 

0

(x) = f�

�

+ iq[A

�

(x)� �

�

�(x)℄g exp[iq�(x)℄ (x) = (10.4)

= exp[iq�(x)℄f�

�

+ iqA

�

(x)℄g (x) = U(x)D

�

 (x) : (10.5)

We an rewrite the gauge transformation of A

�

as

A

�

(x)! A

0

�

(x) = A

�

(x)� �

�

�(x) = A

�

(x)�

i

q

U(x)�

�

U

y

(x) ; (10.6)

expressing the hange ÆA

�

(x) through the group elements U(x). Finally, we note that we an

onnet the �eld-strength tensor to the ommutator of ovariant derivatives,

[D

�

;D

�

℄ = iq([�

�

; A

�

℄� [�

�

; A

�

℄) = iq (�

�

A

�

� �

�

A

�

) = iq F

��

: (10.7)

To summarise: The invariane of omplex (salar or Dira) �elds under global phase transfor-

mations exp[iq�℄ 2 U(1) implies a onserved urrent, promoting it to a loal U(1) symmetry

requires the existene of a massless U(1) gauge boson oupled via gauge-invariant derivatives

to these �elds.

10.2. Non-abelian gauge theories

10.2.1. Gauge invariant interations

We want to generalise now eletrodynamis, using as symmetry group instead of the abelian

group U(1) larger groups like SO(n) or SU(n). A group like SU(n) will desribe the intera-

tions of n

2

� 1 gauge bosons with matter, using as a single parameter the gauge oupling g.

The gauge transformations will moreover mix fermions living in the same representation of

the group, requiring that these fermions have the same interations and the same mass if the

symmetry is unbroken. In this way, non-abelian gauge theories lead to a partial uni�ation of

matter �elds and interations. Note the di�erene to an abelian symmetry: The emission of a

photon does not hange any quantum number (apart from the momentum) and thus does not

\mix" di�erent partiles. Therefore there is also no onnetion between the eletri harge of

di�erent partiles.

The two non-abelian groups used in the SM are SU(2) for weak and SU(3) for strong inter-

ations. A matrix representation for the fundamental representation of these two groups are

the Pauli matries, T

a

= �

a

=2, and the Gell-Mann matries, T

a

= �

a

=2, respetively. Un-

der the fundamental representation the fermions transform as doublets for SU(2), as triplets

for SU(3), et. Sine the number of generators is m = n

2

� 1 for SU(n), the groups SU(2)

ontains three gauge bosons, while SU(3) ontains eight bosons arrying strong interations.

The most important di�erene of these non-abelian groups ompared to U(1) is that the gen-

erators T

a

� T

a

ij

of suh groups do not ommute with eah other. As a result, we may expet

that both the expression for the �eld-strength tensor, Eq. (7.11), and the transformation law

for the gauge �eld, Eq. (7.12), beomes more ompliated. In ontrast, we postulate that

the replaement �

�

! D

�

and the interation law j

�

A

�

of gauge bosons with matter remain

valid, with the sole di�erene that now A

�

= A

a

�

T

a

. Thus A

�

is a Lorentz vetor with values

in the Lie algebra of the gauge group.
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10.2. Non-abelian gauge theories

We derive now the transformation laws and struture of the gauge setor, requiring that the

transformation of the fermions and their interation with the gauge �eld are loally invariant.

A loal gauge transformation

U(x) = exp[ig

P

m

a=1

#

a

(x)T

a

℄ � exp[ig#(x)℄ (10.8)

hanges a vetor of fermion �elds  with omponents f 

1

; : : : ;  

n

g as

1

 (x)!  

0

(x) = U(x) (x) : (10.9)

Already global gauge invariane of the fermion mass term requires m

1

= m

2

= : : : = m

n

and for simpliity we set m

i

= 0. We an implement loal gauge invariane, if derivatives

transform in the same way as  . Hene we de�ne a new ovariant derivative D

�

requiring

D

�

 (x)! [D

�

 (x)℄

0

= U(x)[D

�

 (x)℄ : (10.10)

The gauge �eld should ompensate the di�erene between the normal and the ovariant

derivative,

D

�

 (x) = [�

�

+ igA

�

(x)℄ (x) : (10.11)

In the non-abelian ase, the gauge �eld A

�

is a matrix that is onneted to its omponent

�elds by

A

�

= A

a

�

T

a

: (10.12)

We now determine the transformation properties of D

�

and A

�

demanding that (10.9) and

(10.10) hold. Combining both requirements gives

D

�

 (x)! [D

�

 ℄

0

= UD

�

 = UD

�

U

�1

U = UD

�

U

�1

 

0

; (10.13)

and thus the ovariant derivative transforms as D

0

�

= UD

�

U

�1

. Using its de�nition (10.11),

we �nd

[D

�

 ℄

0

= [�

�

+ igA

0

�

℄U = UD

�

 = U [�

�

+ igA

�

℄ : (10.14)

We ompare now the seond and the fourth term, after having performed the di�erentiation

�

�

(U ). The result

[(�

�

U) + igA

0

�

U ℄ = igUA

�

 (10.15)

should be valid for arbitrary  and hene we arrive after multiplying from the right with U

�1

at

A

�

! A

0

�

= UA

�

U

�1

+

i

g

(�

�

U)U

�1

= UA

�

U

�1

�

i

g

U�

�

U

�1

: (10.16)

Here we used also �

�

(UU

�1

) = 0. In most ases, the gauge transformation U is an unitary

transformation and one sets U

�1

= U

y

. A term hanging as U(x)D

�

(x)U

y

(x) is alled to

transform homogeneously, while the potential A

�

is said to transforms inhomogeneously.

1

We suppress in the following most indies; writing them out gives e.g.  

0

i

(x) = U

ij

(x) 

j

(x) with U

ij

(x) =

exp[ig

P

m

a=1

#

a

(x)T

a

ij

℄.

153



10. Gauge theories

Example 10.1: We an determine the transformation properties of A

�

also by demanding that

(10.11) de�nes the interation term in a gauge invariant way. Replaing �

�

! D

�

in the free Lagrange

density of fermions and inserting then U

�1

U = 1 gives

L

f

+L

I

= i

�

 

�

D

�

 = i

�

 

�

�

�

 � g

�

 

�

A

�

 =

= i

�

 U

�1

U

�

�

�

U

�1

U � g

�

 U

�1

U

�

A

�

U

�1

U : (10.17)

Using then  

0

= U , we obtain

L

f

+L

I

= i

�

 

0



�

U�

�

U

�1

 

0

� g

�

 

0



�

UA

�

U

�1

 

0

= i

�

 

0



�

�

�

 

0

� g

�

 

0



�

�

UA

�

U

�1

�

i

g

U(�

�

U

�1

)

�

 

0

: (10.18)

The Lagrange density L

f

+L

I

is thus invariant, if the gauge �eld transforms as in Eq. (10.16).

Speialising to in�nitesimal transformations,

U(x) = exp(ig#

a

(x)T

a

) = 1 + ig#(x) +O(#

2

) ; (10.19)

it follows

A

�

(x)! A

0

�

(x) = A

�

(x)� ig[A

�

(x); #(x)℄ � �

�

#(x) : (10.20)

In the abelian U(1) ase, the ommutator term is not present and the transformation law

redues to the known A

�

! A

�

� �

�

#. For a (semi-simple) Lie group one de�nes

[T

a

; T

b

℄ = if

ab

T



(10.21)

with struture onstants f

ab

that an be hosen to be ompletely antisymmetri. Thus

A

a

�

(x)! A

a0

�

(x) = A

a

�

(x) + gf

ab

A

b

�

(x)#



(x)� �

�

#

a

(x) (10.22a)

= A

a

�

(x)� [Æ

a

�

�

� gf

ab

A

b

�

(x)℄#



(x) (10.22b)

� A

a

�

(x)�D

a

�

#



(x) ; (10.22)

where the last line de�nes how the ovariant derivative ats on the gauge �elds: Comparing

this expression to the general de�nition D

�

= �

�

+ igA

a

�

T

a

, we see that the gauge �elds live

in the adjoint representation of the gauge group

2

, f. problem ??. The in�nitesimal hange

of the gauge �elds A

a

�

is given by the ovariant derivative ating on the parameters #

a

of the

gauge transformation.

Finally, we have to derive the �eld strength tensor F

��

= F

a

��

T

a

and the Lagrange density

L

YM

of the gauge �eld. The quantity F

2

requires now additionally a summation over the

group index a,

L

YM

= �

1

4

F

a

��

F

a��

= �

1

2

tr F

��

F

��

; (10.23)

where we assumed in the seond step that the standard normalisation tr T

a

T

b

= Æ

ab

=2 for

the group generators T

a

holds. The last equation shows that it is suÆient for the gauge

invariane of the ation that the �eld-strength tensor transforms homogeneously,

F

��

(x)! F

0

��

(x) = U(x)F

��

(x)U

y

(x) : (10.24)

2

The n omplex fermion and n

2

� 1 real gauge �elds of SU(n) live in di�erent representations of the group,

as already the mismath of their number indiates, see also Appendix B. Note also that the gauge trans-

formations of the gauge �elds have to be real, in ontrast to the ones of the fermion �elds.
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10.2. Non-abelian gauge theories

There are several ways to derive the relation between F

��

and A

�

. The �eld-strength tensor

should be antisymmetri. Thus we should onstrut it out of the ommutator of gauge

invariant quantities that in turn should ontain A

�

. An obvious try is igF

��

= [D

�

;D

�

℄ that

worked in the abelian ase. Now, additionally the non-zero ommutator of the gauge �elds

ontributes,

F

��

= F

a

��

T

a

=

1

ig

[D

�

;D

�

℄ = �

�

A

�

� �

�

A

�

+ ig[A

�

; A

�

℄ : (10.25)

In omponents, this equation reads expliitly

F

a

��

= �

�

A

a

�

� �

�

A

a

�

� gf

ab

A

b

�

A



�

: (10.26)

Remark 10.1: Antisymmetri tensors of rank n an also be seen as di�erential forms. We know

already funtions as forms of order n = 0 and o-vetors as forms of order n = 1. Sine di�erentials

df = �

i

f dx

i

of funtions are forms of order n = 1, the dx

i

form a basis, and one an write in general

A = A

i

dx

i

. For n > 1, the basis has to be antisymmetrised. Hene, a two-form as the �eld-strength

tensor is given by

F =

1

2

F

��

dx

�

^ dx

�

(10.27)

with dx

�

^dx

�

= �dx

�

^dx

�

. Looking at df suggestions to de�ne the di�erentiation of a form ! with

oeÆients w and degree n as an operation that inreases its degree by one to n+ 1,

d! =

1

n!

(�

�

w

�

1

:::;�

n

)dx

�

^ dx

�

1

^ : : : ^ dx

�

n

: (10.28)

Thus we have F = dA. Moreover, it follows d

2

! = 0 for all forms. Hene we an write an abelian

gauge transformation as F

0

= d(A� d�) = F.

10.2.2. Gauge �elds as onnetion

There is a lose analogy between the ovariant derivative r

�

introdued for a spae-time

ontaining a gravitational �eld and the gauge invariant derivative D

�

required for a spae-

time ontaining a gauge �eld. In the former ase, the moving oordinate basis in urved

spae-time, �

�

e

�

6= 0, introdues an additional term in the derivative of vetor omponents

V

�

= e

�

�V . Analogously, a non-zero gauge �eld A

�

leads to a rotation of the basis vetors e

i

in group spae whih in turn produes an additional term  � (�

�

e

i

) performing the derivative

of a  

i

=  � e

i

.

Let us rewrite our formulas suh that the analogy between the ovariant gauge derivative

D

�

and the ovariant spae-time derivative r

�

beomes obvious. The vetor  of fermion

�elds with omponents f 

1

; : : : ;  

n

g transforming under a representation of a gauge group

an be written as

 (x) =  

i

(x)e

i

(x) : (10.29)

We an pik out the omponent  

j

by multiplying with the orresponding basis vetor e

j

,

 

j

=  � e

j

(x) : (10.30)

If the oordinate basis in group spae depends on x

�

, then the partial derivative of  

i

aquires

a seond term,

�

�

 

i

= (�

�

 ) � e

i

+ � (�

�

e

i

) : (10.31)

155



10. Gauge theories

dx

1

3

dy 4

x x+ dx

x+ dy x+ dx+ dy

2

Figure 10.1.: Parallelogram used to alulate the rotation of a test �eld  

i

moved along a

losed loop in the presene of a non-zero gauge �eld A

�

.

We an argue as in setion 6.2 that (�

�

 ) � e

i

is an invariant quantity, de�ning therefore as

gauge invariant derivative

D

�

 

i

= (�

�

 ) � e

i

= �

�

 

i

� � (�

�

e

i

) : (10.32)

The hange �

�

e

i

of the basis vetor in group spae should be proportional to gA

�

. Setting

�

�

e

i

= �ig(A

�

)

ij

e

j

(10.33)

we are bak to our old notation.

Gauge loops The orrespondene between the derivatives r

�

and D

�

suggests that we an

use the gauge �eld A

�

to transport �elds along a urve x

�

(�). In empty spae, we an use

the partial derivative �

�

 (x) to ompare �elds at di�erent points,

�

�

 (x) /  (x+ dx

�

)�  (x) : (10.34)

If there is an external gauge �eld present, the �eld  is additionally rotated in group spae

moving it from x to x+ dx,

~

 (x+ dx) =  (x+ dx) + igA

�

(x) (x)dx

�

(10.35a)

=  (x) + �

�

 (x)dx

�

+ igA

�

(x) (x)dx

�

: (10.35b)

Then the total hange is

~

 (x+ dx)�  (x) = [�

�

+ igA

�

(x)℄ (x)dx

�

= D

�

 (x)dx

�

: (10.36)

Thus we an view

3

P

dx

(x) = 1� igA

�

(x)dx

�

(10.37)

as an operator whih allows us to transport a gauge-dependent �eld the in�nitesimal distane

from x to x+ dx.

We ask now what happens to a �eld  

i

(x), if we transport it along an in�nitesimal paral-

lelogram, as shown in Fig. 10.1. Calulating the path 2, we �nd

P

dy

(x+ dx) = 1� igA

�

(x+ dx)dy

�

= 1� igA

�

(x)dy

�

� ig�

�

A

�

(x)dx

�

dy

�

;

(10.38)

3

Note the sign hange ompared to the ovariant derivative: there we pull-bak the �eld from x+ dx to x.
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10.2. Non-abelian gauge theories

where we Taylor expanded A

�

(x+ dx). Combining the paths 1 and 2, we arrive at

P

dy

(x+ dx)P

dx

(x) = [1� igA

�

(x)dy

�

� ig�

�

A

�

(x)dx

�

dy

�

℄[1� igA

�

(x)dx

�

℄

= 1� igA

�

(x)dx

�

� igA

�

(x)dy

�

� ig�

�

A

�

(x)dx

�

dy

�

� g

2

A

�

(x)A

�

(x)dy

�

dx

�

+O(dx

3

) :

(10.39)

Instead of performing the alulation for a round trip 1!2!3!4, we evaluate next 4!3

whih we then subtrat from 1! 2. In this way, we an re-use our result for 1! 2 after

exhanging labels, A

�

dx

�

$ A

�

dy

�

, obtaining

P

dx

(x+ dy)P

dy

(x) = 1� igA

�

(x)dy

�

� igA

�

(x)dx

�

� ig�

�

A

�

(x)dx

�

dy

�

� g

2

A

�

(x)A

�

(x)dx

�

dy

�

+O(dx

3

) :

(10.40)

The �rst three terms on the RHS's of (10.39) and (10.40) anel in the result P (�) for the

round-trip, leaving us with

P (�) � P

dy

(x+ dx)P

dx

(x)� P

dx

(x+ dy)P

dy

(x) =

� ig f�

�

A

�

� �

�

A

�

+ ig[A

�

; A

�

℄g dx

�

dy

�

:

(10.41)

Maxwell's equations inform us that the line integral of the vetor potential equals the enlosed

ux: The area of the parallelogram orresponds to dx

�

dy

�

, and the prefator has to be

therefore the �eld-strength tensor. If the enlosed ux is non-zero, then P (�) 

i

6=  

i

and

thus the �eld is rotated.

10.2.3. Curvature of spae-time

Curvature and the Riemann tensor We ontinue to work out the analogy between Yang-

Mills theories and gravity. Both the gauge �eld A

�

and the onnetion �

�

��

transform ho-

mogeneously. Therefore we an not use them to judge if a gauge or gravitational �eld is

present. In the gauge ase, we introdued therefore the �eld-strength F

��

: It transforms

homogeneously and thus the statement F

��

(x) = 0 holds in any gauge. This suggests to

transform (10.25) into a de�nition for a tensor measuring a non-zero urvature of spae-time,

(r

�

r

�

�r

�

r

�

)T

�:::

�:::

= [r

�

;r

�

℄T

�:::

�:::

6= 0 : (10.42)

Thus the urvature of spae-time should be proportional to the area of a loop and the amount

a tensor is rotated.

For the speial ase of a vetor V

�

we obtain with

r

�

V

�

= �

�

V

�

+ �

�

��

V

�

(10.43)

�rst

r

�

r

�

V

�

= �

�

(�

�

V

�

+ �

�

��

V

�

) + �

�

��

(�

�

V

�

+ �

�

��

V

�

)� �

�

��

(�

�

V

�

+ �

�

��

V

�

) : (10.44)

The seond part of the ommutator follows from the simple relabelling � $ � as

r

�

r

�

V

�

= �

�

(�

d

V

�

+ �

a

��

V

�

) + �

�

��

(�

�

V

�

+ �

�

b�

V

�

)� �

�

��

(�

�

V

�

+ �

�

��

V

�

) : (10.45)
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Now we subtrat the two equations using that �

�

�

�

= �

�

�

�

and �

�

��

= �

�

��

,

[r

�

;r

�

℄V

�

=

�

�

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

�

V

�

� R

�

���

V

�

: (10.46)

The tensor R

�

���

is alled Riemann or urvature tensor. In problem ??, you are asked to

show that the tensor R

����

= g

�

R



���

is antisymmetri in the indies �$ �, antisymmetri

in �$ � and symmetri against an exhange of the index pairs (��)$ (��). Therefore, we

an onstrut out of the Riemann tensor only one non-zero tensor of rank two, ontrating �

either with the third or fourth index, R

�

���

= �R

�

���

. We de�ne the Rii tensor by

R

��

= R

�

���

= �R

�

���

= �

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

: (10.47)

A further ontration gives the urvature salar,

R = R

��

g

��

: (10.48)

Example 10.2: Calulate the Rii tensor R

ab

and the salar urvature R of the two-dimensional

unit sphere S

2

.

We have already determined the non-vanishing Christo�el symbols of the sphere S

2

as �

�

#�

= �

�

�#

=

ot# and �

#

��

= � os# sin#. We will show later that the Rii tensor of a maximally symmetri

spae as a sphere satis�es R

ab

= Kg

ab

. Sine the metri is diagonal, the non-diagonal elements of the

Rii tensor are zero too, R

�#

= R

#�

= 0. We alulate with

R

ab

= R



ab

= �



�



ab

� �

b

�



a

+ �



ab

�

d

d

� �

d

b

�



ad

the ## omponent, obtaining

R

##

= 0� �

#

(�

�

#�

+ �

#

##

) + 0� �

d

#

�



#d

= 0 + �

#

ot#� �

�

#�

�

�

#�

= 0� �

#

ot#� ot

2

# = 1 :

From R

ab

= Kg

ab

, we �nd R

##

= Kg

##

and thus K = 1. Hene R

��

= g

��

= sin

2

#.

The salar urvature is (diagonal metri with g

��

= 1= sin

2

# and g

##

= 1)

R = g

ab

R

ab

= g

��

R

��

+ g

##

R

##

=

1

sin

2

#

sin

2

#+ 1� 1 = 2 :

We an push the analogy further by remembering that the �eld-strength de�ned in

Eq. (10.25) is a matrix. Writing out the impliit matrix indies of F

��

in Eq. (10.25) gives

(F

��

)

ij

= �

�

(A

�

)

ij

� �

�

(A

�

)

ij

+ ig f(A

�

)

ik

(A

�

)

kj

� (A

�

)

ik

(A

�

)

kj

g : (10.49)

Comparing this expression to

R

�

���

= �

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

(10.50)

we see that the �rst two indies of the Riemann tensor, � and �, orrespond to the group

indies ij in the �eld-strength tensor. This is in line with the relation of the potential (A

�

)

ij

and the onnetion �

�

��

implied by (10.33).

158



10.3. Quantisation of gauge theories

10.3. Quantisation of gauge theories

10.3.1. Abelian ase

We disussed already in Se. 7.2 that we an derive the photon propagator only �xing a gauge.

Now we reonsider this problem, and ask how we should modify the Lagrange density in order

to be able to obtain the photon propagator. The Lagrange density that leads to the Maxwell

equation is

L = �

1

4

F

��

F

��

= �

1

2

(�

�

A

�

�

�

A

�

� �

�

A

�

�

�

A

�

)

=

1

2

(A

�

�

�

�

�

A

�

�A

�

�

�

�

�

A

�

) =

1

2

A

�

[�

��

�� �

�

�

�

℄A

�

=

1

2

A

�

D

�1

��

A

�

;

(10.51)

where we made a partial integration dropping as usual the surfae term. Deriving the photon

propagator requires to invert the term in the square braket. Performing a Fourier transfor-

mation, we see that we should �nd the inverse of the operator

D

�1

��

(k) = k

2

P

��

T

(k) = k

2

�

�

��

� k

�

k

�

=k

2

�

: (10.52)

We have already seen that this operator projets any four-vetor on the three-dimensional

subspae orthogonal to k. More formally, we see that P

��

T

(k) is a projetion operator,

P

��

T

P

�

T�

= P

��

T

; (10.53)

and has thus as only eigenvalues 0 and 1. Sine P

��

T

(k) is not the unit operator, it has at

least one zero eigenvalue and is thus not invertible. More preisely, its trae is

P

�

T�

= �

��

P

��

T

= Æ

�

�

� 1 = 3 ; (10.54)

and thus three eigenvalues are one and one eigenvalue is zero. The latter eigenvalue orre-

sponds to k

�

P

��

T

= 0, as required for a projetion operator on the three-dimensional subspae

orthogonal to k. The orthogonal part Æ

�

�

� P

�

T�

is given by the longitudinal projetion

operator P

��

L

= k

�

k

�

=k

2

.

We an invert D

�1

��

, if we hoose a gauge suh that the subspae parallel to k is inluded.

The simplest hoie is the Lorenz gauge. Imposing this gauge on the level of the Lagrangian

means adding

L ! L

eff

= L +L

gf

= L �

1

2

(�

�

A

�

)

2

: (10.55)

More generally, we an add the term

L

gf

= �

1

2�

(�

�

A

�

)

2

(10.56)

that depends on the arbitrary parameter �. This group of gauges is employed in the proof

of the renormalisability of gauge theories and is therefore alled R

�

gauge. The ombined

e�etive Lagrange density is thus

L

eff

= �

1

4

F

��

F

��

�

1

2�

(�

�

A

�

)

2

=

1

2

A

�

�

�

��

��

�

1�

1

�

�

�

�

�

�

�

A

�

: (10.57)
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Fourier transforming the term in the square brakets, we obtain

P

��

= �k

2

�

��

+ (1� �

�1

)k

�

k

�

: (10.58)

Now we split this expression into its transverse and longitudinal parts,

P

��

=� k

2

�

P

��

T

+

k

�

k

�

k

2

�

+ (1� �

�1

)k

�

k

�

(10.59a)

=� k

2

P

��

T

� �

�1

k

2

P

��

L

: (10.59b)

Sine P

��

T

and P

��

L

projet on orthogonal subspaes, we obtain the inverse P

�1

��

simply by

inverting their prefators, f. problem 8.??. Thus the photon propagator in R

�

gauge is given

by

iD

��

F

(k

2

) =

�iP

��

T

k

2

+ i"

+

�i�P

��

L

k

2

+ i"

=

�i

k

2

+ i"

h

�

��

� (1� �)

k

�

k

�

k

2

i

: (10.60)

Speial ases are the Feynman gauge � = 1, the Landau gauge � = 0, while � !1 orresponds

to the unitary gauge. The arbitrary, � dependent part of the photon propagator vanishes

in physial quantities, where it is mathed between onserved urrents with �

�

J

�

(x) = 0 or

k

�

J

�

(k) = 0.

10.3.2. Non-abelian ase

An important oneptional di�erene between abelian and non-abelian theories is that in the

latter ase the onserved Noether urrent is not gauge invariant, f. problem 10.??. Moreover,

the non-abelian gauge transformation (10.22) adds not only a term �

�

# but mixes also the

�elds via the term f

ab

A

b

�

#



. Therefore it is in general not guaranteed that the gauge-

dependent unphysial degrees of freedom ontained e.g. in the propagator (10.60) deouple

and the quantisation of non-abelian theories beomes more hallenging.

We onsider �rst as a toy model for the generating funtional of a Yang-Mills theory the

two-dimensional integral

Z /

Z

dxdy e

iS(x)

: (10.61)

Sine the integration extends from �1 to 1, the y integration does not merely hange the

normalisation of Z but makes the integral ill-de�ned. We an eliminate the dangerous y

integration by introduing a delta funtion,

Z /

Z

dxdy Æ(y)e

iS(x)

: (10.62)

Sine the value of y in the delta funtion plays no role, we an replae Æ(y) by Æ(y � f(x))

with an arbitrary funtion f(x). If y = f(x) is the solution of g(x; y) = 0, we obtain with

Æ(g(x; y)) =

Æ(y � f(x))

j�g=�yj

(10.63)

assuming that �g=�y > 0

Z /

Z

dxdy

�g

�y

Æ(g)e

iS(x)

: (10.64)
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Generalising this to n dimensions, we need n delta funtions and have to inlude the Jaobian,

Z /

Z

d

n

xd

n

y det

�

�g

i

�y

j

�

Y

i

Æ(g

i

)e

iS(x)

: (10.65)

We now translate this toy example to the Yang-Mills ase. The funtions g are the gauge

�xing onditions that we hoose as

g

a

(x) = �

�

A

a

�

(x)� !

a

(x) ; (10.66)

where the !

a

(x) are arbitrary funtions. The disrete index i orresponds to fx; ag, explaining

why the gauge freedom results in an in�nity: Although the integration measure of a ompat

gauge group is �nite, the summation over R

4

gives an in�nite answer. Finally, we see that

from the transformation law A

a

�

(x) ! A

a0

�

(x) = A

a

�

(x) � D

a

�

#



(x) that the parameters #

a

orrespond to the redundant oordinates y

i

.

The generating funtional for a Yang-Mills theory is thus with DA �

Q

3

�=0

Q

m

a=1

DA

a

�

as

short-ut given by

Z[0℄ /

Z

DA Det

�

Æg

a

Æ#

b

�

Y

x;a

Æ(g

a

)e

iS

YM

; (10.67)

where we set for the moment the soures to zero. Our task is to evaluate �rst Æg

a

=Æ#

b

and then to transform the determinant into the Lagrangian of new, auxiliary �elds suh

that we an use the language of Feynman diagrams to perform perturbative alulations

in the usual way. Inserting into the gauge �xing ondition (10.66) the in�nitesimal gauge

transformation (10.22), we obtain as hange

Æg

a

(x) = ��

�

D

ab

�

#

b

(x) : (10.68)

Thus the required funtional derivative is

Æg

a

(x)

Æ#

b

(y)

= ��

�

D

ab

�

Æ(x� y) : (10.69)

We an eliminate the determinant remembering

R

d�d�� e

��A�

= detA from Eq. (8.103), ex-

pressing the Jaobian as a path integral over Gra�mann variables 

a

and �

a

,

Det

�

Æg

a

(x)

Æ#

b

(y)

�

/

Z

DD� e

iS

FP

: (10.70)

The orresponding Lagrangian is

L

FP

= ��

a

�

�

D

ab

�



b

= (�

�

�

a

)(D

ab

�



b

) = �

�

�

a

�

�



a

+ gf

ab

�

�

�

a



b

A



�

; (10.71)

where we made a partial integration and inserted the de�nition of the ovariant derivatives

ating on the gauge �eld, Eq. (10.22). As a result, we have reast the determinant as the

kineti energy of omplex salar �elds 

a

that interat with the gauge �elds. Sine we had to

use for the salar �elds Gra�mann variables 

a

, their statistis is fermioni. Clearly, suh �elds

should be seen as a purely mathematial onstrut and they are therefore alled Faddeev-

Popov ghosts. In an abelian theory as U(1), the interation term in Eq. (10.71) is absent and

ghost �elds deouple. Sine they hange then only the normalisation of the path integral,

they an be omitted in QED.
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10. Gauge theories

Next we have to eliminate the Æ(g

a

(x)). They ontain the arbitrary funtions !

a

(x), but

the path integral does not dependent on them. Thus we have the freedom to multiply with a

hosen funtion f(!

a

), thereby hanging only the normalisation. Our aim is to generate after

integrating over the delta funtions a term exp(iS

gf

), as in the ase of QED. Choosing

Z ! exp

�

�

i

2�

Z

d

4

x !

a

(x)!

a

(x)

�

Z ; (10.72)

integrating

Q
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Æ(g

a

) exp
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i

2�

R

d

4

x !

a

(x)!

a

(x)

�

with the help of Æ(g

a

) and (10.66), we

obtain as gauge-�xing term the desired
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�

A

a

�

: (10.73)

The omplete Lagrange density L

eff

of a non-abelian gauge theory onsists thus of four

parts,

L

eff

= L

YM

+L

gf

+L

FP

+L

s

; (10.74)

where the last one ouples soures linearly to the �elds,

L

s

= J

�

A

�

+ ��+ �� : (10.75)

We break both L

YM

and L

FP

into a piee of O(g

0

) de�ning the free propagator, and piees

of O(g) orresponding to a three gluon and a two ghost-gluon vertex, respetively, and a four

gluon vertex of O(g

2

). After a partial integration of the free part, we obtain
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: (10.76)

The Feynman rules an now be read o� after Fourier transforming into momentum spae,

f. problem 10.??. Combining the resulting expression with L

gf

, we see that the gluon

propagator is diagonal in the group indies and otherwise idential to the photon propagator

in R

�

gauge. The ghost propagator is the one of a massless salar partile,

�

ab

(k) =

Æ

ab

k

2

+ i"

: (10.77)

Being a fermion, a losed ghost loop introdues however a minus sign.

Non-ovariant gauges The introdution of ghost �elds an be avoided, if one uses non-

ovariant gauges whih depend on an arbitrary vetor n

�

. An example used often in QED is

the Coulomb or radiation gauge,

�

�

A

�

� (n

�

�

�

)

2

= 0 (10.78)

with n

�

= (1; 0; 0; 0). In QCD, one employs often the set of gauges

n

�

A

�

a

= 0; a = 1; : : : ; 8 (10.79)
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with the onstant vetor n

�

. More spei�ally, one alls the ase n

2

= 0 light-one, n

2

< 0

axial and n

2

> 0 temporal gauge. They have in ommon that the Faddeev-Popov determi-

nant does not depend on A

�

a

, and an be absorbed in the normalisation of the path integral,

exerise 10.??. While non-ovariant gauges thus bypass the introdution of unphysial parti-

les in loop graphs, the resulting propagators are unhandy. Moreover, they ontain spurious

singularities whih require are. Therefore in pratial all appliations the use of the R

�

gauge

is advantageous.

Let us �nally omment on the ase of external gluons. In the ase of photons, we an

sum their polarisation states using

P

3

r=0

"

(r)�

�

"

(r)

�

= ��

��

, sine the nonphysial degrees of

freedom anel in physial observables. In the non-abelian ase, we an use this "trik" only

in the ase of a single external gluon. For two or more external gluons, we have to employ

the polarisation sum derived in problem 7.??, sine the non-abelian verties mix physial and

non-physial degrees of freedom. As a result, the onserved Noether urrent is not gauge

invariant, and we annot use the argument of setion 7.2. Alternatively, we an use the R

�

-

gauge if we inlude Faddeev-Popov ghosts also as external partiles. In order to subtrat

orretly the unphysial ontributions to the squared matrix elements, one has to add the

fator (�1)

n

to a term A

i

A

�

j

with 2n Faddeev-Popov ghosts [Na90℄.

10.A. Appendix: Feynman rules for an unbroken gauge theory

The Feynman rules for a non-broken Yang-Mills theory as QCD are given in the R

�

gauge;

for the abelian ase of QED set the struture onstants f

ab

= 0, T = 1 and replae g

s

! eq

f

,

where q

f

is the eletri harge of the fermion in units of the elementary harge e > 0. The

momentum ow is indiated by the thin arrow: For instane, all momenta are hosen as

in-going in the triple gauge vertex (10.82).

Propagators
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Quarti Gauge Interations
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Summary

Requiring loal symmetry under a gauge group as SU(n) or SO(n) spei�es the self-

interations of massless gauge boson as well as their ouplings to fermions and salars. The

presene of self-interations implies that a pure Yang-Mills theory is non-linear. The gauge

invariant derivative D

�

is the analogon to the ovariant derivative r

�

of gravity, while the

�eld-strength orresponds to the Riemann tensor: Both measure the rotation of a vetor

whih is parallel-transported along a losed loop. The quantisation of Yang-Mills theories

in the ovariant R

�

gauge leads to ghost partiles: These fermioni salars ompensate the

unphysial degrees of freedom still ontained in the gauge �elds A

�

using a ovariant gauge

�xing ondition as �

�

A

�

= 0.

Note also the interplay between loal and global symmetries: A global symmetry trans-

formation U maps a physial state onto a di�erent physial state with the same properties,

implying via Noether's theorem a onserved urrent. A loal symmetry transformation U(x)

maps a physial state on itself, implying a redundany in our desription of the system. Sine

loal symmetries ontain global transformations as a subgroup, they imply always also the

164



10.A. Appendix: Feynman rules for an unbroken gauge theory

onservation of global harges via Noether's theorem.

Further reading

The Feynman rules in the appendix are taken from [RS12℄. This artile ontains all Feynman

rules for the SM in a onvention independent notation whih allows an easy omparison of

referenes with di�ering onventions. Current onservation in non-abelian theories is disussed

e.g. in [LP13℄. The extension of the heliity formalism to QCD, where it leads to both

phenomenologial useful and theoretially interesting results, is disussed by [Pes11℄, [Sh13℄,

and [Wei16℄.
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11. Renormalisation I: Perturbation theory

We enountered three examples of divergent loop integrals disussing the ��

4

theory. In

these ases, it was possible to subtrat the in�nities in suh a way that we obtained �nite

observables whih depend only on the experimentally measured values ofm, � and �. The aim

of this and the following hapter is to obtain a better understanding of this renormalisation

proedure. We will see that the ��

4

theory as well as the eletroweak and strong interations

of the SM are examples for renormalisable theories: For suh theories, the renormalisation of

the �nite number of parameters ontained in the lassial Lagrangian is suÆient to make all

observables �nite at any order perturbation theory.

11.1. Overview

Why renormalisation at all? We are using perturbation theory with the free, non-interating

Lagrangian as starting point to evaluate non-linear quantum �eld theories. Interations

hange however the parameters of the free theory, as we know already both from lassi-

al eletrodynamis and quantum mehanis. In the former ase, Lorentz studied 1904 the

onnetion between the measured eletron mass m

phy

, its mehanial or inertial mass m

0

and

its eletromagneti self-energy m

el

in a toy model. He desribed the eletron as a spherially

symmetri uniform harge distribution with radius r

e

, obtaining

m

phy

= m

0

+m

el

= m

0

+

4e

2

5r

e

: (11.1)

Speial relativity fores us to desribe the eletron as a point partile: Taking thus the limit

r

e

! 0, lassial eletrodynamis implies an in�nite \renormalisation" of the \bare" eletron

mass m

0

by its eletromagneti self-energy m

el

.

Another familiar example for renormalisation appears in quantum mehanis. Perturbation

theory is possible, if the Hamilton operator H an be split into a solvable part H

(0)

and an

interation �V ,

H = H

(0)

+ �V ; (11.2)

and the parameter � is small. Using then as starting point the normalised solutions jn

(0)

i of

H

(0)

,

H

(0)

jn

(0)

i = E

(0)

n

jn

(0)

i ; (11.3)

we an �nd the eigenstates jni of the omplete Hamiltonian H as a power-series in �,

jni = jn

(0)

i+ �jn

(1)

i+ �

2

jn

(2)

i+ : : : (11.4)

Sine we started with normalised states, hn

(0)

jn

(0)

i = 1, the new states jni are not longer

orretly normalised. Thus going from free (or \bare") to interating states requires to renor-

malise the states,

R

hnjni

R

= 1 ) jni

R

� Z

1=2

jni : (11.5)
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11.1. Overview

A very similar problem we enountered introduing the LSZ formalism. In the parlane of

�eld theory, we ontinue often to all this proedure wave-funtion renormalisation, although

Z renormalises �eld operators.

Why regularisation at all? The familiar proess of renormalisation beomes more obsure

by the fat that the renormalisation onstants are in�nite in most quantum �eld theories.

Mathematial manipulations as shifting the integration variable in a divergent loop integral

are only well-de�ned, if we onvert �rst these integrals into onvergent ones. Thus we have to

regularise as �rst step, i.e. employing a method whih makes our expressions �nite, so that our

mathematial manipulations are well-de�ned and we an perform the renormalisation. You

should keep in mind that the two operations, regularisation and renormalisation, are logially

independent: Renormalisation of the parameters in the free theory is neessary beause they

are hanged by interations. This hange may be �nite, as the hange of the photon mass in

a plasma, and no regularisation is neessary.

The seond question to ask is why the renormalisation onstants are in�nite, or in other

words why do we have regularise at all? There are (at least) two possible answers to this

question: Either we use a bad theory as starting point, i.e. the full quantum theory de-

�ned non-perturbatively by its generating funtional Z[J ℄ is ill-de�ned. Or we employ a bad

expansion sheme evaluating Z[J ℄ in perturbation theory.

Example 11.1: An example for a bad expansion is the following toy model for the ��

4

interation,

Z(�) =

Z

1

�1

dx e

�

1

2

x

2

��x

4

?

=

Z

1

�1

dx

�

1� �x

4

+

(�x

4

)

2

2!

� : : :

�

e

�

1

2

x

2

: (11.6)

The LHS is well-de�ned for � > 0. Doing perturbation theory and summing up the �rst N terms of

the expansion on the RHS results in an alternating series,

Z

N

(�) =

N

X

n=0

(��)

n

n!

Z

1

�1

dxx

4n

e

�x

2

=2

=

N

X

n=0

a

n

�

n

with

a

n

=

(�1)

n

n!

2

2n+1=2

�(2n+ 1=2) :

The oeÆients a

n

of this series grow like a fatorial and thus the onvergene radius of the expansion

is zero. Plotting Z

N

(�)=Z(0) for the �rst few N as funtion of �, problem 11.??, you see �rstly that

adding more terms makes the expansion worse beyond at ertain value �

max

(N), and seondly that

�

max

(N)! 0 for N !1, see [FHS12℄ for more details.

It should be not too surprising that the expansion (11.6) has a zero onvergene radius:

Moving from � > 0 to � < 0 hanges fundamentally physis, sine the vauum is unstable for

arbitrarily small negative �. An interesting onsequene of the failure of perturbation theory

is that the omplete theory may ontain additional non-perturbative physis. Next we look

at an example where we start from a bad theory.

Example 11.2: We disussed in problem 2.?? the sattering on a short-range potential in d = 1,

and found that no onsistent solution exists for an odd potential. We rephrase this problem now in

167



11. Renormalisation I: Perturbation theory

a language lose to the one used in QFT. The perturbative expansion of the S-matrix in quantum

mehanis is given by

hp

f

jS jp

i

i = 2�Æ(E

i

�E

f

)

�

hp

f

jV jp

i

i+

Z

dp hp

f

jV jpi

i

E � p

2

=2 + i"

hpjV jp

i

i+ � � �

�

for p

i

6= p

f

. Reoiling on the in�nitely heavy stati soure, the (virtual) partile in the intermediate

states an have any momentum p while its energy is onserved. With V

0

(x) = 

0

Æ(x), it follows

hp

f

jV

0

jpi = 

0

=(2�) and then the momentum integral in the 2.nd order orretion beomes

�



0

2�

�

2

Z

dp

i

E � p

2

=2 + i"

:

Thus this momentum integral, and similarly those at higher orders, are well-de�ned. Next we set



0

= 0. Using then Æ

0

f = �Æf

0

, we obtain hp

f

jV

1

jpi = i

1

(p

f

� p)=(2�) and thus the momentum

integral

�



1

2�

�

2

Z

dp

i(p� p

i

)(p� p

f

)

E � p

2

=2 + i"

is linearly divergent. The divergene means that the sattering probability is sensitive to arbitrarily

high momentum modes. We an understand this behaviour looking at the wave-funtion  (x): Beause

the potential is odd, also  (x) is odd and thene has to hange rapidly within jxj < a. As result, its

Fourier transform  (k) neessarily ontains also high-frequeny modes.

In this simple toy-model, the natural way to solve the UV divergene problem is to replae the

mathematial idealisation of a delta-funtion like potential by the true, smooth potential. If we either

do not know the \true" potential or if we insist that a delta-funtion like potential aptures all the

physis ontained in a sattering proess at a short-range potential, then we have to regularise the

potential, replaing V (x) = 

1

Æ

0

(x) e.g. by

V (x) = 

1

Æ(x + a)� Æ(x� a)

2a

:

In this way, we eliminate high-frequeny modes with p � 1=a. Repeating the omputation of the

transmission amplitude, we �nd T ' iap=

2

1

. Hene 

R

� 

2

1

=a plays the role of an e�etive oupling

onstant in the regularised theory. Physial observables like the transmission amplitude depend only

on the single parameter 

R

, if we resale 

1

(a) / a

�1=2

. Thus this simple example from quantum

mehanis exhibits the key features of a UV divergent QFT: We regularise the theory, utting o� UV

modes. Requiring the independene of physial observables from the uto� sale, we obtain running

parameters.

It is very likely that our favourite ��

4

interation su�ers from both diseases: First, the

expansion in � is not onvergent but results in an asymptoti series. Seond, the full theory

ontains only the trivial � = 0 ase as onsistent solution. Even if the interating theory

may be mathematially inonsistent, it an however be used as an e�etive model desribing

physis up to a �nite energy sale.

Regularisation methods We have already seen that the regularisation of divergent loop

integrals an be done in various ways. In general, one reparametrises the integral in terms of

a parameter � (or ") alled regulator suh that the integral beomes �nite for a �nite value

of the regulator, while the limit �!1 (or "! 0) returns the original integral.

� We an avoid UV divergenes evaluating loop-integrals introduing an (Eulidean) mo-

mentum uto� �. Somewhat more sophistiated, we ould introdue instead of a hard
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11.1. Overview

uto� a smooth funtion whih suppresses large momenta. Using Shwinger's proper-

time representation (4.90) we an ut-o� large momenta setting

1

p

2

+m

2

!

e

�(p

2

+m

2

)=�

2

p

2

+m

2

=

Z

1

�

�2

ds e

�s(p

2

+m

2

)

: (11.7)

Although oneptual easy, both regularisation shemes violate generially all symmetries

of our theory. This is not a prinipal aw, sine we should be able to reover these

symmetries in the limit � ! 1. However, this \reovery proess" may be non-trivial

to perform. Moreover, intermediate alulations beome muh more transparent if we

an use the symmetries of the theory, and therefore these shemes are in pratise not

used exept for the simplest ases.

� Pauli-Villars regularisation is a sheme where one adds heavy partiles having the same

quantum numbers and ouplings as the originals ones. Thus the propagator of a massless

salar partile is hanged to

1

k

2

+ i"

!

1

k

2

+ i"

+

X

i

a

i

k

2

�M

2

i

+ i"

:

For k

2

� M

2

i

, physis is unhanged, while for k

2

� M

2

i

and a

i

< 0 the ombined

propagator sales as M

2

i

=k

4

and the onvergene of loop integrals improves. Sine the

heavy partiles enter with the wrong sign, they are unphysial ghosts and serve only as

a mathematial tool to regularise loop diagrams. Pauli-Villars regularisation respets

the gauge invariane of QED, if the heavy partiles are oupled gauge invariantly to the

photon.

� Lattie regularisation replaes the ontinuous spae-time by a disrete lattie. The �-

nite lattie spaing a introdues a momentum uto�, eliminating all UV divergenes.

Moreover the (Eulidean) path-integral beomes well-de�ned and an be alulated nu-

merially without the need to do perturbation theory. Thus this approah is partiularly

useful in the strong-oupling regime of QCD where it has been used to alulate stati

quantities as e.g. the hadron mass spetrum. Note that lattie regularisation for �nite

a respets gauge symmetries, but spoils the translation and Lorentz symmetry of the

underlying QFT. Nevertheless, one reovers in the limit a ! 0 a relativisti QFT. A

longstanding problem of lattie theory was how to implement orretly hiral fermions.

This question was solved around the year 2000 and thus the SM an be de�ned now in

a mathematially onsistent, non-perturbative way as a lattie theory.

� Dimensional regularisation (DR) is the method we applied in the alulations of the

one-loop diagrams of the ��

4

theory. While DR has the important virtue of preserving

Lorentz and gauge invariane, it is one of the least intuitive regularisation methods. We

will show later that an integral without mass sale is zero in DR, e.g.

R

d

d

kk

�2

= 0. This

example shows that the integration measure we implement using physial requirements

with DR is not positive|as a mathematiian would require. In problem 11.??, we

examine how DR modi�es the range of momentum values ontributing to Feynman

integrals.

Using DR with fermions, we have to extend the Cli�ord algebra to d dimensions. A

natural hoie is tr(

�



�

) = d�

��

and tr(1) = 4. Problemati is however the treatment

of 

5

� i

0



1



2



3

relying heavily on d = 4.
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11. Renormalisation I: Perturbation theory

� Various other regularisation methods as e.g. zeta funtion regularisation or point split-

ting methods exists.

Even �xing a regularisation method as e.g. DR, we an hoose various renormalisation

shemes. Four popular hoies are

� on-shell renormalisation. In this sheme, we hoose the subtration suh that the on-

shell masses and ouplings oinide with the orresponding values measured in proesses

with zero momentum transfer q. For instane, we de�ne the renormalised eletri harge

via the Thomson limit of the Compton sattering amplitude. While this hoie is very

intuitive, it is not pratial for QCD: We will see soon that in this theory sattering

amplitudes alulated in perturbation theory beome ill-de�ned in the limit q

2

! 0.

� The momentum subtration (MoM) sheme is a generalisation of the on-shell sheme

whih an be applied also to QCD. Here we subtrat from the Green funtions ounter-

terms suh that the orretions are zero at a �xed spae-like four-momentum p

2

= ��

2

.

In this way, divergenes in the limit q

2

! 0 are avoided.

� In the minimal subtration (MS) sheme, we subtrat only the divergent 1=" poles.

� In the modi�ed minimal subtration MS (read em-es-bar) sheme, we subtrat also the

ln(4�)� term appearing frequently. This sheme gives more ompat expressions than

the others and is most often used in theoretial alulations.

The main advantage of the MS and MS shemes is that they are mass independent, i.e. that

the subtration terms do not depend on the partile masses. This independene simpli�es

the derivation of \running ouplings" (f. with the alulation of �(�) in setion 4.3.4). As

a drawbak of the MS and MS shemes, quantities like the eletron mass alulated in these

shemes, m

MS

e

or m

MS

e

, have to be translated into the physial mass m

e

.

At a �xed order perturbation theory, preditions and reliability of di�erent shemes vary

for given external parameters: A simple example is the hange from the MS to the MS sheme

whih are onneted by ~�

2

= 4��

2

e

�

. Thus this transition is equivalent to a hange of the

renormalisation sale, altering thereby the size of the ln(�

2

) term and thus the strength of the

running oupling. More drasti hanges result moving from a mass independent to a mass

dependent sheme, or omparing DR with other shemes. As a result, running ouplings

whih are small enough to allow perturbation theory in one sheme may be prohibitive large

in other shemes.

11.2. Anomalous magneti moment of the eletron

After this overview, let us move on to the alulation of the magneti moment of the eletron

whih is shifted by loop orretions from the tree-level value g = 2 you derived in problem 8.??.

Apart from being the �rst suessful loop alulation in the history of QFT, this proess

illustrates also several generi properties of loop graphs in renormalisable theories like QED.

Vertex funtion The tree-level interation L

int

= �e

�

 

�

 A

�

between an eletron and a

photon orresponds in momentum spae to e�u(p

0

)

�

u(p)"

�

(q). Sine loop integrals depend

generally on the external momenta, the tree-level vertex 

�

is modi�ed by loop graphs as
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11.2. Anomalous magneti moment of the eletron

q

p

p′

=
q

p

p′

+ k
q

p

p′

1

Figure 11.1.: The general vertex for the interation of a fermion with a photon and its per-

turbative expansion within QED, orretions in external lines are omitted.

the one shown in Fig. 11.1 and beomes a funtion of the momenta, �

�

(p; p

0

; q). We want

to write down the most general form of the vertex funtion �

�

for the oupling between an

external eletromagneti �eld and an on-shell Dira fermion, onsistent with the symmetries

of the problem. It is as usually onvenient to apply the tensor method, i.e. to express �

�

as

a sum of linearly independent rank-1 tensors multiplied by salar funtions.

Translation invariane implies q = p

0

� p and thus �

�

is only a funtion of two momenta

whih we hoose as p and p

0

. Sine p

2

= p

02

= m

2

, the only non-trivial salar variable in the

problem is p � p

0

. We hoose to use the equivalent quantity q

2

= (p

0

� p)

2

as the variable on

whih the arbitrary salar funtions in our ansatz for �

�

depend. Next we have to form all

possible vetors out of the momenta p

�

and p

0

�

and the 16 basis elements (8.40) of the Cli�ord

algebra. Restriting ourselves to QED, we have to impose additionally parity onservation

what forbids the use of 

5

. Hene the most general ansatz ompatible with Poinar�e invariane

and parity is

�

�

(p; p

0

) = A(q

2

)

�

+B(q

2

)p

�

+ C(q

2

)p

0�

+D(q

2

)�

��

p

�

+E(q

2

)�

��

p

0

�

: (11.8)

Current onservation requires q

�

�

�

(p; p

0

) = 0 and leads to C = B and E = �D. Hene

�

�

(p; p

0

) = A(q

2

)

�

+B(q

2

)(p

�

+ p

0�

) +D(q

2

)�

��

q

�

: (11.9)

Hermitiity �nally implies that A;B are real and D is purely imaginary.

Gordon deomposition We derive now an identity that allows us to eliminate one of the

three terms in Eq. (11.9), if we sandwih �

�

between two spinors whih are on-shell. We

evaluate

F

�

= �u(p

0

)

�

p=

0



�

+ 

�

p=

�

u(p) (11.10)

�rst using the Dira equation for the two on-shell spinors, �nding

F

�

= 2m�u(p

0

)

�

u(p) : (11.11)

Seondly, we an use 

�



�

= �

��

� i�

��

, obtaining

F

�

= �u(p

0

)

�

(p

0

+ p)

�

+ i�

��

(p

0

� p)

�

�

u(p) : (11.12)
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11. Renormalisation I: Perturbation theory

Equating (11.11) and (11.12) gives the Gordon identity: It allows us to separate the Dira

urrent into a part proportional to (p+ p

0

)

�

, i.e. with the same struture as a salar urrent,

and a part vanishing for q = p

0

� p! 0 whih ouples to the spin of the fermion,

�u(p

0

)

�

u(p) = �u(p

0

)

�

(p

0

+ p)

�

2m

+

i�

��

(p

0

� p)

�

2m

�

u(p) : (11.13)

Using the results from problem 8.??, we an identify in the non-relativisti limit the seond

term as ontribution to the magneti moment of the fermion.

The Gordon identity shows that the three terms in Eq. (11.9) are not independent. De-

pending on the ontext, we an eliminate therefore the most annoying term in the vertex

funtion. We follow onventions and introdue the (real) form-fators F

1

(q

2

) and F

2

(q

2

) by

�

�

(p; p

0

) = F

1

(q

2

)

�

+ F

2

(q

2

)

i�

��

q

�

2m

= (11.14a)

= F

1

(q

2

)

(p

0

+ p)

�

2m

+ [F

1

(q

2

) + F

2

(q

2

)℄

i�

��

q

�

2m

: (11.14b)

The form-fator F

1

is the oeÆient of the eletri harge, eF

1

(q

2

)

�

, and should thus go to

one for small momentum transfer, F

1

(0) = 1. Therefore the magneti moment of an eletron

is shifted by 1 + F

2

(0) from the tree-level value g = 2. The deviation a � (g � 2)=2 is alled

anomalous magneti moment, the two form-fators are often alled eletri and magneti

form-fators.

Note the usefulness of the proedure to express the vertex funtion using only general

symmetry requirements but not a spei� theory for the interation: Equation (11.14a) allows

experimentalists to present their measurements using only two salar funtions whih in turn

an be easily ompared to preditions of spei� theories.

Anomalous magneti moment After having disussed the general struture of the eletro-

magneti vertex funtion, we turn now to its alulation in perturbation theory for the ase

of QED. The Feynman diagrams ontributing to the matrix element at O(e

3

) with wave-

funtions as external lines are shown in Fig. 11.1, where we omit self-energy orretions in

the external lines: As we will see soon, the later do not ontribute to the anomalous magneti

moment. We separate the matrix element into the tree-level part and the one-loop orretion,

�ie�u(p

0

) [

�

+ �

�

℄u(p). Using the Feynman gauge for the photon propagator, we obtain

�

�

(p; p

0

) =

Z

d

4

k

(2�)

4

�i

k

2

+ i"

(�ie

�

)

i

p=

0

+ k= �m+ i"



�

i

p=+ k= �m+ i"

(�ie

�

) : (11.15)

This integral is logarithmially divergent for large k,

Z

�

dk

k

3

k

2

k

2

/ ln� : (11.16)

Before we perform the expliit alulation, we want to understand if this divergene is on-

neted to a spei� kinematial on�guration of the momenta. We split therefore the vertex

orretion into an on-shell and an o�-shell part,

�

�

(p; p

0

) = �

�

(p; p) + [�

�

(p; p

0

)� �

�

(p; p)℄ � �

�

(p; p) + �

�

off

(p; p

0

) : (11.17)
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11.2. Anomalous magneti moment of the eletron

Next we rewrite the �rst fermion propagator using the identity (A + B)

�1

= B

�1

�

B

�1

AB

�1

+ : : : for small A = p

0

� p as

1

p=

0

+ k= �m

=

1

p=+ k= �m+ (p=

0

� p=)

= (11.18a)

=

1

p=+ k= �m

�

1

p=+ k= �m

(p=

0

� p=)

1

p= + k= �m

+ : : : (11.18b)

The �rst term of this expansion leads to the logarithmi divergene of the loop integral for

large k. In ontrast, the remainder of the expansion that vanishes for p

0

� p = q ! 0 ontains

additional powers of 1=k and is thus onvergent. Hene the UV divergene is ontained solely

in the on-shell part of the vertex orretion, while the funtion �

�

off

(p; p

0

) = �

�

(p; p

0

)��

�

(p; p)

is well-behaved. Moreover, we learn from Eq. (11.14a) that the divergene is on�ned to F

1

(0),

while F

2

(0) is �nite. This is good news: The divergene is only onneted to a quantity

already present in the lassial Lagrangian, the eletri harge. Thus we an predit the

funtion �

�

(p; p

0

) for all values p

0

6= p, after we have renormalised the eletri harge in the

limit of zero momentum transfer.

We now alulate the vertex funtion (11.15) expliitly. We set

�

�

(q) = �ie

2

Z

d

4

k

(2�)

4

N

�

(k)

[(p

0

+ k)

2

�m

2

℄ [(p+ k)

2

�m

2

℄ k

2

(11.19)

with

N

�

= 

�

(p=

0

+ k= +m)

�

(p=+ k= +m)

�

: (11.20)

Then we ombine the propagators introduing as Feynman parameter integrals

1

xyz

= 2

Z

1

0

d�

Z

1��

0

d�

1

[z + �(x� z) + �(y � z)℄

3

= 2

Z

1

0

d�

Z

1��

0

d�

1

D

: (11.21)

Setting z = k

2

, we obtain

D = fk

2

+ �[(p

0

+ k)

2

�m

2

� k

2

℄ + �[(p+ k)

2

�m

2

� k

2

℄g

3

: (11.22)

The omplete alulation of the vertex funtion (11.15) for arbitrary o�-shell momenta is

already quite umbersome. In order to shorten the alulation, we restrit ourselves therefore

to the part ontributing to the magneti form fator F

2

(0). Beause of

�

�

(p; p

0

) =

�

F

1

(q

2

) + F

2

(q

2

)

�



�

� F

2

(q

2

)

(p

0

+ p)

�

2m

(11.23)

we an simplify the alulation of N

�

(k), throwing away all terms proportional to 

�

whih

do not ontribute to the magneti moment. This justi�es also why we an neglet diagrams

with self-energy orretions in the external lines. Moreover, we an onsider the limit that

the eletrons are on-shell and the momentum transfer to the photon vanishes.

Using the on-shell ondition, p

2

= p

02

=m

2

, the two square brakets in D simplify to 2p

0

�k

and 2p � k, respetively,

D =

�

k

2

+ 2k � (�p

0

+ �p)

	

3

: (11.24)

Next we eliminate the term linear in k ompleting the square,

D =

n

(k + �p

0

+ �p

| {z }

`

)

2

� (�p

0

+ �p)

2

o

3

=

�

[`

2

� (�

2

m

2

+ �

2

m

2

+ 2��p

0

� p)

	

3

: (11.25)
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Sine the momentum transfer to the photon vanishes, q

2

= 2m

2

� 2p

0

� p! 0, we an replae

p

0

� p! m

2

and obtain as �nal result for the denominator

D =

�

`

2

� (�+ �)

2

m

2

	

3

: (11.26)

Now we move on to the evaluation of the numerator N

�

(k). Performing the hange of our

integration variable from k = `� (�p

0

+ �p) to `, the numerator beomes

N

�

(`) = 

�

(P=

0

+ =̀+m)

�

(P= + =̀+m)

�

(11.27)

with P=

0

� (1 � �)p=

0

� �p= and P= � (1 � �)p= � �p=

0

. Multiplying out the two brakets and

ordering the result aording to powers of m, we observe �rst that the term / m

2

leads to

/ 

�

and thus does not ontribute to F

2

(0). Next we split further the term linear in m

aording to powers of `: The term linear in ` vanishes after integration, while the term m=̀

0

results in

m(

�

P=

0



�



�

+ 

�



�

P=

�

) = 4m(P

0�

+ P

�

) = 4m[(1� 2�)p

0�

+ (1� 2�)p

�

℄ : (11.28)

Using the symmetry in the integration variables � and �, we an rewrite this expression as

! 4m[(1� �� �)(p

0�

+ p

�

)℄ : (11.29)

We split the m

0

term in the same way aording to the powers of =̀. The m

0

=̀

2

term gives a



�

term, the m

0

=̀ vanishes after integration, and the m

0

=̀

0

gives after some work



�

P=

0



�

P=

�

! 2m[�(1 � �) + �(1� �)℄(p

0

+ p)

�

: (11.30)

Finally, the m

0

term ontributes to the anomalous magneti moment

! �2m(p

0

+ p)

�

[2(1 � �)(1� �)℄ : (11.31)

Combining all terms, we �nd

N

�

= 4m(1� �� �)(p

0

+ p)

�

+ 2m[�(1 � �) + �(1� �)℄(p

0

+ p)

�

� 4m(1� �)(1 � �)(p

0

+ p)

�

=

= 2m[(1 � �� �)(� + �)℄(p

0

+ p)

�

: (11.32)

Thus

�

�

2

(0) = �2ie

2

Z

d�d�

Z

d

2!

`

(2�)

2!

N

�

[`

2

� (�+ �)

2

m

2

℄

3

; (11.33)

where the subsript 2 indiates that we aount only for the ontribution to the anomalous

magneti moment. We expressed also the loop integral in 2! dimensions, suh that we an

apply the general formula derived in the appendix 4.A. Using Eq. (4.106) for I(!; a) with

! = 2 and a = 3,

I(2; 3) = �

i

32�

2

1

(�+ �)

2

m

2

+ i"

; (11.34)

we obtain as expeted a �nite result. As last step, we perform the integrals over the Feynman

parameters � and �,

Z

1

0

d�

Z

1��

0

d�

1� �� �

�+ �

=

1

2

; (11.35)
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and �nd thus

�

�

2

(0) = �

e

2

8�

2

1

2m

(p

0

+ p)

�

: (11.36)

Realling Eq. (11.23), we an identify the fator e

2

=(8�

2

) with the magneti form fator F

2

(0).

We have thus reprodued the result of the �rst suessful alulation of a loop orretion in

a QFT, performed by Shwinger, and independently by Feynman and Tomonaga, in 1948,

F

2

(0) = �=(2�). Together with Bethe's previous estimate of the Lamb shift in the hydro-

gen energy spetrum, this stimulated the view that a onsistent renormalisation of QED is

possible.

The urrently most preise experimental value for the eletron anomalous magneti moment

a

e

� F

2

(0) is

a

exp

e

= 0:001 159 652 180 73 � 2:4� 10

�10

: (11.37)

The alulation of the universal (i.e. ommon to all harged leptons) QED ontribution has

been ompleted up to fourth order. There exists also an estimate of the dominant �fth order

ontribution,

a

uni

`

= 0:5

�

�

�

�

� 0:328 478 965 579 193 78 : : :

�

�

�

�

2

+ 1:181 241 456 587 : : :

�

�

�

�

3

� 1:9144(35)

�

�

�

�

4

+ 0:0(4:6)

�

�

�

�

5

= 0:001 159 652 176 30(43)(10)(31) � � � (11.38)

The three errors given in round brakets are the error from the unertainty in �, the nu-

merial unertainty of the �

4

oeÆient and the error estimated for the missing higher order

terms [Jeg07℄. Comparing the measured value and the predition using QED, we �nd an ex-

tremely good agreement. First of all, this is strong support that the methods of perturbative

QFT we developed so far an be suessfully applied to weakly oupled theories as QED.

Seond, it means that additional ontributions to the anomalous magneti moment of the

eletron have to be tiny.

Eletroweak and other orretions The lowest order eletroweak orretions to the anoma-

lous magneti moment ontain in the loop virtual gauge bosons (W

�

, Z) or a Higgs boson h

and are shown in Fig. 11.2. We will onsider the eletroweak theory desribing these diagrams

only later; for the present disussion it is suÆient to know that the weak oupling onstant is

g ' 0:6 and that the salar and weak gauge bosons are muh heavier than leptons, M � m.

The �rst diagram orresponds shematially to the expression

� g

2

Z

d

4

k

(2�)

4

1

k

2

�M

2

A(m

2

; k)

[(p� k)

2

�m

2

℄

2

: (11.39)

As in QED, this integral has to be �nite and we expet that it is dominated by momenta

up to the mass M of the gauge bosons, k

<

�

M . Therefore its value should be proportional

to g

2

m

2

=M

2

(times a possible logarithm ln(M

2

=m

2

)) and eletroweak orretions to the

anomalous magneti moment of the eletron are suppressed by a fator (m=M)

2

� 10

�10

ompared to the QED ontribution. The property that the ontribution of virtual heavy

partiles to loop proesses is suppressed in the limit jq

2

j �M

2

is alled \deoupling". Note

the di�erene to the ase of the mass of a salar partile or the osmologial onstant: In

these examples, the loop orretions are in�nite and we annot predit these quantities. In
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11. Renormalisation I: Perturbation theory

Z ν h

Figure 11.2.: Lowest order eletroweak orretions to the anomalous magneti moment of

fermions.

ontrast, the anomalous magneti moment is �nite but, as we inlude loop momenta up

to in�nity, depends in prinipal on all partiles oupling to the eletron, even if they are

arbitrarily heavy. Only if these heavy partiles \deouple", we an alulate a

e

without

knowing e.g. the physis at the Plank sale. Thus the deoupling property is a neessary

ingredient of any reasonable theory of physis, otherwise no preditions would be possible

before knowing the \theory of everything".

Clearly, the ontribution of heavy partiles (either eletroweak gauge and Higgs bosons

or other not yet disovered partiles) is more visible in the anomalous magneti moment

of the muon than of the eletron. Moreover, a relativisti muon lives long enough that a

measurement of its magneti moment is feasible. This is one example how radiative orretions

(here evaluated at q

2

= 0) are sensitive to physis at higher sales M : If an observable an

be measured and alulated with high enough preision, one an be sensitive to suppressed

orretions of order g

2

m

2

=M

2

. Other examples are rare proesses like � ! e +  or B

s

!

�

+

�

�

: These proesses are suppressed by a spei� property of the SM whih one does not

expet to hold in general. The ahieved preision in measuring and alulating suh proesses

is high enough to probe generially sales of M � 100 TeV, i.e. muh higher than the mass

sales that an be probed diretly at urrent aelerators as LHC.

Finite versus divergent parts of loop orretions We found that the vertex orretion ould

be split into two parts

�

�

(p; p

0

) = F

1

(q

2

)

�

+ F

2

(q

2

)

i�

��

q

�

2m

; (11.40)

where the form fator F

2

(q

2

) is �nite for all q

2

, while the form fator F

1

(q

2

) diverges for

q

2

! 0. The important observation is that F

2

(q

2

) orresponds to a Lorentz struture that

is not present in the original Lagrangian of QED. This suggests that we an require from a

\nie" theory that

� all UV divergenes are onneted to strutures ontained in the original Lagrangian,

all new strutures are �nite. The basi divergent strutures are also alled \primitive

divergent graphs".

� If there are no anomalies, then loop orretions respet the original (lassial) symme-

tries. Thus, e.g., the photon propagator should be at all orders transverse, respeting

gauge invariane. We will see that as onsequene the high-energy behaviour of the

theory improves.
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11.3. Power ounting and renormalisability

In suh a ase, we are able to hide all UV divergenes in a renormalisation of the original

parameters of the Lagrange density.

11.3. Power ounting and renormalisability

We try to make the requirements on a \nie" theory a bit more preise. Let us onsider the

set of ��

n

theories in d = 4 spae-time dimensions and hek whih graphs are divergent.

We de�ne the super�ial degree D of divergene of a Feynman graph as the di�erene be-

tween the number of loop momenta in the numerator and denominator of a Feynman graph.

We an restrit our analysis to those diagrams alled 1P irreduible (1PI) whih annot be

disonneted by utting an internal line: All 1P reduible diagrams an be deomposed into

1PI diagrams whih do not ontain ommon loop integrals and an be therefore analysed

separately. Moreover, we are only interested in the loop integration and de�ne therefore the

1PI Green funtions

1

as graphs where the propagators on the external lines were stripped

o�. In d = 4 spae-time dimensions, the super�ial degree D of divergene of a 1PI Feynman

graph is thus

D = 4L� 2I ; (11.41)

where L is the number of independent loop momenta and I the number of internal lines.

The former ontributes a fator d

4

p, while the latter orresponds to a salar propagator with

1=(p

2

�m

2

) � 1=p

2

for p!1.

Momentum onservation at eah vertex leads for an 1PI-diagram to

L = I � (V � 1) ; (11.42)

where V is the number of verties and the �1 takes into aount the delta funtion leading

to overall momentum onservation: The latter onstrains only the external not the loop

momenta. Thus

D = 2I � 4V + 4 : (11.43)

Eah vertex onnets n lines and any internal line redues the number of external lines by

two. Therefore the number E of external lines is given by

E = nV � 2I : (11.44)

As result, we an express the super�ial degree D by the order of perturbation theory (V ),

the number of external lines E and the degree n of the interation polynomial �

n

,

D = (n� 4)V + 4�E : (11.45)

From this expression, we see that

� for n < 4, the oeÆient of V is negative. Therefore only a �nite number of terms in

the perturbative expansion are in�nite. Suh a theory is alled super-renormalisable,

the orresponding terms in the Hamiltonian are also alled relevant.

1

Similar to their relatives, the (dis-) onneted Green funtions, also the 1PI Green funtions an be derived

from a generating funtional whih we will introdue in the next hapter.
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11. Renormalisation I: Perturbation theory

Figure 11.3.: Primitive divergent diagrams in QED (without vauum diagrams).

� For n = 4, we �nd D = 4�E. Thus the degree of divergene is independent of the order

of perturbation theory being only determined by the number of external lines. Suh

theories ontain an in�nite number of divergent graphs, but they all orrespond to a

�nite number of divergent strutures|the so-alled primitive divergent graphs. These

interations are also alled marginal and are andidates for a renormalisable theory.

� Finally, for n > 4 the degree of divergene inreases with the order of perturbation the-

ory. As result, there exists an in�nite number of divergent strutures, and inreasing the

order of perturbation theory requires more and more input parameter to be determined

experimentally. Suh a theory is alled non-renormalisable, the interation irrelevant.

In partiular, the ��

4

theory as an example for a renormalisable theory has only three

divergent strutures: i) the ase E = 0 and D = 4 ontributes to the vauum energy, ii) the

ase E = 2 and D = 2 orresponding to the self-energy, and iii) the ase E = 4 and D = 0,

i.e. logarithmially divergene, to the four-point funtion. As we saw in hapter 3, the three

primitive divergent diagrams of the ��

4

theory orrespond to the following physial e�ets:

Vauum bubbles renormalise the osmologial onstant. The e�et of self-energy insertions

is twofold: Inserted in external lines it renormalises the �eld, while self-energy orretions

in internal propagators lead to a renormalisation of its mass. The vertex orretion �nally

renormalises the oupling strength �.

Let us move to the ase of QED. Repeating the disussion, we obtain the analogue to

Eq. (11.45), but aounting now for the di�erent dimension of fermioni and bosoni �elds,

D = 4�B �

3

2

F ; (11.46)

where B and F ount the number of external bosoni and fermioni lines, respetively. There

are six di�erent super�ially divergent primitive graphs in QED shown in Fig. 11.3: The

photon and the fermioni ontribution to the osmologial onstant (D = 4), the vauum

polarisation (D = 2), the fermion self-energy (D = 1), the vertex orretion (D = 0) and

light-by-light sattering (D = 0). Reall that Furry's theorem implies that loops with a an

odd number of fermion propagator vanish in QED. Therefore we have not inluded in our

list of primitive divergent graphs of QED the tadpole (B = 1 and D = 3) and the \photon

splitting" graph (B = 3 and D = 1).

In a theory with symmetries suh as a gauge theory, the true degree of divergene an

be smaller than the super�ial one. For instane, light-by-light sattering orresponds to a

term L � A

4

that violates gauge invariane. Thus either the gauge symmetry is violated by

quantum orretions or suh a term is �nite.

Beause of the orrespondene of the dimension of a �eld and the power of its propagator,

we an onnet the super�ial degree of divergene of a graph to the dimension of the oupling
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onstants at its verties. The super�ial degree D(G) of divergene of a graph is onneted

to the one of its verties D

v

by

D(G)� 4 =

X

v

(D

v

� 4) (11.47)

whih in turn depends as

D

v

= Æ

v

+

3

2

f

v

+ b

v

= 4� [g

v

℄ (11.48)

on the dimension of the oupling onstant g at the vertex v. Here, f

v

and b

v

are the number

of fermion and boson �elds at the vertex, while Æ

v

ounts the number of derivatives. Thus the

dimension of the oupling onstant plays a ruial role deiding if a ertain theory is \nie"

in the naive sense de�ned above. Clearly D = 0 or [g℄ = m

0

is the border-line ase:

� If at least one oupling onstant has a negative mass dimension, [g℄ < 0 and D

v

> 4,

the theory is non-renormalisable. Examples are the Fermi theory of weak interations,

[G

F

℄ = m

�2

, and gravitation, [G

N

℄ = m

�2

.

� If all oupling onstants have positive mass dimension, [g℄ > 0 and D

v

< 4, the theory

is super-renormalisable. An example is the ��

3

theory in D = 4 with [�℄ = m

0

.

� The remaining ases, with all [g

i

℄ = 0, are andidates for renormalisable theories. Ex-

amples are Yukawa interations, ��

4

, Yang-Mills theories that are unbroken (QED and

QCD) or broken by the Higgs mehanism (eletroweak interations).

Theories with massive bosons We have assumed that bosoni propagators behave as / 1=k

2

for large (Eulidean) momenta k. This is true both for massive and massless salars, while it

holds only for massless partiles with spin s � 1: As we have seen, the massless spin-1 and

spin-2 propagators in the R

�

gauge derease like / 1=k

2

for large k. In ontrast, the massive

spin-1 propagator behaves as D

��

F

(k) / onst: Thus the divergenes in loop diagrams are more

severe for massive vetor partiles than for massless ones. For a massive bosoni �eld of spin

s, the polarisation tensors ontains s tensor produts of k

�

k

�

and therefore its propagator

sales as D

�

1

;��� ;�

s

;�

1

;��� ;�

s

(k) / k

2s�2

. This implies that the divergenes of loop diagrams

aggravate for higher spin �elds. In partiular, inserting additional massive propagators into a

loop graph does not improve its onvergene and thus a theory with massive s > 0 partiles

ontains an in�nite number of divergent diagrams at eah loop order. Inluding an expliit

mass term for gauge bosons leads therefore to a non-renormalisable theory. A solution to this

problem is the introdution of gauge boson masses via the Higgs mehanism, whih we will

introdue in hapter 13.3. Combined with our �nding that interating theories of massless

bosons are only possible for s � 2, we an onlude that elementary partiles should have

spin s � 2.

11.4. Renormalisation of the ��

4

theory

We have argued that a theory with dimensionless oupling onstant is renormalisable. In this

ase a multipliative shift of the parameters ontained in the lassial Lagrangian is suÆient

to obtain �nite Green funtions. The simplest theory of this type in d = 4 is the ��

4

theory

for whih we will disuss now the renormalisation proedure at one loop level. As starter, we

examine the general struture of the UV divergenes.
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11.4.1. Struture of the divergenes

We learnt that the degree of divergene dereases inreasing the number of external lines, sine

the number of propagators inreases. The same e�et has taking derivatives w.r.t. external

momenta p,

�

�p=

Z

d

4

k

(2�)

4

1

k= + p=�m

= �

Z

d

4

k

(2�)

4

1

(k= + p=�m)

2

:

This means that

1. we an Taylor expand loop integrals, on�ning the divergenes in the lowest order terms.

Choosing e.g. p = 0 as expansion point in the fermion self-energy,

�(p) = A

0

+A

1

p=+A

2

p

2

+ : : : with A

n

=

1

n!

�

n

�p=

n

�(p) ;

we know that A

0

is (super�ially) linear divergent. Thus A

1

an be maximally loga-

rithmially divergent, while all other oeÆients A

n

are �nite.

2. We ould hoose a di�erent expansion point, leading to di�erent renormalisation on-

ditions (within the same regularisation sheme).

3. The divergenes an be subtrated by loal operators, i.e. by polynomials of the �elds

and their derivatives. These terms alled ounter-terms have for a renormalisable theory

the same struture as the terms present in the lassial Lagrangian. For instane,

the linear divergent term A

0

an be assoiated to a ounter-term ÆA

0

�

  , while A

1

p=

orresponds to the ounter-term ÆA

1

�

 �= .

It is easy to show that the ounter-terms are loal operators at the one-loop level, where

diagrams ontain only one integration variable. Any loop integral I(p) with super�ial degree

of divergene n� 1 beomes �nite after taking n derivatives w.r.t. an external momentum p.

Using a uto� � as regulator, this implies that in

�

n

�p

n

I(p) = f(p) +O(p=�) (11.49)

the funtion f(p) is �nite and independent of �, while the remainder vanishes in the limit

�!1. Integrating this expression n times, we obtain

I(p) = F (p) + P

n

(p) +O(p=�) ; (11.50)

where F (p) is also �nite and independent of �. The funtion P

n

(p) is a n.th order polynomial

ontaining the integration onstants. Sine F (p) is �nite, P

n

(p) omprises all divergenes.

They are therefore the oeÆients of polynomials in the external momentum p and an be

subtrated by loal operators, as we laimed. This argument shows also that all non-trivial

analytial strutures like uts have to be ontained in F (p). Moreover, hoosing a di�erent

regularisation sheme or point leads to the same f(p) in (11.49), and thus all the sheme

dependene is ontained in the polynomial P

n

(p). As a result, the di�erenes aused by

di�erent shemes reside only in loal terms whih are absorbed in the renormalisation of the

parameters.

Going to higher loop orders, non-loal terms as e.g. ln(p

2

=�

2

) an be generated by sub-

divergenes. These are divergenes onneted to integration regions where one or more loop
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momenta are �nite, while the remaining ones are send to in�nity. Suh terms are anelled by

ounter-terms determined at lower order. A sketh why this should be true goes as follows:

Green funtions beome singular for oiniding points, i.e. when the onvergene fator e

�kx

in the

Eulidean Green funtion beomes one. In the simplest ases as h0j�(x

0

)�(x)j0i

x

0

!x

, the in�nities are

eliminated by normal ordering, i.e. by rewriting all reation operators on the left of the annihilation

operators, f. problem 3.??. More ompliated are overlapping divergenes where two or more divergent

loops share a propagator. Wilson suggested to expand the produt of two �elds as the sum of loal

operators O

i

times oeÆient funtions C

i

(x � y) as

�(x)�(y) =

X

i

C

i

(x� y)O

i

(x) ;

where the dependene on the relative distane is arried by the oeÆients and the loal operators O

i

are of the type O

i

(x) = �(x)�

�

� � � �

�

�(x). For a massless salar �eld, dimensional analysis ditates

that C

i

(x) / x

�2+d

i

, if the loal operator O

i

has dimension d

i

. Note that only the unity operator has

a singular oeÆient funtion 1=x

2

orresponding to the massless salar propagator. Similarly we an

expand produts of operators,

O

n

(x)O

m

(y) =

X

i

C

i

nm

(x� y)O

i

(x) ;

where now C

i

nm

(x) / x

�d

n

�d

m

+d

i

. Thus we an use this operator produt expansion (or briey

\OPE") to rewrite the overlapping divergenes in terms of (singular) oeÆient funtions and loal

operators. Moreover, the sub-divergene ourring at order k, when p < k points oinide, are

eliminated by the ounter-terms found at order p.

Elaborating this argument in detail, one an onlude that non-loal terms due to overlapping

divergenes are anelled by the ounter-terms found at lower order. We will see how this

works in pratie in the next setion, when we alulate the vauum energy at two-loop.

11.4.2. The ��

4

theory at O(�)

There are two equivalent ways to perform perturbative renormalisation. In the one alled

often \onventional" perturbation theory we use the \bare" (unrenormalised) parameters in

the Lagrangian,

L = L

0

+L

int

=

1

2

(�

�

�

0

)

2

�

1

2

m

2

0

�

2

0

�

�

0

4!

�

4

0

: (11.51)

Then we introdue a renormalised �eld �

R

= Z

�1=2

�

�

0

and hoose the parameters Z

�

;m

0

and

�

0

as funtion of the regularisation parameter (", �; : : :) suh that the �eld �

R

has �nite

Green funtions. In the following, we disuss the renormalisation proedure at the one-loop

level for the Green funtions of the ��

4

theory in this sheme. Sine any 1P reduible diagram

an be deomposed into 1PI diagrams whih do not ontain ommon loop integrals, we an

restrit our analysis again to 1PI Green funtions.

Mass and wave-funtion renormalisation We de�ned the exat or full propagator

i�

F

(x

1

; x

2

) in Eq. (4.2) as the path integral average of the two �elds �(x

1

)�(x

2

). Now

we want to �nd a de�nition whih is useful for alulations in perturbation theory: We laim

that

[i�

F

(p)℄

�1

= [i�

F

(p)℄

�1

��(p) = p

2

�m

2

��(p)� i" (11.52)
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is the exat propagator, where the exat self-energy �(p) represents the 1PI orretions to

the salar mass, m

2

phys

= m

2

0

+�. Multiplying this de�nition from the right with i�

F

(p) and

from the left with i�

F

(p), the so-alled Dyson equation follows,

i�

F

(p) = i�

F

(p) + i�

F

(p)�(p)i�

F

(p) = i�

F

(p) [1 +�(p)i�

F

(p)℄ : (11.53)

Graphially, we an express this equation as

= +

= + + + · · ·

where the seond line follows by iteration. Hene, i�

F

(p) sums up the amplitudes to propa-

gate at momentum p with zero, one,. . . self-energy � insertions, and orresponds therefore to

the full propagator. At O(�), we see that this relation holds omparing it to Eq. (4.33).

Next we have to show that the self-energy �(p

2

) is �nite after renormalisation. The one-loop

expression

� i�(p

2

) =

�i�

0

2

Z

d

4

k

(2�)

4

i

k

2

�m

2

0

+ i"

(11.54)

is quadratially divergent. As a partiularity of the �

4

theory, the p

2

dependene of the

self-energy � shows up only at the two-loop level. We perform a Taylor expansion of �(p

2

)

around the arbitrary point �,

�(p

2

) = �(�

2

) + (p

2

� �

2

)�

0

(�

2

) +

~

�(p

2

) ; (11.55)

where �(�

2

) / �

2

, �

0

(�

2

) / ln� and

~

�(p

2

) is the �nite remainder. A term linear in � is

absent, sine we annot onstrut a Lorentz salar out of p

�

. Note also

~

�(�

2

) = 0.

Now we insert (11.55) into (11.52),

i

p

2

�m

2

0

� �(p

2

) + i"

=

i

p

2

�m

2

0

� �(�

2

)

| {z }

p

2

��

2

�(p

2

� �

2

)�

0

(�

2

)�

~

�(p

2

) + i"

; (11.56)

where we see that we an identify � with the renormalised mass given by the pole of the

propagator.

We aim at rewriting the remaining e�et for p

2

! �

2

= m

2

of the self-energy insertion,

�

0

(m

2

), as a multipliative resaling. In this way, we ould remove the divergene from the

propagator by a resaling of the �eld. At leading order in �, we an write

~

�(p

2

) =

�

1� �

0

(m

2

)

�

~

�(p

2

) +O(�

2

0

) (11.57)

and thus

i�

F

(p) =

1

1� �

0

(m

2

)

i

p

2

�m

2

�

~

�(p

2

) + i"

=

iZ

�

p

2

�m

2

�

~

�(p

2

) + i"

(11.58)

with the wave-funtion renormalisation onstant

Z

�

=

1

1��

0

(m

2

)

= 1 + �

0

(m

2

) : (11.59)
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Close to the pole, the propagator is the one of a free partile with mass m,

i�

F

(p) =

iZ

�

p

2

�m

2

+ i"

+O(p

2

�m

2

) : (11.60)

Thus the renormalisation onstant Z

�

equals the wave-funtion renormalisation onstant Z

we had to introdue into the LSZ formalism to obtain orretly normalised states.

We de�ne the renormalised �eld � = Z

�1=2

�

�

0

suh that the renormalised propagator

i�

R

(p) =

Z

d

4

x e

ipx

h0j Tf�(x)�(0)g j0i = Z

�1

�

i�(p) =

i

p

2

� �

2

�

~

�(p

2

) + i"

(11.61)

is �nite. Similarly, we de�ne renormalised n-point funtions by

G

(n)

R

(x

1

; : : : ; x

n

) = h0j Tf�(x

1

) � � � �

n

(x

n

)g j0i = Z

�n=2

�

G

(n)

0

(x

1

; : : : ; x

n

) : (11.62)

Sine the 1PI n-point Green funtions miss n �eld renormalisation onstants ompared to

onneted n-point Green funtions, the onnetion between renormalised and bare 1PI n-

point funtions is given by

�

(n)

R

(x

1

; : : : ; x

n

) = Z

n=2

�

�

(n)

0

(x

1

; : : : ; x

n

) : (11.63)

Coupling onstant renormalisation We an hoose an arbitrary point inside the kinematial

region, s + t + u = 4�

2

and s � 4�

2

, to onnet the oupling to a physial measurement at

this point. For our onveniene and less writing work, we hoose instead the symmetri point

s

0

= t

0

= u

0

=

4�

2

3

:

The bare four-point 1PI Green funtion is (see setion 4.3.3)

�

(4)

0

(s; t; u) = �i�

0

+ �(s) + �(t) + �(u) ; (11.64)

the renormalised four-point funtion at (s

0

; t

0

; u

0

) is

�

(4)

R

(s

0

; t

0

; u

0

) = �i� : (11.65)

Next we expand the bare 4-point funtion around s

0

; t

0

; u

0

,

�

(4)

0

(s; t; u) = �i�

0

+ 3�(s

0

) +

~

�(s) +

~

�(t) +

~

�(u) (11.66)

where the

~

�(x) are �nite and zero at x

0

. Now we de�ne a vertex (or oupling onstant)

renormalisation onstant by

� iZ

�1

�

�

0

= �i�

0

+ 3�(s

0

) (11.67)

Inserting this de�nition in (11.66) we obtain

�

(4)

0

(s; t; u) = �iZ

�1

�

�

0

+

~

�(s) +

~

�(t) +

~

�(u) (11.68)

what simpli�es at the renormalisation point to

�

(4)

0

(s

0

; t

0

; u

0

) = �iZ

�1

�

�

0

: (11.69)
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We use now the onnetion between renormalised and bare Green funtions,

�

(4)

R

(s; t; u) = Z

2

�

�

(4)

0

(s; t; u) ; (11.70)

and thus

� i� = Z

2

�

Z

�1

�

(�i�

0

) : (11.71)

The relation between the renormalised and bare oupling in the ��

4

theory is thus

� = Z

2

�

Z

�1

�

�

0

: (11.72)

Now we have to show that �

(4)

R

(s; t; u) is �nite. Inserting (11.68) into (11.70), we �nd

�

(4)

R

(s; t; u) = �iZ

2

�

Z

�1

�

�

0

+ Z

2

�

[

~

�(s) +

~

�(t) +

~

�(u)℄

= �i�+ Z

2

�

[

~

�(s) +

~

�(t) +

~

�(u)℄ (11.73)

Sine Z

�

= 1 +O(�

2

) and

~

� = O(�

2

), this is equivalent to

�

(4)

R

(s; t; u) = �i�+ [

~

�(s) +

~

�(t) +

~

�(u)℄ +O(�

3

) (11.74)

onsisting only of �nite expressions. This ompletes the proof that at one-loop order all

Green funtions in the ��

4

theory are �nite, renormalising the �eld �, its mass and oupling

onstant. as

Renormalised perturbation theory In this approah, we resale �rst the bare �eld in the

lassial Lagrangian by �

0

= Z

1=2

�

�, obtaining

L =

1

2

Z

�

(�

�

�)

2

�

1

2

Z

�

m

2

0

�

2

�

�

0

4!

Z

2

�

�

4

: (11.75)

Next we introdue the renormalised mass and oupling bym

2

0

= Z

�1

�

Z

m

m

2

and �

0

= Z

�2

�

Z

�

�,

obtaining

L =

1

2

Z

�

(�

�

�)

2

�

1

2

Z

m

m

2

�

2

�

�

4!

Z

�

�

4

: (11.76)

The renormalisation onstants Z

i

vanish at tree-level and allow for a perturbative expansion.

Setting Z

i

= 1 + Æ

i

, we an split the Lagrangian into

L =

1

2

(�

�

�)

2

�

1

2

m

2

�

2

�

�

4!

�

4

+

1

2

Æ

�

(�

�

�)

2

�

1

2

Æ

m

m

2

�

2

�

�

4!

Æ

�

�

4

;

(11.77)

where the �rst line ontains only renormalised quantities. The terms in the seond line ontain

the divergent renormalisation onstants, and this part is alled the ounter-term Lagrangian

L

t

. An advantage of renormalised perturbation theory is that now the expansion parameter

is the renormalised oupling �. Treating L

t

as a perturbation, Z

i

= 1+

P

1

n=1

Æ

(n)

i

, we obtain

in momentum spae as additional Feynman verties

�

= i[Æ

�

p

2

� Æ

m

m

2

℄ (11.78)

and

�

= �iÆ

�

� : (11.79)

Applying renormalised perturbation theory onsists of the following steps:
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1. Starting from (11.76 ) with n = 0, i.e. Æ

(0)

i

= 0, one derives propagator and verties.

2. One alulates 1-loop 1PI diagrams and �nds the divergent parts whih determine the

ounter-terms Æ

(1)

i

at order O(�). Then all other one-loop diagrams an be alulated.

3. Moving to two-loops, one generates two-loop 1PI diagrams using the Lagrangian with

the one-loop ounter-terms Æ

(1)

i

. They are used to extrat the ounter-terms Æ

(2)

i

at

order O(�

2

).

4. The proedure is iterated moving to higher orders.

We illustrate the use of renormalised perturbation theory with the alulation of the remain-

ing loop diagram at O(�), the vauum energy density. This example for a two-loop diagram

shows also how sub-divergenes are anelled by ounter-terms found at lower loop order.

Inluding the vauum energy density, the Lagrangian (11.76) beomes L ! L + � + Æ

�

�.

This example shows also that the orret expansion parameter is the number of loops, not

the power of the oupling onstant.

Example 11.3: Vauum energy density at two-loop:

Aording to step 2., we should determine �rst the ounter-terms in L

(1)

t

from the already alulated

one-loop 1PI diagrams. We start olleting the relevant results derived in hapter 4,

�

(1)

= �

m

4

(4�)

2

�

1

"

+ ln(�

2

=m

2

)

�

; Æ

(1)

�

=

1

(4�)

2

1

"

; and Æ

(1)

m

=

�

2

1

(4�)

2

1

"

; (11.80)

where we use the MS sheme and re-saled �

2

! 4��

2

exp(�). Inserting the one-loop self-energy

into the two-loop expression �

(2)

a

= �=8�

2

F

(0) results in

�

(2)

a

=

�

8

�

2

F

(0) =

�

8

m

4

(4�)

4

�

1

"

2

+

2

"

ln

�

�

2

m

2

�

+ ln

2

�

�

2

m

2

��

: (11.81)

Here a mixed term, ombining a pole term 1=" and a logarithm with argument �

2

=m

2

, has appeared. In

general, the logarithm will depend both on the masses of the loop partiles and the external momenta

p, ln[f(�

2

=m

2

; �

2

=p

2

)℄. Suh terms annot be subtrated by loal polynomials in the momenta p

as ounter-terms. In a renormalisable theory, they have to be therefore anelled by ounter-terms

determined at lower loop order.

In our onrete ase, we have to add only the Feynman diagram generated by the ounter-term

�

1

2

Æ

(1)

m

m

2

�

2

, sine Æ

�

�

ontributes only from the two-loop level on. This interation generates at O(�)

the following ontribution to the vauum energy density

�

(2)

b

=

�

=

1

2

Æ

(1)

m

m

2

�

F

(0) = �

�

8

m

4

(4�)

4

2

"

�

1

"

+ ln(�

2

=m

2

)

�

: (11.82)

Combining the two ontributions, the mixed terms disappear as expeted and the remaining 1="

2

pole an be subtrated by the ounter-term

Æ

(2)

�

=

�

8

1

(4�)

4

1

"

2

: (11.83)

Thus the two-loop ontribution to the vauum energy density is

�

(2)

=

m

4

(4�)

4

ln

2

(�

2

=m

2

) =

�

m

(1)

(�)

4�

�

4

: (11.84)
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Summary

Using a power ounting argument for the asymptoti behaviour of the free Green funtions,

we singled out theories with dimensionless oupling onstants: Suh theories with marginal

interations are renormalisable, i.e. are theories with a �nite number of primitive divergent

diagrams. In this ase, the multipliative renormalisation of the �nite number of parameters

ontained in the lassial (e�etive) Lagrangian is suÆient to obtain �nite Green funtions

at any order perturbation theory.

Further reading

The renormalisation of the ��

4

theory at the two-loop level is performed e.g. by [Pok87℄. Non-

renormalisable theories are disussed by [Sh13℄. [Jeg07℄ reviews the status of eletroweak

preision alulations.
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12. Renormalisation II: Improving

perturbation theory

We ontinue our disussion of renormalisation, introduing �rst the quantum ation as the

generating funtional of 1PI Green funtions. Then we apply the developed formalism to

derive the Ward identities whih imply e.g. that the exat photon propagator is transverse

and that the renormalisation of the eletri harge is universal. Next we introdue the renor-

malisation group equations whih desribe the evolution of n-point Green funtions under a

hange of sale. These equations suggest to onvert the parameters ontained in the lassial

Lagrangian into \running parameter", summing up thereby the most important orretions

of an in�nite set of diagrams. Finally, we introdue in the last setion a non-perturbative

approah based on ideas developed in solid-state physis and the renormalisation group.

12.1. Quantum ation

In the lassial limit, the equation of motion ÆS[�℄=Æ� = �J allows us to determine the

soure J(x) whih produes a given �eld �(x). Our aim is to �nd the quantum analogue of

this lassial equation. Let us reall �rst the de�nition for the generating funtionals of a real

salar �eld,

Z[J ℄ =

Z

D� e

ifS[�℄+

R

d

4

xJ(x)�(x)g

= e

iW [J℄

: (12.1)

Then we de�ne the lassial �eld �



(x) as �



(x) = ÆW [J ℄=ÆJ(x). Performing the funtional

derivative in its de�nition, we see immediately why this de�nition makes sense,

�



(x) =

ÆW [J ℄

ÆJ(x)

=

1

iZ

ÆZ[J ℄

ÆJ(x)

=

1

Z

Z

D��(x) exp i

Z

d

4

y(L + J�) (12.2a)

=

h0j�(x)j0i

J

h0j0i

J

= h�(x)i

J

: (12.2b)

Thus the lassial �eld �



(x) is the vauum expetation value of the quantum �eld �(x) in

the presene of the soure J(x). Now we de�ne the quantum

1

ation �[�



℄ as the Legendre

transform of W [J ℄,

�[�



℄ =W [J ℄�

Z

d

4

xJ(x)�



(x) �W [J ℄� hJ�i ; (12.3)

where �



(x) = ÆW [J ℄=ÆJ(x) should be used to replae J(x) by �



(x) on the RHS. We ompute

the funtional derivative w.r.t. �



of this new quantity,

Æ�[�



℄

Æ�



(y)

=

Z

d

4

x

ÆW

ÆJ(x)

ÆJ(x)

Æ�



(y)

�

Z

d

4

x

ÆJ(x)

Æ�



(y)

�



(x)� J(y):

1

Many authors all �[�



℄ the e�etive or quantum e�etive ation.
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Using the de�nition ÆW=ÆJ(x) = �



(x), the �rst and seond term anels and we end up as

desired with

Æ�[�



℄

Æ�



(y)

= �J(y) : (12.4)

The analogy to the lassial equation of motion suggests that �[�



℄ is the quantum version of

the lassial ation. We will show next that its tree-level diagrams ontain all loop orretions

indued by the usual ation S[�℄. It is this feature that justi�es the name quantum ation

for �[�



℄.

Expansion in ~ as a loop expansion In order to proeed, we perform a saddle-point expan-

sion around the lassial solution �

0

, given by the solution to

ÆfS[�℄ + hJ�ig

Æ�

�

�

�

�

�

0

= 0 (12.5)

or

��

0

+ V

0

(�

0

) = J(x) : (12.6)

We write the �eld as � = �

0

+

~

�, i.e. as a lassial solution with quantum utuations on top.

Then we an approximate the path integral Z = expfiW=~g as

Z ' e

i[S[�

0

℄+hJ�

0

i℄=~

Z

D

~

� exp

�

i

~

Z

d

4

x

1

2

h

(�

�

~

�)

2

� V

00

(�

0

)

~

�

2

i

�

: (12.7)

We have restored Plank's onstant ~ to indiate that this saddle point expansion an be

viewed as an expansion in ~. Next we want to show that the expansion in ~ orresponds to

a loop expansion. We introdue arti�ially a parameter a into our Lagrangian so that

L (�; �

�

�; a) = a

�1

L (�; �

�

�) : (12.8)

Let us determine the power P of a in an arbitrary 1PI Feynman graph, a

P

: A propagator

is the inverse of the quadrati form in L and ontributes thus a positive power a, while

eah vertex / L

int

adds a fator a

�1

. The number of loops in an 1PI diagram is given by

L = I � V + 1, f. Eq. (11.42), where I is the number of internal lines and V is the number

of verties. Putting this together we see that

P = I � V = L� 1 (12.9)

and thus

2

the power of a gives us the number of loops. We should stress that using a loop

expansion does not imply a semi-lassial limit, S � ~: Our �titious parameter a is not

small; in fat, it is one.

Quantum ation as generating funtional for 1PI Green funtions We have now all the

neessary ingredients in order to show that the tree-level graphs generated by the quantum

2

We assume here that partile masses whih arry a fator ~

�1

an be negleted. In few appliations, as

e.g. alulating quantum orretions to the Newtonian potential between two masses m

1

and m

2

, this

assumption is not valid.
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ation �[�℄ orrespond to the omplete sattering amplitudes of the orresponding ation

S[�℄. We ompare the \true" generating funtional

Z[J ℄ =

Z

D� expfiS + hJ�ig = e

iW [J℄

; (12.10)

with the funtional V

a

[J ℄ of a �titious �eld theory whose lassial ation S is the quantum

ation �[�℄ of the theory (12.10) we are interested in,

V

a

[J ℄ =

Z

D� exp

�

i

a

f�[�℄ + hJ�ig

�

= e

iU

a

[J℄

: (12.11)

Additionally, we introdued the parameter a with the same purpose as in (12.8): In the limit

a ! 0, we an perform a saddle-point expansion and the path integral is dominated by the

lassial path. From (12.7), we �nd thus

lim

a!0

aU

a

[J ℄ = �[�℄ + hJ�i =W [J ℄ ; (12.12)

where we used the de�nition of the quantum ation, Eq. (12.3), in the last step. The RHS

is the sum of all onneted Green funtions of our original theory. The LHS is the lassial

limit of the �titious theory V

a

[J ℄, i.e. it is the sum of all onneted tree graphs generated

using �[�℄ as ation. But a onneted graph whih is one-partile reduible is omposed

of one-partile irreduible subgraphs onneted by simple propagators. Hene a onneted

graph orresponds to a tree-level graph with 1PI subgraphs �

(n)

(x

1

; :::; x

n

) as (non-loal)

verties. This shows that the quantum ation �[�℄ is the generating funtional for the 1PI

Green funtions. Expanding �[�℄ in �



gives us thus

�[�



℄ =

X

n

1

n!

Z

d

4

x

1

� � � d

4

x

n

�

(n)

(x

1

; :::; x

n

)�



(x

1

) � � � �



(x

n

) (12.13)

with �

(n)

as the one-partile-irreduible Green funtions. In the following, we will need only

the two- and three-point funtions whih we onstrut now expliitly.

Example 12.1: Show that �

(2)

is equal to the inverse propagator or inverse 2-point funtion, and

derive the onnetion of �

(3)

to the onneted 3-point funtion.

We write �rst

Æ(x

1

� x

2

) =

Æ�



(x

1

)

Æ�



(x

2

)

=

Z

d

4

x

Æ�



(x

1

)

ÆJ(x)

ÆJ(x)

Æ�



(x

2

)

using the hain rule. Next we insert �



(x) = ÆW=ÆJ(x) and J(x) = �Æ�=Æ�



(x) to obtain

Æ(x

1

� x

2

) = �

Z

d

4

x

Æ

2

W

ÆJ(x)ÆJ(x

1

)

Æ

2

�

Æ�



(x)Æ�



(x

2

)

:

Setting J = �



= 0, it follows

Z

d

4

x iG(x; x

1

) �

(2)

(x; x

2

) = �Æ(x

1

� x

2

) (12.14)

or �

(2)

(x

1

; x

2

) = iG

�1

(x

1

; x

2

). Thus the 1PI 2-point funtion is the inverse propagator. Taking a

further derivative Æ=ÆJ(x

3

) of this relation, we have

Æ

3

W

ÆJ(x

1

)ÆJ(x

2

)ÆJ(x

3

)

= �

Æ

ÆJ(x

3

)

�

Æ

2

�

Æ�



(x

1

)Æ�



(x

2

)

�

�1

: (12.15)
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Di�erentiating MM

�1

= 1, we �nd dM

�1

= �M

�1

dMM

�1

for a matrix M . Applied to (12.15), we

obtain

Æ

3

W

ÆJ(x

1

)ÆJ(x

2

)ÆJ(x

3

)

=

Z

d

4

y

1

d

4

y

2

G

(2)

(y

1

; x

1

)G

(2)

(y

2

; x

2

)

Æ

3

�

Æ�



(x

1

)Æ�



(x

2

)ÆJ(x

3

)

: (12.16)

Using the hain rule, inserting �



(x

3

) = ÆW=ÆJ(x

3

) and setting J = �



= 0 gives

G

(3)

(x

1

; x

2

; x

3

) =

Z

d

4

y

1

d

4

y

2

d

4

y

3

G

(2)

(y

1

; x

1

)G

(2)

(y

2

; x

2

)G

(2)

(y

3

; x

3

)�

(3)

(x

1

; x

2

; x

3

) : (12.17)

Thus the onneted 3-point funtion G

(3)

(x

1

; x

2

; x

3

) is obtained by appending propagators to the

irreduible 3-point vertex funtion �

(3)

(x

1

; x

2

; x

3

), one for eah external leg. This generalises to all

n 6= 2 and therefore one alls the �

(n)

also amputated Green funtions.

12.2. Ward-Takahashi identities

We now turn to QED, the simplest ase of a gauge theory. Disussing the quantum version

of Noether's theorem, we have already shown that the vev of the eletromagneti urrent

is onserved, �

�

hj

�

i = 0. Hene loop orretions respet the lassial gauge symmetry and

therefore we expet also that the photon remains massless. The redundany implied by loal

gauge invariane leads to interrelations of Green funtions. In turn, suh dependenies are a

neessary ingredient for the quantisation of a gauge symmetry, as we an see as follows: In

QED, we de�ne wave-funtion renormalisation onstants for the eletron and photon as

 

0

� Z

1=2

2

 and A

�

0

� Z

1=2

3

A

�

: (12.18)

Analogous to Eq. (11.72), the eletri oupling is renormalised by

e(�) = Z

2

Z

1=2

3

Z

�1

1

e

0

; (12.19)

where Z

1

is the harge renormalisation onstant, and Z

2

and Z

1=2

3

take into aount that two

eletron �elds and one photon �eld enter the three-point funtion.

As it stands, the renormalisation ondition (12.19) reates two major problems: First, the

fator Z

2

will vary from fermion to fermion. For instane, the wave-funtion renormalisation

onstant of a proton inludes the e�ets of strong interations while the one of the eletron

does not. As a result, it is diÆult to understand why the eletri harge of an eletron and

an proton are renormalised suh that they have the same value at q

2

= 0. Seond, we see

that the renormalised ovariant derivative

D

�

= �

�

+ i

Z

1

Z

2

e(�)A

�

(12.20)

remains only gauge-invariant, if Z

1

= Z

2

. Clearly, this ondition would also ensure the

universality of the eletri harge. Thus it is essential that we are able to show that Z

1

= Z

2

holds in suitable renormalisation shemes. In a non-abelian theory as QCD, where we have

to ensure that the gauge oupling in all terms of Eq. (10.76) remains after renormalisation

the same, several onstraints of the type Z

1

= Z

2

arise.

We will proeed in two steps: First, we will show that the photon remains massless or, more

tehnially, that the exat photon vauum polarisation is transverse. Then we will derive the

Ward-Takahashi identities using the quantum ation whih imply in partiular the relation

Z

1

= Z

2

.
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Photon propagator Consider the generating funtional of QED,

Z[J

�

; �; ��℄ =

Z

DAD

�

 D expfi

Z

d

4

xL

eff

g; (12.21)

where J

�

is a four-vetor soure, � and �� are Gra�mannian soures and the e�etive La-

grangian L

eff

is omposed of a lassial term L

l

, a gauge �xing term L

gf

and a soure term

L

s

,

L

l

= �

1

4

F

��

F

��

+ i

�

 

�

D

�

 �m

�

  ; (12.22a)

L

gf

+L

s

= �

1

2�

(�

�

A

�

)

2

+ J

�

A

�

+

�

 � + �� : (12.22b)

We onsider now the renormalised version of the Lagrangian L

eff

, where the renormalised

ovariant derivative D

�

is given by Eq. (12.20) with Z

1

6= Z

2

in general. This implies that an

in�nitesimal gauge transformation has the form

A

�

! A

0

�

= A

�

+ �

�

� (12.23a)

 !  

0

=  � i�e� with �e �

Z

1

Z

2

e : (12.23b)

As L

l

is gauge invariant by onstrution, the variation of L

eff

under an in�nitesimal gauge

transformation onsists only of

Æ

Z

d

4

x (L

gf

+L

s

) =

Z

d

4

x

�

�

1

�

(�

�

A

�

)�� + J

�

�

�

�+ i�e�(

�

 � � �� )

�

: (12.24)

Now we integrate by parts the �rst term twie and the seond term one, to fator out the

arbitrary funtion �,

ÆS

eff

= Æ

Z

d

4

xL

eff

=

Z

d

4

x

�

�

1

�

�(�

�

A

�

)� �

�

J

�

+ i�e(

�

 � � �� )

�

� : (12.25)

Thus the variation of the generating funtional Z[J

�

; �; ��℄ is

ÆZ[J

�

; �; ��℄ =

Z

DAD

�

 D exp

�

i

Z

d

4

xL

eff

�

iÆ

Z

d

4

xL

eff

: (12.26)

The �elds A

�

,

�

 and  are however only integration variables in the generating funtional.

The gauge transformation (12.23) is thus merely a hange of variables whih does not a�et

the funtional Z[J

�

; �; ��℄, sine the Jaobian of this transformation is one. Thus this variation

has to vanish, ÆZ[J

�

; �; ��℄ = 0.

If we substitute �elds by funtional derivatives of their soures, the hange ÆS

eff

an be

moved outside the funtional integral. Sine the funtion �(x) is arbitrary, we an drop the

integration and arrive at

0 =

�

�

1

�

��

�

Æ

ÆJ

�

� �

�

J

�

+ i�e

�

�

Æ

Æ�

� ��

Æ

Æ��

��

expfiWg

= �

1

�

�

�

�

�

ÆW

ÆJ

�

�

� �

�

J

�

+ i�e

�

�

ÆW

Æ�

� ��

ÆW

Æ��

�

:
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Di�erentiating this equation with respet to J

�

(y) and setting then the soures J

�

, � and ��

to zero gives us our �rst result,

�

1

�

�

�

�

�

Æ

2

W

ÆJ

�

(x)ÆJ

�

(y)

�

= �

�

�

��

Æ(x� y) : (12.27)

The seond derivative of W w.r.t. to the vetor soures J

�

is the full photon propagator

D

��

(x� y). If we go to momentum spae, we have

i

�

k

2

k

�

D

��

(k) = k

�

: (12.28)

Splitting the propagator into a transverse part and a longitudinal part as in (10.60), the

transverse part immediately drops out and we �nd

i

�

k

2

k

�

D

L

(k

2

) = k

�

: (12.29)

Thus the longitudinal part of the exat propagator agrees with the longitudinal part of the

tree level propagator,

iD

L

(k

2

) = iD

L

(k

2

) =

�

k

2

: (12.30)

This implies that higher order orretions do not a�et D

L

(k

2

). In other words, the loop

orretion �

��

to the photon propagator is transverse. Sine we an expand all relations as

power series in the oupling onstant e, this holds also at any order in perturbation theory.

Ward identity Z

1

= Z

2

Let us go bak to the onstraint for the variation of the generating

funtional Z under gauge transformations, Eq. (12.27). We aim to derive identities between

1PI Green funtions and want therefore to transform it into a onstraint for the quantum

ation �. If we Legendre transform W [J; ��; �℄ into �[A;

�

 ; ℄,

�[ ;

�

 ;A

�

℄ =W [�; ��; J

�

℄�

Z

d

4

x(J

�

A

�

+

�

 � + �� ) ; (12.31)

we an replae the funtional derivatives of W with lassial �elds, and the soures with

funtional derivatives of �, i.e.

ÆW

ÆJ

�

= A

�

;

ÆW

Æ�

=

�

 ;

ÆW

Æ��

=  

Æ�

ÆA

�

= �J

�

;

Æ�

Æ

�

 

= ��;

Æ�

Æ 

= ��� :

This transforms Eq. (12.27) into

1

�

�(�

�

A

�

(x))� �

�

Æ�

ÆA

�

(x)

+ i�e

�

 

Æ�

Æ (x)

�

�

 

Æ�

Æ

�

 (x)

�

= 0 ; (12.32)

a master equation from whih we an derive relations between di�erent types of Green fun-

tions. Di�erentiating with respet to  (x

1

) and

�

 (x

2

) and setting then the �elds to zero
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gives us the most important one of the Ward-Takahashi identities, relating the 1PI 3-point

funtion �

(3)

(x; x

1

; x

2

) to the 2-point funtion �

(2)

(x

1

; x

2

) of fermions,

�

�

�

(3)

�

(x; x

1

; x

2

) = i�e

�

�

(2)

(x; x

1

)Æ(x� x

2

)� �

(2)

(x; x

2

)Æ(x � x

1

)

�

(12.33)

or, after Fourier transforming

k

�

�

(3)

�

(p; k; p+ k) = �eS

�1

F

(p+ k)� �eS

�1

F

(p) : (12.34)

Taking the limit k

�

! 0, the identity �

(3)

�

(p; 0; p) = �e�

�

S

�1

F

(p) found originally by Ward

follows. The Green funtions in this equation are �nite, renormalised quantities and thus

Z

1

=Z

2

has to be �nite in any onsistent renormalisation sheme too. In all shemes where

we identify diretly e(0) with the measured eletri harge, also the �nite parts of Z

1

and Z

2

agree, i.e. the measured eletri harge is universal.

12.3. Vauum polarisation

The Ward identities guaranty that the gauge ouplings in QED and QCD are determined

solely by the loop orretions �

��

to the photon and gluon propagator, respetively. These

orretions onvert the lassial oupling onstants into running ouplings. How the running

oupling hange as funtion of the sale is one of the most harateristi properties of a

quantum �eld theory. The aim of this setion is therefore to derive the one-loop orretions

to the gauge boson propagator. An interpretation of these results will then be performed in

the next setion.

12.3.1. Vauum polarisation in QED

We alulate next the one-loop orretion to the photon propagator, the so alled vauum

polarisation tensor �

��

. In QED, only the �rst diagram of Fig. 12.1 ontributes. Using the

Feynman rules, we obtain for the ontribution of one fermion speies with mass m

i�

��

(q) = �(�ie)

2

Z

d

4

k

(2�)

4

tr[

�

i(k= +m)

�

i(k= + q=+m)℄

(k

2

�m

2

)[(k + q)

2

�m

2

℄

= �e

2

Z

d

4

k

(2�)

4

N

��

D

: (12.35)

As a warm-up, we want to on�rm that the vauum polarisation tensor respets at the one-

loop level gauge invariane, as we know already from Eq. (12.30). Gauge invariane implies

q

�

�

��

(q) = 0 and thus the tensor struture of the vauum polarisation tensor has to be

�

��

(q) = (q

2

�

��

� q

�

q

�

)�(q

2

). Hene we have to alulate only the simpler salar funtion

�(q

2

) knowing that �

��

(q) is gauge invariant.

In order to show that q

�

�

��

(q) = 0, we write �rst

q = (q + k �m)� (k �m) (12.36)

and obtain

q

�

N

��

= trf[(q= + k= �m)� (k= �m)℄(k= +m)

�

(k= + q=+m)g (12.37a)

= [(q + k)

2

�m

2

℄trf(k= +m)

�

g � (k

2

�m

2

)trf

�

(k= + q=+m)g (12.37b)
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where we used the yli property of the trae. Employing dimensional regularisation (DR)

with d = 4� 2" in order to obtain well-de�ned integrals,

q

�

i�

��

(q) = �e

2

�

2"

Z

d

d

k

(2�)

d

�

tr[(k= +m)

�

℄

(k

2

�m

2

)

�

tr[

�

(k= + q=+m)℄

(k + q)

2

�m

2

�

; (12.38)

we are allowed to shift the integration variable in one of the two terms. Thus q

�

�

��

(q) = 0

and hene the vauum polarisation tensor at order O(e

2

) is transverse as required by gauge

invariane.

Let us pause a moment and summarise what we know already, before we start with the

evaluation of �(q

2

): In our power-ounting analysis we found as super�ial degree of diver-

gene D = 2. This result was based on the assumption that the numerator N behaves as a

onstant. But the only onstant available is m

2

whih would lead to a mass term of the pho-

ton, e

2

A

�

�

��

A

�

/ e

2

m

2

A

�

�

��

A

�

. Thus the transversality of �

��

implies that the m

2

term

in the numerator will disappear at some step of our alulation. Thereby the onvergene of

the polarisation tensor improves, beoming a \mild logarithmi" one.

We proeed with the expliit evaluation of �

��

. Taking the trae of (12.35) and using its

transversality, we �nd in d = 2! dimensions

�

�

�

(q) = (q

2

Æ

�

�

� q

2

)�(q

2

) = (d� 1)q

2

�(q

2

)

and

(d� 1)q

2

i�(q

2

) = �e

2

�

2"

Z

d

d

k

(2�)

d

tr[
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(k
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)[(k + q)

2

�m

2

℄

= �e

2

�

2"

Z

d

d

k

(2�)

d

N

D

:

(12.39)

We ombine the two propagators introduing the Feynman parameter integral 1=(AB) =

R

1

0

dx [Ax+B(1� x)℄

�2

with A = (k + q)

2

�m

2

and B = k

2

�m

2

. Thus the denominator

beomes

D = Ax+B(1� x) = k

2

+ 2kqx+ q

2

x�m

2

= (k + qx)

2

+ q

2

x(1� x)�m

2

: (12.40)

Next we introdue as new integration variable K = k + qx,

D = K

2

+ q

2

x(1� x)�m

2

= K

2

� a ; (12.41)

and a = m

2

� q

2

x(1� x) > 0 as short-ut.

Evaluating the trae in the denominator using DR, we have to extend the Cli�ord algebra

to d = 2! dimensions. A natural hoie is tr(

�



�

) = d�

��

, giving with 

�



�

= d and



�

q=

�

= (2� d)q= as result for the trae

N = N

�

�

= d[(2� d)k � (k + q) + dm

2

℄ = df(2� d)[K

2

� q

2

x(1� x)℄ + dm

2

g : (12.42)

In the last step, we performed the shift k ! K = k + qx omitting linear terms in K that

vanish after integration. Combining our results for N and D we arrive at

(d� 1)q

2

i�(q

2

) = �e

2

�

2"

d

Z

1

0

dx

Z

d

d

K

(2�)

d

(2� d)K

2

+ dm

2

� (2� d)q

2

x(1� x)℄

(K

2

� a)

2

: (12.43)

Finally, we use our results for the Feynman integrals I

0

(!; �) and I

2

(!; �) whih were

obtained performing a Wik rotation. The latter is possible as long as we do not pass a
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singularity. Sine the prefator x(1 � x) of q

2

has as maximum 1/4, this requires q

2

< 4m

2

.

We start to look for the �rst two terms where we expet a anellation of the m

2

term in the

numerator,

Z

d

d

K

(2�)

d

(2� d)K

2

+ dm

2

(K
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� a)

2

= (2� d)I

2

(!; 2) + dm

2

I(!; 2) (12.44a)

=

i
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!

�(2)

�

�2!(1� !)�(1� !) a

!�1

+ 2!m

2

�(2� !) a

!�2

�

(12.44b)

=

i

(4�)

!

2!�(2� !)(�a+m

2
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!�2

(12.44)

=

4 i

(4�)

2

�(") (4�)

"

q

2

x(1� x)

[m

2

� q

2

x(1� x)℄

"

: (12.44d)

Hene the m

2

term dropped indeed out of the numerator and the whole expression is propor-

tional to q

2

, as required by the LHS of (12.43). Evaluating the third term in the same way

we obtain

�

Z

d

d
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(2�)

d

(2� d)q

2

x(1� x)

(K

2

� a)

2
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2
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=
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2
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: (12.45b)

Adding the two ontributions, we arrive at

�(q

2

) = �

8e

2

(4�)

2

�(")

Z

1

0

dxx(1� x)

�

4��

2

m

2

� q

2

x(1� x)

�

"

; (12.46)

where the fator iq

2

anelled. We inluded also the fator (4��

2

)

"

into the last term, whih

beomes thereby dimensionless. Now we expand the Gamma funtion, �(") = 1="�+O("),

around d = 4� 2" and beause of the resulting 1=" term all other " dependent quantities,

�(q

2

) = �

e

2

12�

2

�

1

"

�  + ln(4�)� 6

Z

1

0

dx x(1� x) ln

�

m

2

� q

2

x(1� x)

�

2

��

: (12.47)

The prefator x(1�x) has its maximum 1/4 for x = 1=2. Thus the branh ut of the logarithm

starts at q

2

= 4m

2

, i.e. when the virtuality of the photon is large enough that it an deay into

a fermion pair of mass 2m. This is a nie illustration of the optial theorem: The polarisation

tensor is real below the pair reation threshold, and aquires an imaginary part above (whih

equals the pair reation ross setion of a photon with mass m

2

= q

2

, f. problem 12.??).

The x integral an be integrated by elementary funtions, but we display the result only

for the two limiting ases of small and large virtualities, q

2

=m

2

! 0 and jqj

2

=m

2

! 1. In

the �rst ase, we obtain with ln(1� x) ' �x

�(q

2

) = �

e

2

12�

2

�

1

"

�  + ln(4�) + ln(�

2

=m

2

) +

q

2

5m

2

+ : : :

�

; (12.48)

while the opposite limit gives

�(q

2

) = �

e

2

12�

2

�

1

"

�  + ln(4�)� ln(jq

2

j=�

2

) + : : :

�

: (12.49)
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Figure 12.1.: Feynman diagrams desribing vauum polarisation in QCD at one-loop.

In the MS sheme, we obtain the renormalisation onstant Z

3

for the photon �eld as the

oeÆient of the pole term,

Z

3

= 1�

e

2

12�

2

"

: (12.50)

More often the on-shell renormalisation sheme is used in QED. Here we require that quantum

orretions to the eletri harge vanish for q

2

= 0, i.e. we hoose Z

3

suh that �

on

(q

2

= 0) =

0. This is obviously ahieved setting

�

on

(q

2

) = �(q

2

)��(0) = �

e

2

60�

2

q

2

m

2

+ : : : ; (12.51)

for jq

2

j � m

2

. This q

2

dependene leads to a modi�ation of the Coulomb potential, whih

an be measured e.g. in the Lamb shift.

12.3.2. Vauum polarisation in QCD

We only sketh the alulations in QCD, stressing the new or di�erent points ompared

to QED. In Fig. 12.1, we show the various 1-loop diagrams ontributing to the vauum

polarisation tensor in a non-abelian theory as QCD. Most importantly, the three- and four-

gluon verties allow in addition to the quark loop now also gluon loops. Sine a fermion loop

has an additional minus sign, we expet that the gluon loop gives a negative ontribution to

the beta funtion. This opens the possibility that non-abelian gauge theories are in ontrast

to QED asymptotially free, if the number of fermion speies is small enough.

Quark loop The vertex hanges from �ie

�

in QED to �ig

s

T

a



�

in QCD. Sine the quark

propagator is diagonal in the group index, a quark loop ontains for eah avor additionally

the fator

trfT

a

T

a

g =

1

2

Æ

aa

= 4 : (12.52)

Thus we have only to replae e ! 4n

f

g

s

in the QED result, where n

f

ounts the number of

quark avors. For the three light quarks, u, d and s, it is an exellent approximation to use

m = 0. In ontrast, the masses of the other three quarks (, b and t) an not be negleted

when 4m

2

f

<

�

�

2

. The e�et of partile masses an be approximated inluding in the loop only

partiles with mass 4m

2

f

< �

2

, making n

f

sale dependent.
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Loop with three-gluon vertex Sine the three-gluon vertex onnets idential partiles, we

have to take into aount symmetry fators similar as in the ase of the ��

4

theory. We

learnt that the imaginary part of a Feynman diagram orresponds to the propagation of real

partiles. Thus the imaginary part of the gluon vauum polarisation an be onneted to the

total ross setion of g ! gg sattering. This ross setion ontains a symmetry fator 1=2!

to aount for two idential partiles in the �nal state. Therefore the same symmetry fator

should be assoiated to the vauum polarisation with a gluon loop

3

. Applying the Feynman

rule for the three-gluon vertex and using the Feynman-t'Hooft gauge, we �nd

i�

��

ab 2

(q

2

) =

1

2

(�ig)

2

i

2

Z

d

4

k

(2�)

4

N

��

ab

(k

2

+ i")[(k + q)

2

+ i"℄

(12.53)

with

N

��

ab

= f

bd

[��

��

(q + k)

�

+ �

��

(2k � q)

�

+ �

��

(2q � k)

�

℄

� f

ad

[��

�

�

(q + k)

�

+ �

��

(q � 2k)

�

+ �

�

�

(k � 2q)

�

℄ :

(12.54)

Evaluating the olour trae,

f

ad

f

db

= N



Æ

ab

(12.55)

and extrating in the usual way the pole part using DR one obtains for d = 4� 2"

�

��

ab 2

(q

2

) = �

N



g

2

32�

2

"

�

�

2

q

2

�

"=2

�

11

3

q

�

q

�

�

19

6

�

��

q

2

�

+O("

0

) : (12.56)

Thus the ontribution from the three-gluon vertex alone is not transverse|demonstrating

again that a ovariant gauge requires the introdution of ghost partiles.

Ghost loop This diagram has the same dependene on the struture onstants as the pre-

vious one,

i�

��

ab; 3

(q

2

) = �(�ig)

2

i

2

Z

d

4

k

(2�)

4

f

bd

(k � q)

�

f

ad

k

�

(k

2

+ i")[(k + q)

2

+ i"℄

; (12.57)

and an thus be ombined with the three-gluon loop. Note the extra minus sign due to the

fermioni nature of the ghost partile. Evaluating the integral results in

�

��

ab; 3

(q

2

) =

N



g

2

32�

2

"

�

�

2

q

2

�

"=2

�

1

3

q

�

q

�

+

1

6

�

��

q

2

�

+O("

0

) (12.58)

and summing the three-gluon and ghost loops gives the expeted gauge-invariant expression.

Moreover, the sum has the opposite sign as the quark loop and an thus lead to the opposite

behaviour of the beta funtion as in QED.

Four-gluon loop and tadpole diagrams The loop with the four-gluon vertex ontains a

massless propagator and does not depend on external momenta,

i�

��

ab;4

(q

2

) /

Z

d

d

k

k

2

+ i"

: (12.59)

3

This argument does not apply to the quark loop, sine utting leads in this ase to a distinguishable �qq state
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Our general experiene with DR tells us that this graph is zero, as gluons are massless.

However, this loop integral is also in DR ambiguous: For any spae-time dimension d, the

integral is either UV or IR divergent. To proeed, we split therefore the integrand introduing

the arbitrary mass M as

1

k

2

+ i"

=

1

k

2

�M

2

+ i"

�

M

2

(k

2

+ i")(k

2

�M

2

+ i")

: (12.60)

Now the IR and UV divergenes are separated, and we an use d < 2 in the �rst term and

2 < d < 4 in the seond. By dimensional analysis, both terms have to be proportional to a

power of the arbitrary mass M . As the LHS is independent of M , the only option is that

the two terms on the RHS anel, as an expliit alulation on�rms. The remaining tadpole

diagrams (5 and 6 of Fig. 12.1) vanish by the same argument. We will ome bak to the

ombined result for the oupling g

s

(Q

2

) in QCD, after having introdued running ouplings

and disussing their behaviour in general.

12.4. Renormalisation group

Renormalisation group equations Let us onsider two renormalisation shemes R and R

0

.

In the two shemes, the renormalised �eld will in general di�er, being �

R

= Z

�1=2

�

(R)�

0

and

�

R

0

= Z

�1=2

�

(R

0

)�

0

, respetively. Hene the onnetion between the two renormalised �elds

is

�

R

0

=

Z

�1=2

�

(R

0

)

Z

�1=2

�

(R)

�

R

� Z

�1=2

�

(R

0

; R)�

R

: (12.61)

As both �

R

and �

R

0

are �nite, also Z

�

(R

0

; R) is �nite. The transformations Z

�1=2

�

(R

0

; R)

form a group, alled the renormalisation group. If we onsider

G

(n)

0

(x

1

; : : : ; x

n

) = Z

n=2

�

G

(n)

R

(x

1

; : : : ; x

n

) ; (12.62)

we know that the bare Green funtion is independent of the renormalisation sale �. Taking a

derivative with respet to �, the LHS thus vanishes. To avoid lutter, we restrit ourselves to

the simplest ase of a massless theory with a single oupling g. Then the renormalised Green

funtions an depend (in a mass independent sheme) only on the renormalised oupling g(�),

and we �nd thus

0 =

d

d ln�

h

Z

n=2

�

G

(n)

R

(x

1

; : : : ; x

n

)

i

(12.63a)

=

�

�

� ln�

+

�g

� ln�

�

�g

+

n

2

� lnZ

�

� ln�

�

G

(n)

R

(x

1

; : : : ; x

n

) (12.63b)

�
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� ln�

+ �
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�g

+
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�

G

(n)

R

(x

1

; : : : ; x

n

) : (12.63)

Here we introdued in the last step the anomalous dimension

(�) = �

� lnZ

�

(�)

��

(12.64)
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of the �eld � and the beta funtion

�(g) = �

�g(�)

��

; (12.65)

whih determines the logarithmi hange of the oupling onstant. The beta funtion is often

re-expressed as

�(g

2

) � �

2

�g

2

��

2

= g�(g) (12.66)

or as �(�

2

) with � = g

2

=(4�). Equations of the type (12.63) are alled generially renor-

malisation group equations or briey RGE. They ome in various avors, arrying the name

of their inventors: St�ukelberg{Petermann, Callan{Symanzik, Gell-Mann{Low, . . . We an

use (11.63) to derive a similar RGE for the 1PI Green funtions. Note that the sign di�er-

ene between (11.63) and (11.62) in the power of the wave-funtion renormalisation onstant

indues a orresponding sign hange in the RGE for 1PI Green funtions.

Remark 12.1: In order to understand the term \anomalous dimensions," we look �rst at the

anonial dimension of �elds under a hange of units. Note that in ontrast to the sale transformations

x ! e

�

x disussed in problem 5.??, we now hange all parameters inluding ouplings and masses.

The lassial ation is then invariant, and a n-point Green funtion G(p

1

; : : : ; p

n

) an be expressed as

G(p

1

; : : : ; p

n

) = m

a

g

b

p



1

1

� � � p



n

n

though the parameters of the lassial Lagrangian. Dimensional analysis onstrains the exponents as

a� 

1

� : : :� 

n

= n, and the n-point Green funtion sales lassially as G! e

n�x

G.

The renormalised Green funtion depends however also on the sale �, i.e. the subtration point of

our renormalisation sheme whih we keep �xed,

G(p

1

; : : : ; p

n

) = m

a

g

b

p



1

1

� � � p



n

n

�



:

Hene the renormalised n-point Green funtion sales as G ! e

(n�)�x

G and satis�es therefore

�dG=d� = G.

Knowing the two universal funtions �(�) and (�), we an alulate the hange of any Green

funtion under a hange of the renormalisation sale �. The general solution of (12.63) an

be found by the method of harateristis or by the analogy of d=d ln� with a onvetive

derivative, f. problem 12.??. Here we onsider only the simplest ase of a dimensionless

observable R in a renormalisable theory whih depends on a single physial momentum sale

Q. Thus we assume that the oupling onstant is dimensionless, and onsider the limit that

all masses an be negleted, jQ

2

j � m

2

i

. An important example is the e

+

e

�

annihilation

ross setion into hadrons whih an be made dimensionless dividing by �(e

+

e

�

! �

+

�

�

) as

referene ross setion. Then R an be only a funtion of the ratio Q

2

=�

2

and of �(�

2

). A

physial observable like R should be independent of the sale �, or

0 = �

2

dR

d�

2

=

�
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��

2

+ �(�)
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��

+ �(�)

�

��

�

R(�; �(�

2
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(12.67)

where we introdued � = ln(Q

2

=�

2

). The two di�erential operators ompensate eah other

setting

� =

Z

�(Q

2

)

�(�

2

)

dx

�(x)

: (12.68)
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The oupling �(Q

2

) = �(�; �(�

2

)) de�ned by (12.68) as funtion of the physial momentum

Q

2

is alled the \running oupling". Setting the renormalisation sale equal to the physial

sale, �

2

= Q

2

, results in

R(Q

2

=�

2

; �(�

2

)) = R(1; �(Q

2

)) : (12.69)

Hene all sale dependene in R an be absorbed into the running of �(Q

2

). We have seen

already an example for this behaviour, disussing ��! �� sattering in setion 4.3.4, ompare

espeially with Eq. (4.89).

Example 12.2: Any funtion of the running oupling, and thus in partiular the running oupling

itself, solves the homogeneous RGE. To show the latter laim, we di�erentiate �rst the de�nition

Eq. (12.68) w.r.t. � , obtaining
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��
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)

dx

�(x)

#

=

1

�(�(Q

2

)

��(Q

2

)

��

(12.70)

or �

�

�(Q

2

) = �(�(Q

2

)). Next we di�erentiate (12.68) w.r.t. �(�

2

), obtaining
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Z
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(12.71)

or

��(Q

2

)

��(�

2

)

=

�(�(Q

2

))

�(�(�

2

))

: (12.72)

Evaluating the di�erential operator of the homogeneous RGE (i.e. for  = 0) for the oupling, we see

that the two terms anel as required,

�

�

��

+ �(�(�

2

))

�

��(�

2

)

�

�(�; �(�

2

)) = ��(�(Q

2

)) + �(�

s

(�

2

))

�(�(Q

2

))

�(�(�

2

))

= 0 : (12.73)

Working through problem 11.??, you found that the beta-funtion of the ��

4

theory at one

loop is given by

�(�) = b

1

�

2

+ b

2

�

3

+ : : : =

3�

2

16�

2

+O(�

3

) ; (12.74)

so that the running oupling at leading order satis�es

�(Q) =

�(�)

1� 3�(�)=16�

2

ln(Q=�)

: (12.75)

Thus our new de�nitions (12.68) and (12.65) reprodue the result of our more intuitive ap-

proah in setion 4.3.4. As a bonus, we know now what we should hoose as the argument of

the oupling, at least in the simple ase onsidered with a single physial sale Q. Expanding

the running oupling,

�(Q) = �(�) + b

1

ln(Q=�)� [b

1

ln(Q=�)℄

2

+ : : : : (12.76)

we see that �(Q) ontains arbitrary powers of [b

1

�(� ln(Q=�)℄

n

, although we derived the

beta funtion only at one-loop: The RGE ensures that the running oupling sums up the

largest terms in eah order perturbation theory, f. problem 12.??. In general, the running

oupling alulated at n-loop preision ontains the leading ln

n

(Q=�) terms of loop diagrams

of any order. Aordingly, one speaks of LL (leading logarithmi), NLL (next-to-leading

logarithmi), NNLL, . . . approximations.
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g

�(g)

g



g

�(g)

g



IR

UV

UV

IR

Figure 12.2.: Left: Example of a beta funtion with a perturbative IR and an UV �xed point.

Right: General lassi�ation of UV and IR stable �xed points of the RGE ow.

Asymptoti behaviour of the beta-funtion The behaviour of the beta-funtion �(�) in the

limit � ! 0 and � ! 1 provides a useful lassi�ation of quantum �eld theories. Consider

e.g. the example shown in the left panel of Fig. 12.2: This beta funtion has a trivial zero at

zero oupling, as we expet it in any perturbative theory, and an additional zero at g



. How

does the beta-funtion �(�) evolve in the UV limit �!1?

� Starting in the range 0 � g(�) < g



implies � > 0 and thus dg=d� > 0. Therefore g

grows with inreasing � and the oupling is driven towards g



.

� Starting with g(�) > g



implies � < 0 and thus dg=d� < 0. Therefore g dereases for

inreasing � and we are driven again towards g



.

Fixed points g



approahed in the limit � ! 1 are alled UV �xed points, while IR �xed

points are reahed for dereasing �. The range of values [g

1

: g

2

℄ whih is mapped by the

RGE ow on the �xed point is alled its basin of attration.

To see what happens for � ! 0, we have only to reverse the RGE ow, d� ! �d�, and

are thus driven away from g



: If we started in 0 � g(�) < g



, we are driven to zero, while

the oupling goes to in�nity for g(�) > g



. Thus g = 0 is an IR �xed point. The distintion

between IR and UV �xed points is skethed in the right panel of Fig. 12.2. If the beta funtion

has several zeros, the theory onsists of di�erent phases whih are not onneted by the RG

ow.

Looking bak at our one-loop result for the beta-funtion of the ��

4

theory, we see that

the theory has � = 0 as an IR �xed point. Thus the free states we use as asymptoti initial

and �nal states have a diret physial meaning. On the other hand, the oupling inreases

for �!1 formally as �!1. Clearly, we annot trust the behaviour of �(�) based on the

on-loop result in the strong-oupling limit, beause perturbation theory breaks down. The

solution (12.75) suggests however that the oupling explodes already for a �nite value of �:

The beta funtion has a pole for a �nite value of � alled Landau pole where the denominator

of (12.75) beomes zero.

Beta funtion of QED We an derive the sale dependene of the renormalised eletri

harge from

e

0

= �

"

Z

�1=2

3

e ; (12.77)
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where we used Z

1

= Z

2

. Then the beta funtion is given as

�(e) � �
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= �
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3

e
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: (12.78)

Sine the bare harge e

0

is independent of �, we have to di�erentiate only � and Z

3

,

�(e) = �

�e

��
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Z
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3

e
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e : (12.79)

Inserting Z

3

= 1� e

2

=(12�

2

") and thus

�Z

3

��

= �

1

12�

2
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2e�e
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(12.80)

gives

�(e) = �"e�
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12�
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"Z

3

�e

��

e

2

= �"e�

1

12�

2

"Z

3

�(e) e

2

: (12.81)

Note that Z

3

is sheme-dependent, while the beta-funtion remains sheme independent up

to two loops for all mass-independent shemes (problem 12.??). Solving for � and negleting

higher order terms in e

2

, we �nd in the limit "! 0

�(e) = �"e

�

1�

e

2

12�

2

"

�

+O(e

4

) =

e

3

12�

2

: (12.82)

Thus the beta funtion is determined by the oeÆient of the pole term of Z

3

. Its solution,

e

2

(�) =

e

2

(�

0

)

1�

e

2

(�

0

)

6�

2

ln

�

�

�

0

�

(12.83)

shows not only expliitly the inrease of e

2

with �, but that the eletri oupling has a Landau

pole too. However, the sale of the Landau pole orresponds to

� = �

0

exp(6�

2

=e

2

(�

0

)) = m

e

exp(3�=2�(m

e

)) � 10

56

GeV �M

Pl

(12.84)

and has therefore no diret physial relevane.

Alternatively, we ould derive the beta funtion from the renormalised vauum polarisation,

using

�(e) =

e

2

�

�

��

�

MS

(q

2

) ; (12.85)

where in the on-shell sheme the derivative � ln�

2

should be replaed with � ln q

2

.

Beta funtion of QCD and asymptoti freedom Deriving the beta funtion in QCD, we

should evaluate

g(�) =

Z

2

Z

1=2

3

Z

1

g

0

= Z

1=2

3

g

0

; (12.86)

where Z

1

is the harge renormalisation onstant, and Z

2

and Z

3

are quark and gluon renor-

malisation onstants, respetively. Without proof, we note that the generalisation of the

Ward-Takahashi identities to the non-abelian ase, the Slavnov-Taylor identities, ensure that
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Z

1

= Z

2

. Combining all ontributions to the 1=" poles as 1-loop ontribution b

1

to the beta

funtion of QCD gives (f. problem 12.??)

�(�

s

) = �

2

��

s

��

2

= ��

2

s

�

b

1

+ b

2

�

s

+ b

3

�

2

s

+ : : :

�

(12.87)

with �

s

� g

2

s

=(4�),

b

1

=

11

3

N



�

2

3

n

f

(12.88)

and n

f

as number of quark avors. For n

f

< 17, the beta funtion is negative and the

running oupling dereases as � ! 1. Asymptoti freedom of QCD explains the apparent

paradox that protons are interating strongly at small Q

2

, while they an be desribed in

deep-inelasti sattering as a olletion of independently moving quarks and gluons.

Let us onsider now the opposite limit, �! 0. The solution of (12.87) at one loop,

1

�

s

(�

2

)

=

1

�

s

(�

2

0

)

+ b

1

ln

�

�

2

�

2

0

�

(12.89)

shows that the QCD oupling onstant beomes formally in�nite for a �nite value of �.

We de�ne �

QCD

as the energy sale where the running oupling onstant of QCD diverges,

�

�1

s

(�

2

QCD

) = 0. Experimentally, the best measurement of the strong oupling onstant has

been performed at the Z resonane at LEP, giving �

s

(m

2

Z

) � 0:1184. Thus at one-loop level,

�

QCD

= m

Z

exp

�

1

2b

1

�

s

(m

2

Z

)

�

: (12.90)

�

QCD

depends on the renormalisation sheme and, numerially more importantly, on the

number of avours used in b

1

: For instane, �

MS

QCD

' 220MeV for n

f

= 3. The fat that the

running oupling provides a harateristi energy sale is alled dimensional transmutation:

Quantum orretions lead to the break-down of sale-invariane of lassial QCD with massless

quarks and to the appearane of massive bound-states, the mesons and baryons with masses of

order �

QCD

. Note also that we are able to link exponentially separated sales by dimensional

transmutation.

Coupling onstant uni�ation While the strong oupling �

s

� �

3

dereases with inreasing

Q

2

, the eletromagneti oupling �

em

� �

1

inreases. Sine two lines in a plane meet at

one point, there is a point with �

1

(Q

�

) = �

3

(Q

�

) and one may speulate that at this point a

transition to a \Grand uni�ed theory" (GUT) happens. Sine the running is only logarithmi,

uni�ation happens at exponentially high sales, Q

�

� 10

16

GeV, but interestingly still below

the Plank sale M

Pl

. The problems beomes more hallenging, if we add to the game the

third, the weak oupling �

2

. The situation in 1991 assuming the validity of the SM is shown

in the left panel of Fig. 12.3. The width of the lines indiates the experimental and theoretial

error, and the three ouplings learly do not meet within these errors. The right panel of

the same �gure assume the existene of supersymmetri partners to all SM partiles with

an \average mass" of around M

SUSY

� 200GeV. As a result, the running hanges above

Q = 1TeV, and now the three ouplings meet at 2� 10

16

GeV.
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Figure 12.3.: The gauge ouplings measured at low energies do not evolve towards a uni�ed

value in the SM (left), but meet assuming low-sale supersymmetry at ' 2 �

10

16

GeV (right), from [Kaz00℄ based on [AdBF91℄.

12.5. Renormalisation, ritial phenomena and e�etive theories

Overview The behaviour thermodynamial systems exhibit lose to the ritial points in

their phase diagram are haraterised as \ritial phenomenon." For a �xed number of par-

tiles, we an haraterise thermodynamial systems using the free energy F = U � TS.

Ehrenfest introdued the lassi�ation of phase transitions aording to the order of the �rst

disontinuous derivative of F with respet to any thermodynamial variable �. Hene a phase

transition where at least one derivative �

n

F=��

n

is disontinuous while all �

n�1

F=��

n�1

are

ontinuous is alled a n.th order phase transition.

Critial phenomena are for a partile physiist interesting by at least three reasons:

� We an learn about symmetry breaking: We should look out for ideas how we an

generate mass terms without violating gauge invariane. Systems like ferromagnets

show that symmetries as rotation symmetry an be broken at low energies although the

Hamiltonian governing the interations is rotation symmetri.

Another example is a plasma: Here the sreening of eletri harges modi�es the

Coulomb potential to a Yukawa potential; the photon has three massive degrees of

freedom, still satisfying gauge invariane, k

�

�

��

(!;k) = 0, but with !

2

� k

2

6= 0.

� Experimentally one �nds that lose to a ritial point, T ! T



, the orrelation length

� diverges, while otherwise orrelations are exponentially suppressed. If we onsider a

statistial system on a lattie, then the 2-point funtion of a ertain order parameter �

sales as

h�

n

�

0

i / exp(�n=�) ;

where � is measured in multiples of the lattie spaing a. Comparing this with jxj = na

to the 2-point funtion of an Eulidean salar �eld �,

h�(x)�(0)i !

4�

jxj

2

exp(�mjxj)
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in the limitmjxj � 1, we �nd the orrespondene � = 1=(ma). Therefore the ontinuum

limit a! 0 is only possible for �nite m, if � !1.

Thus the orrelation funtions of a statistial system orrespond for non-zero a to bare

Green funtions and a �nite value of the regulator of the orresponding quantum �eld

theory. The onnetion to renormalised Green funtions (a ! 0 or � ! 1) is only

possible when the statistial system is at a ritial point.

� Near a ritial point, T ! T



, thermodynamial systems show a universal behaviour.

More preisely, they fall in di�erent universality lasses whih unify systems with very

di�erent mirosopi behaviour. The various universality lasses an be haraterised by

ritial exponents, i.e. by the exponents 

i

with whih harateristi thermodynamial

quantities X

i

diverge approahing T



, i.e. X

i

= [b(T � T



)℄

�

i

.

This phenomenon is similar to our realisation that e.g. two ��

4

theories, one with

� = 0:1 and another one with � = 0:2, are not fundamentally di�erent but onneted

by a RGE transformation.

Landau's mean �eld theory Landau suggested that the free energy F of a thermodynamial

system an be expanded lose to a seond-order phase transition as an even series in its order

parameter. Considering e.g. the magnetisation M , we an write for zero external �eld H the

free energy as

F = A(T ) +B(T )M

2

+ C(T )M

4

+ : : : (12.91)

We an �nd the possible value of the magnetisation M by minimising the free energy,

0 =

�F

�M

�

�

�

�

T

= 2B(T )M + 4C(T )M

3

: (12.92)

The variable C(T ) has to be positive in order that F is bounded from below. If also B(T )

is positive, only the trivial solution M = 0 exists. If however B(T ) is negative, two solutions

with non-zero magnetisation appear. Let us use a linear approximation, B(T ) � b(T � T



),

and C(T ) �  valid lose to T



. Then

M =

(

0 for T > T



,

�

�

b

2

(T



� T )

�

1=2

for T < T



.

(12.93)

Note also that the ground-state breaks theM ! �M symmetry of the free energy for T < T



.

Representing the thermodynamial quantity M as integral of the loal spin density,

M =

Z

d

3

x s(x) ; (12.94)

we an rewrite the free energy in a way resembling the Hamiltonian of a stationary salar

�eld,

F =

Z

d

3

x

�

(rs)

2

+ b(T � T



)s

2

+ s

4

�H � s

�

: (12.95)

Here, (rs)

2

is the simplest ansatz leading to an alignment of spins in the ontinuous language.

Minimising F will give us the ground-state of the system for a presribed external �eldH(x)

and temperature T . For small s, we an ignore the s

4

term. The spin orrelation funtion

hs(x)s(0)i is found as response to a delta funtion-like disturbane H

0

Æ(x). Using the
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Figure 12.4.: One blok spin transformation a! 2a for an one-dimensional lattie model.

analogy with the Yukawa potential after the substitution m

2

! b(T � T



), the orrelation

funtion follows immediately as

hs(x)s(0)i =

Z

d

3

k

(2�)

3

H

0

e

ik�x

k

2

+ b(T � T



)

=

H

0

4�r

e

�r=�

(12.96)

with

� = [b(T � T



)℄

�1=2

: (12.97)

Hene Landau's theory reprodues the experimentally observed behaviour � !1 for T ! T



.

Moreover, the theory predits as ritial exponent 1=2 for the magnetisation. Notie that the

value of the exponent depends only on the polynomial assumed in the free energy, not on

the underlying miro-physis. Thus another predition of Landau's theory is an universal

behaviour of thermodynamial systems lose to their ritial points in the dependene on

T � T



. Experiments show that this predition is too strong: Thermodynamial systems fall

into di�erent universality lasses, and we should try to inlude some miro-physis into the

desription of ritial phenomena.

Kadano�'s blok spin transformation Close to a ritial point, olletive e�ets play a

deisive role even in ase of short-range interations. In d dimension, a partile is oupled by

olletive e�ets to (�=a)

d

partiles and standard perturbative methods will ertainly fail for

� ! 1. Kadano� suggested to remove the short wave-length utuations by the following

proedure: Eah step of a blok spin transformation onsists of i) dividing the lattie into

ells of size (2a)

d

, ii) assigning a ommon spin variable to the ell, and iii) of a resaling

2a! a.

At eah step, the number of strongly orrelated spins is redued. After n transformations,

the orrelation length dereases as �

n

= �=(2

n

). When the orrelation length beomes of

the order of the lattie spaing, olletive e�ets play no role: All the physis an be read

o� from the Hamiltonian. If the proedure is not trivial, this implies that in eah step the

Hamiltonian hanges. In partiular, the oupling onstant K is hanged as

K

2

= f(K) ; K

3

= f(K

2

) = f(f(K)) ; : : : (12.98)

One-dimensional Ising model We illustrate the idea behind Kadano�'s blok spin transfor-

mation using the example of the one-dimensional Ising model. This model onsists of spins

with value s

i

= �1 on a line with spaing a, interating via nearest neighbour interations.
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We onsider only the piee of six spins shown in Fig. 12.4. The orresponding partition

funtion is

Z

6

=

X

s

N�1

;s

0

;s

1

;:::;s

4

exp [K(s

N�1

s

0

+ s

0

s

1

+ : : : s

3

s

4

)℄ (12.99a)

=

X

s

0

0

;s

0

1

;s

0

2

X

s

N�1

;s

1

;s

3

exp

�

K(s

N�1

s

0

0

+ s

0

0

s

1

+ : : : s

3

s

4

)

�

; (12.99b)

where the summation is over the two spin values �1 and K = J=T is a dimensionless oupling

onstant. The step a! 2a requires to perform the sums over the unprimed spins. Expanding

the exponentials using (s

i

s

j

)

2n

= 1 gives terms like

exp[K(s

0

0

s

1

)℄ = 1 +Ks

0

0

s

1

+

K

2

2!

+

K

3

3!

s

0

0

s

1

+ : : : (12.100a)

= osh(K) + s

0

0

s

1

sinh(K) = osh(K)[1 + s

0

0

s

1

tanh(K)℄ : (12.100b)

The terms linear in s

1

anel in the sum and we obtain

X

s

1

=�1

exp[Ks

0

0

s

1

℄ exp[Ks

1

s

0

1

℄ = 2 osh

2

(K)[1 + tanh

2

(K) s

0

0

s

0

1

℄ : (12.101)

Thus the summation over the unprimed spins hanges the strength of the nearest neighbour-

hood interation and generates additionally a new spin-independent interation term. We try

now to rewrite the last expression in a form similar to the original one,

2 osh

2

(K)[1 + tanh

2

(K) s

0

0

s

0

1

℄ = exp[g(K) +K

0

s

0

0

s

0

1

)℄ : (12.102)

Using (12.100b) to replae exp(K

0

s

0

0

s

0

1

) and setting g(K) = lnh(K), we �nd

2 osh

2

(K)[1 + tanh

2

(K) s

0

0

s

0

1

℄ = h(K) osh(K

0

)[1 + tanh(K

0

) s

0

0

s

0

1

)℄ : (12.103)

This determines the funtion g = lnh(K) as

h(K) =

2 osh

2

(K)

osh(K

0

)

; (12.104)

while the ouplings are related by

tanh(K

0

) = tanh

2

(K) : (12.105)

The summation over the other spins s

3

; s

5

; : : : an be performed in the same way. Thus

the partition funtion on a lattie of size 2a has the same nearest-neighbour interations

with a new oupling K

0

� K

1

determined by (12.105). Iterating this proedure generates a

renormalisation ow with

tanh(K

n

) = tanh

2n

(K) : (12.106)

Additionally, the RGE ow generates all ouplings ompatible with the symmetries of the

fundamental Hamiltonian: Sine any operator O

n

for n 2 Z satis�es these symmetries if O

does, there is an in�nite number of them.
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Fixed point behaviour In general, we will not be able to alulate the transformation fun-

tion f(K). But even without the knowledge of f(K), we an draw some important insight

from general onsiderations. First, the RGE equations are of the type of a heat or di�usion

equation

4

. Its ow is therefore a gradient ow whih has only two possible asymptotis: a

runaway solution to in�nity and the approah to a �xed point de�ned by K



= f(K



). With

�

n+1

= �

n

=2 and labeling the n dependene impliitly via �

n

= f(K

n

) we an write

�(f(K)) =

1

2

�(K) : (12.107)

At a �xed point K



= f(K



) only two solutions exist,

�(K



) = 0 and �(K



)!1 : (12.108)

The seond possibility orresponds to the approah of a ritial point, allowing the limit a! 0

and thus the ontinuum limit neessary for the transition to a QFT. This point is alled a

ritial �xed point, while the �xed point with zero orrelation length is alled trivial.

We an now generalise our previous disussion of the �xed point behaviour for the beta

funtion from one to n dimensions. The general behaviour of the RGE ow an be understood

from the two-dimensional example shown in Fig. 12.5. The dashed lines show surfaes of

onstant orrelation length, inluding a ritial surfae � =1. Also shown are three ritial

�xed points (A, B, C) and a trivial one (D). In eah RGE step the orrelation length dereases.

Thus the trivial �xed point is an attrator, i.e. inside a small enough neighbourhood all points

will ow towards it. Moreover, ritial lines have at least one unstable diretion, the one

orthogonal to their surfae: Even points in�nitesimal lose to the surfae will ow away and

eventually end in a trivial �xed point. Finally, also inside the ritial surfae stable and

unstable diretions exist: For instane, the �xed point B will attrat all points in-between A

and C (\its basin of attration"). Universality lasses of QFTs an be identi�ed with stable

ritial �xed points and their basin of attration.

Wilsonian ation Let us now return to QFTs in the ontinuum limit. Wilson suggested

to transfer the idea of integrating out utuations on small sales by inluding in the path

integral only modes up to the uto� sale � � 1=a. This de�nes an e�etive �eld theory whih

is by onstrution UV �nite. The orresponding e�etive or Wilsonian ation depends on the

assumed value of the uto� sale �, and we an generate a RGE ow by hanging �.

Let us start from the Eulidean generating funtional in momentum spae restrited to

wave-numbers below a uto�, k � �. Then we split the �eld modes into slow modes � and

fast modes  ,

Z =

Z

D� e

�S[�℄

=

Z

D�D� e

�S[�+ ℄

; (12.109)

with

� = � +  and

�

� = 0, unless jkj � �=f

 = 0, unless �=f � jkj � �

: (12.110)

Next we want to integrate out the fast modes  ,

e

�S[�℄

=

Z

D e

�S[�+ ℄

; (12.111)

4

An example is given later in remark 13.1
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� =1

� = 10

� = 1
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D

Figure 12.5.: A two-dimensional illustration of the RGE ow: A, B and C are three �xed

points on the ritial surfae � = 1. The �xed points A and C have a stable

diretion along the ritial surfae, while B has two unstable diretions. The

trivial �xed point D is a stable �xed point, attrating all points starting not on

the ritial surfae.

lowering thereby the uto�, � ! �=f . In general, we will not be able to perform this path

integral. Using perturbation theory, we expand e

�S[�+ ℄

and exponentiate then again the

result. As illustrated with a toy model in problem 12.??, this proedure will renormalise the

values of the parameters ontained in the original Lagrangian and introdue an in�nite set of

irrelevant operator O

d;i

with dimension d > 5.

Having integrated out  , we relabel � as �. Next we have to reover the anonial normal-

isation for its kineti energy. If we resale distanes by x! x

0

= x=f , the funtional integral

is again over modes �(x

0

) with x > a, omplying with step iii) of the Kadano�-Wilson pre-

sription. Keeping then the kineti term invariant,

Z

d

4

x (�

�

�)

2

=

Z

d

4

x

0

(�

0

�

�

0

)

2

=

1

f

2

Z

d

4

x (�

�

�

0

)

2

; (12.112)

requires a resaling of the �eld as �

0

= f�. Let us onsider now an irrelevant interation, e.g.

g

6

�

6

. Then

g

6

Z

d

4

x�

6

=

g

6

f

2

Z

d

4

x

0

�

0 6

(12.113)

shows that the new oupling g

0

6

is resaled as g

0

6

= g

6

=f

2

: As f grows and the uto� sale �

dereases, the value of an irrelevant oupling is driven to zero. Clearly, a relevant operator as

the osmologial onstant � or a mass termm

2

�

2

shows the opposite behaviour and grows. As

result, irrelevant ouplings are in our low-energy world suppressed and as �rst approximation

a renormalisable theory emerges at low energies. Note that both diretions of the RGE ow|

towards the UV or the IR|are useful disussing QFTs. The point of view of a RGE ow

towards the IR is useful, if we want to onnet a theory at high energy sales to a theory

valid at lower sales. An example for this approah is hiral perturbation theory where one
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onnets QCD to an e�etive theory of mesons and baryons at low energies. In the opposite

view, we may look e.g. at the SM as an e�etive theory known to be valid up to sales around

TeV and ask what happens if we inrease the uto�.

We an generalise now our earlier disussion of the two-dimensional RGE ow skethed in

Fig. 12.5. The RGE ow stops at �xed points on ritial surfaes of low dimension. All initial

values on the ritial surfae inside the basin of attration ow to the ritial �xed point.

Diretions perpendiular to the ritial surfae are ontrolled by the irrelevant interations;

ows beginning o� the surfae are driven to the trivial �xed point. On the way towards

� ! 1 only the relevant and marginal interations survive. Insisting not on � ! 1 and

keeping a �nite uto� (somewhere between TeV and M

Pl

, depending on the limit of validity

of the theory we assume) we an keep irrelevant interations whih are however suppressed.

E�etive theories While integrating out momentum shells in the path integral, as required

in Eq. (12.111), is useful to demonstrate the onept of e�etive theories, it is not the method

applied by pratitioners. Instead, either funtional RGE methods are used for whih we will

give later an example in remark 13.1. Or one evaluates e�etive theories using the same

apparatus as we have developed for renormalisable ones. In the following, we want �rst to

illustrate how this is done and, seond, to show that e�etive theories are preditive, despite

of being non-renormalisable.

We note �rst that the fat that divergenes are polynomial in the external momenta guar-

antees also for non-renormalisable theories that all divergenes an be subtrated by loal

ounter-terms. In ontrast to renormalisable theories, the number of ounter-terms and thus

of a priori required measurements is in�nite. Thus it is important to show that a trunation

sheme for e�etive theories inluding loop orretion exists whih makes them preditive.

As usually, we use as an example a real salar �eld in d = 4 spae-time dimensions. Then an

operator O

n;m

onsisting of n �elds and m derivatives ontributes to the ation

S �

g

n;m

�

p+q�4

Z

d

4

xO

n;m

� 

n;m

�

E

�

�

n+m�4

; (12.114)

where the g

n;m

are dimensionless ouplings to be determined by experiment. We see again

that irrelevant operators, n+m > 4, are suppressed at energies E � �. Clearly, an inrease of

the mass dimension n+m results in a stronger suppression of the operator O

n;m

. This allows

us to trunate the e�etive theory at some hosen dimension D = n + m. The trunated

theory ontains only a �nite number of operators with unknown ouplings g

n;m

whih have to

be determined from experiment. The preditions of the trunated theory beome exat in the

limit E ! 0. For �nite E � �, we an inrease the preision inluding higher dimensional

operators, at the expense of more alulational work and additional experimental input with

suÆient preision. In ontrast, for E

>

�

� an in�nite number of operators ontribute a priori

equally and the e�etive theory approah breaks down. Finally, note that in ontrast to the

Wilsonian ation the value of the uto� sale � is determined experimentally: For instane,

alulating weak proesses using a four-fermion interation �xes the sale �

2

through the

Fermi onstant G

F

.

Our estimate (12.114) holds at tree-level, and we should onsider next the e�et of loop

orretions. To be spei�, we estimate the order of the one-loop orretions indued by

the operators g

6

�

6

=�

2

, g

8

�

4

(��)

2

=�

4

, . . . , to the basi ��

4

vertex. Cutting the momentum
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12.5. Renormalisation, ritial phenomena and e�etive theories

integrals at � results in

Æ� �

g

6

�

2

Z

�

d

4

k

(2�)

4

1

k

2

�m

2

�



6

�

2

�

2

; (12.115)

Æ� �

g

8

�

4

Z

�

d

4

k

(2�)

4

k

2

k

2

�m

2

�



8

�

4

�

4

; : : : (12.116)

Thus all one-loop orretions are of O(1), sine the fator 1=�

D�4

ontained in O

n;m

is om-

pensated by a fator �

D�4

generated in the momentum integrations. Going to higher loops

makes things even worse. The solution to this problem is to use a mass independent regulator

as the MS or MS shemes in DR. Then the fators �

n

originating from the momentum inte-

gration are replaes by m

n

. With E � m, the loop orretions preserve thus the expansion

sheme (E=�)

n+m�4

found at tree-level. As a result, the trunation of an e�etive theories

at a hosen order D leads to a preditive theory inluding loop orretions at energies below

the uto� sale.

Summary

Interations an be haraterised by the asymptoti behaviour of their oupling onstants.

Gauge theories with a suÆiently small number of fermions are the only renormalisable in-

terations whih are asymptotially free, i.e. their running oupling onstant goes to zero

for � ! 1. The sale dependene of renormalised Green funtions an be interpreted as

a running of oupling onstants and masses. The use of a running oupling sums up the

leading logarithms of type ln

n

(�

2

=�

2

0

), and a suitable hoie of the renormalisation sale in a

spei� problems redues the remaining sale dependene of perturbative results. The non-

perturbative approah of Wilson provides an argument why the SM as desription of our

low-energy world is renormalisable: Integrating out high-energy degrees of freedom, irrele-

vant ouplings are driven to zero and thus it is natural that a renormalisable theory emerges

at low energies.

Further reading

Our disussion of the renormalisation of gauge theories left out most details. I reommend

those interested to �ll the gaps to start with [Ram94℄ and [Pok87℄. A useful text-book to

learn about ritial phenomena is [LB92℄.
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13. Symmetries and symmetry breaking

The analogy of Landau's mean �eld model for a ferromagnet with a salar ��

4

theory suggests

that we an hide its � ! �� symmetry at low temperatures, if we hoose a negative mass

term in the Lagrangian. Although suh a hoie seems at �rst sight unnatural, we will

investigate this ase in the following in detail. Our main motivation is the expetation that

hiding a symmetry by hoosing a non-invariant ground-state retains the \good" properties of

the symmetri Lagrangian. Coupling then suh a salar theory to a gauge theory, we hope

to break gauge invariane in a \gentle" way whih allows e.g. gauge boson masses without

spoiling the renormalisability of the unbroken theory. As an additional motivation we reall

that ouplings and masses are not onstants but depend on the sale onsidered. Thus it might

be that the parameters determining the Lagrangian of the Standard Model at low energies

originate from a more omplete theory at high sales, where the squared mass parameter �

2

is originally positive. In suh a senario, �

2

(Q

2

) beomes negative only after running it down

to the eletroweak sale Q = m

Z

.

13.1. Symmetry breaking and Goldstone's theorem

We onsider in the following systems where the Lagrangian ontains an exat symmetry whih

is not shared by its ground-state. Sine partile masses in a �eld theory are determined by

the ground-state, the symmetry of the Lagrangian is thus not visible in the mass spetrum of

physial partiles. This opens the possibility of having a gauge invariant Lagrangian despite

of massive gauge bosons. If the ground-state breaks the original symmetry beause one or

several salar �elds aquire a non-zero vauum expetation value, one alls this spontaneous

symmetry breaking (SSB). As the symmetry is not really broken on the Lagrangian level, a

perhaps more appropriate name would be \hidden symmetry".

In this and the following hapter, we disuss the ase of SSB, �rst in general and then

applied to the eletroweak setor of the SM. Sine the breaking of an internal symmetry

should leave Poinar�e symmetry intat, we an give only salar quantities � a non-zero vauum

expetation value. This exludes non-zero expetation values for �elds with spin, whih would

single out a spei� diretion. On the other hand, we an onstrut salar expetation values

as h0j�j0i = h0j

�

  j0i 6= 0 out of the produt of multiple �elds. In the following, we will

always treat � as an elementary �eld, but we should keep in mind the possibility that � is

a omposite objet, e.g. a ondensate of fermion �elds, h�i = h

�

  i, similar to the ase of

superondutivity.

Spontaneous breaking of disrete symmetries We start with the simplest example of a

theory with a broken symmetry: A single salar �eld with a disrete reetion symmetry.

Consider the familiar ��

4

Lagrangian, but with a negative mass term whih we inlude into

the potential V (�),

L =

1

2

(�

�

�)

2

+

1

2

�

2

�

2

�

�

4

�

4

=

1

2

(�

�

�)

2

� V (�) : (13.1)
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13.1. Symmetry breaking and Goldstone's theorem

The Lagrangian is for both signs of �

2

invariant under the disrete Z

2

symmetry, � ! ��.

The �eld on�guration with the smallest energy is a onstant �eld �

0

, hosen to minimise the

potential

V (�) = �

1

2

�

2

�

2

+

�

4

�

4

; (13.2)

whih has the two minima

�

0

= �v � �

p

�

2

=� : (13.3)

In quantum mehanis, we learnt that the wave-funtion of the ground state for the potential

V (x) = �

1

2

�

2

x

2

+�x

4

will be a symmetri state,  (x) =  (�x), sine the partile an tunnel

through the potential barrier. In �eld theory, suh a tunnelling an happen in priniple too.

However, the tunnelling probability is inversely proportional to the volume L

3

oupied by the

system, and vanishes in the limit L ! 1: In order to transform �(x) = �v into �(x) = +v

we have to swith an in�nite number of osillators, whih learly osts an in�nite amount

of energy. Thus in quantum �eld theory, the system has to hoose between the two vaua

�v and the symmetry of the Lagrangian is broken in the ground state. Had we used the �

4

Lagrangian with a positive mass term, the vauum expetation value of the �eld would have

been zero, and the ground state would respet the symmetry.

Quantising the theory (13.1) with the negative mass around the usual vauum, j0i with

h0j�j0i = �



= 0, we �nd modes behaving as

�

k

/ exp(�i!t) = exp(�i

p

��

2

+ jkj

2

t) ; (13.4)

whih an grow exponentially for jkj

2

< �

2

. More generally, exponentially growing modes

exist, if the potential is onave at the position of �



, i.e. for

m

2

eff

(�



) = V

00

(�



) = ��

2

+ 3��

2



< 0 (13.5)

or j�



j <

p

�

2

=(3�).

Clearly, the problem arises beause we should expand the �eld around the ground-state v.

This requires that we shift the �eld as

�(x) = v + �(x) ; (13.6)

splitting it into a lassial part h�i = v and quantum utuations �(x) on top of it. Then we

express the Lagrangian as funtion of the �eld �,

L =

�

4

4�

+

1

2

(�

�

�)

2

�

1

2

(2�

2

)�

2

� �

p

��

3

�

�

4

�

4

: (13.7)

In the new variable �, the Lagrangian desribes a salar �eld with positive mass m

�

=

p

2� >

0. The original symmetry is no longer apparent: Sine we had to selet one out of the

two possible ground states, a �

3

term appeared and the � ! �� symmetry is broken. The

new ubi interation term rises now the question, if our salar ��

4

theory beomes non-

renormalisable after SSB: As we have no orresponding ounter-term at our disposal, the

renormalisation of � and � has to ure also the divergenes of the �

3

interation.

Finally, we note that the ontribution �

4

=(4�) to the energy density of the vauum is, in

ontrast to the vauum loop diagrams generated by Z[0℄, lassial and �nite. We see later

that symmetries will be restored at high temperatures or at early times in the evolution of

the Universe. Even if we take the freedom to shift the vauum energy density, we have either

before or after SSB an unaeptable large ontribution to the vauum energy (problem 13.1).
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13. Symmetries and symmetry breaking

Spontaneous breaking of ontinuous symmetries Our main aim is to understand the SSB

of the eletroweak gauge symmetry. As next step we look therefore at a system with a global

ontinuous symmetry. We disussed already in setion 5.1 the ase of N real salar �elds

desribed by the Lagrangian

L =

1

2

�

(�

�

�)

2

+ �

2

�

2

�

�

�

4

(�

2

)

2

: (13.8)

Sine � = f�

1

; : : : ; �

N

g transforms as a vetor under rotations in �eld spae, �

i

! R

ij

�

j

with R

ij

2 O(n), the Lagrangian is invariant under orthogonal transformations. Before we

onsider the general ase of arbitrary N , we look at the ase N = 2 for whih the potential is

shown in Fig. 13.1. Without loss of generality, we hoose the vauum pointing in the diretion

of �

1

: Thus v = h�

1

i =

p

�

2

=� and h�

2

i = 0. Shifting the �eld as in the disrete ase gives

L =

�

4

4�

+

1

2

(�

�

�)

2

�

1

2

(2�

2

)�

2

1

+L

int

; (13.9)

i.e. the two degrees of freedom of the �eld � split after SSB into one massive and one massless

mode.

Sine the mass matrix onsists of the oeÆients of the terms quadrati in the �elds, the

general proedure for the determination of physial masses is the following: Find �rst the

minimum of the potential V (�). Expand then the potential up to quadrati terms,

V (�) = V (�

0

) +

1

2

(�� �

0

)

i

(�� �

0

)

j

�

2

V

��

i

��

j

| {z }

M

ij

+ : : : (13.10)

The seond derivatives form a symmetri matrix with elements M

ij

� 0, beause we evaluate

the mass matrix by assumption at the minimum of V . DiagonalisingM

ij

gives as eigenvalues

the squared masses of the �elds. The eigenvetors of M

ij

are alled the mass eigenstates or

physial states. Propagators and Green funtions desribe the evolution of �elds with de�nite

masses and should be therefore build up on these states. If the potential has n > 0 at

diretions, the vauum is degenerated and n massless modes appear.

Looking at Fig. 13.1 suggests to use polar instead of Cartesian oordinates in �eld spae.

In this way, the rotation symmetry of the potential and the periodiity of the at diretion

is reeted in the variables desribing the salar �elds. Introduing �rst the omplex �eld

� = (�

1

+ i�

2

)=

p

2, the Lagrangian beomes

L = �

�

�

y

�

�

�+ �

2

�

y

�� �(�

y

�)

2

: (13.11)

Next we set

�(x) = �(x)e

i#(x)

(13.12)

and use �

�

� = [�

�

�+ i��

�

#℄e

i#

to express the Lagrangian in the new variables,

L = (�

�

�)

2

+ �

2

(�

�

#)

2

+ �

2

�

2

� ��

4

: (13.13)

Shifting �nally again the �elds as � = v + � with v =

p

�

2

=2�, we �nd

L =

�

4

4�

+

�

2

2�

(�

�

#)

2

+ (�

�

�)

2

� 2�

2

�

2

� 2�

p

2��

3

� ��

4

+

h

p

2�

2

=�� + �

2

i

(�

�

#)

2

:

(13.14)

214



13.1. Symmetry breaking and Goldstone's theorem

Figure 13.1.: Salar potential with \Mexian hat" shape symmetri under O(2).

The phase # whih parametrises the at diretion of the potential V (#; �) remained massless.

This mode is alled Goldstone (or Nambu-Goldstone) boson and has derivative ouplings to

the massive �eld �, given by the last term in Eq. (13.14). This is a general result, implying

that stati Goldstone bosons do not interat. Another general property of Goldstone bosons

is that they arry the quantum number of the orresponding symmetry generator. They are

therefore (pseudo-) salar partiles, if an internal symmetry is broken,

Let us now disuss briey the ase of general N for the Lagrangian (13.8). The lowest

energy on�guration is again a onstant �eld. The potential is minimised for any set of �elds

�

0

that satis�es �

2

0

= �

2

=�. This equation only determines the length of the vetor, but

not its diretion. It is onvenient to hoose a vauum suh that �

0

points along one of the

omponents of the �eld vetor. Aligning �

0

with its Nth omponent,

�

0

=

�

0; : : : ; 0;

p

�

2

=�

�

; (13.15)

we now follow the same proedure as in the previous example. First we de�ne a new set of

�elds, with the Nth �eld expanded around the vauum

�(x) = (�

k

(x); v + �(x)) ; (13.16)

where k now runs from 1 to N � 1. Then we insert this, and the value v =

p

�

2

=� for the

vauum expetation value into the Lagrangian, and obtain

L =

1

2

(�

�

�

k

)

2

+

1

2

(�

�

�)

2

�

1

2

(2�

2

)�

2

+

1

4

�

4

�

�

p

���

3

�

p

���(�

k

)

2

�

�

2

�

2

(�

k

)

2

�

�

4

�

(�

k

)

2

�

2

�

�

4

�

4

:

(13.17)

This Lagrangian desribes N � 1 massless �elds and a single massive �eld �, with ubi and

quarti interations. The O(N) symmetry is no longer apparent, leaving as symmetry group

the subgroup O(N-1), whih rotates the �

k

�elds among themselves. This rotation desribes

movements along diretions where the potential has a vanishing seond derivative, while the

massive �eld orresponds to osillations in the radial diretion of V .
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13. Symmetries and symmetry breaking

Goldstone's theorem The observation that massless partiles appear in theories with spon-

taneously broken ontinuous symmetries is a general result, known as Goldstone's theorem.

The �rst example for suh partiles was suggested by Nambu in 1960: He showed that a mass-

less quasi-partile appears in a magnetised solid, beause the magneti �eld breaks rotation

invariane. Goldstone applied soon after that this idea to relativisti QFTs and showed that

massless salar elementary partiles appear in theories with SSB. Sine no massless salar

partiles are known to exist, this theorem appeared to be a dead end for the appliation of

SSB to partile physis. So our task is two-fold: First we should derive Goldstone's theorem

and then we should �nd out how we an bypass the theorem applying it to our ase of interest,

gauge theories.

The theorem is obvious at the lassial level: Consider a Lagrangian with a symmetry G

and a vauum state invariant under a subgroup H of G. For instane, hoosing a Lagrangian

invariant under G = O(3) and piking out a vauum along �

3

, the subgroup H = O(2) of

rotation around �

3

keeps the vauum invariant. Let us denote with U(g) a representation

of G ating on the �elds � and with U(h) a representation of H, respetively. Sine we

onsider onstant �elds, derivative terms in the �elds vanish and the potential V alone has

to be symmetri under G, i.e.

V (U(g)�) = V (�) : (13.18)

Moreover, we know that the vauum is kept invariant for all h, �

0

0

= U(h)�

0

, but hanges

for some g, �

0

0

6= U(g)�

0

. Using the invariane of the potential and expanding V (U(g)�

0

)

for an in�nitesimal group transformation gives

V (�

0

) = V (U(g)�

0

) = V (�

0

) +

1

2

�

2

V

��

i

��

j

�

�

�

�

0

Æ�

i

Æ�

j

+ : : : ; (13.19)

where Æ�

i

denotes the resulting variation of the �eld. Equation (13.19) implies that

M

ij

Æ�

i

Æ�

j

= 0 : (13.20)

The variation Æ�

i

depends on whether the transformation belong to U(h) or not: In the

former ase, the vauum �

0

is unhanged, Æ�

i

= 0 and (13.20) is automatially satis�ed.

If on the other hand g does not belong to H, i.e. is a member of the left oset G=H, then

Æ�

i

6= 0, implying that the mass matrix M

ij

has a zero eigenvalue. It is now lear that the

number of massless partiles is simply determined by the dimensions of the two groups G and

H: The number of Goldstone bosons equals dim(G) � dim(H), or the dimension dim(G=H)

of the left oset.

Quantum ase The previous disussion was based on the lassial potential. Thus we

should address the question if this piture survives quantum orretions. Noether's theorem

tells us that every ontinuous symmetry has assoiated to its generators g

i

onserved harges

Q

i

. On the quantum level this means the operators Q

i

ommute with the Hamiltonian,

[H;Q

i

℄ = 0. Subtrating the vauum energy, we have H j0i = 0. If the vauum is invariant

under the symmetry Q, then exp(i#Q) j0i = j0i. For the in�nitesimal form of the symmetry

transformation, exp(i#Q) � 1 + i#Q, we onlude that the harge annihilates the vauum,

Q j0i = 0 : (13.21)

Or, in simpler words, the vauum has the harge 0.
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13.2. Renormalisation of theories with SSB

Now we ame to the ase we are interested in, namely that the symmetry is spontaneously

broken and thus Q j0i 6= 0. We �rst determine the energy of the state Q j0i. From

HQ j0i = (HQ�QH) j0i

| {z }

Hj0i=0

= [H;Q℄ j0i = 0 ; (13.22)

we see that at least another state Q j0i exists whih has as the vauum j0i zero energy.

We represent the harge operator as the volume integral of the time-like omponent of the

orresponding urrent operator,

Q =

Z

d

3

xJ

0

(t;x) : (13.23)

The state

jsi =

Z

d

3

x e

ip�x

J

0

(t;x) j0i ! Q j0i for p! 0 (13.24)

beomes in the zero-momentum limit equal to the state Q j0i we are searhing for. Moreover,

applying the momentum operator P on jsi gives (problem 13.5)

P jsi = p jsi : (13.25)

Thus the SSB of the vauum, Q j0i 6= 0, implies exitations of the system with a frequeny

that vanishes in the limit of long wavelengths. In the relativisti ase, Goldstone's theorem

predits massless states, while in the non-relativisti ase relevant for solid states the theorem

predits olletive exitations with zero energy gap.

13.2. Renormalisation of theories with SSB

When we went through the SSB of the salar �eld, we saw that new �

3

interations were

introdued. The question then arises, are new renormalisation onstants needed when a

symmetry is spontaneously broken? This would make these theories non-renormalisable. We

an address this questions in two ways. One possibility is to repeat our analysis of the

renormalisability of the salar theory in setion 11.4.2, but now for the broken ase with a

negative mass term. Then we would �nd that the �

3

term beomes �nite, renormalising �elds,

mass and oupling as in the unbroken ase. This is not unexpeted, beause shifting the �eld,

whih is an integration variable in the generating funtional, by � !

~

� = � � v should not

a�et physis. On the other hand, suh a shift reshu�es the splitting L = L

0

+L

int

in our

standard perturbative expansion in the oupling onstant. To avoid this problem, we will

use the quantum ation employing a loop expansion. Additionally of being not a�eted by a

shift of the �elds, this formalism allows us to alulate the potential inluding all quantum

orretions in the limit of onstant �elds.

E�etive potential Let us start realling the de�nition of the quantum ation

1

�[�



℄ =W [J ℄�

Z

d

4

x

0

J(x

0

)�



(x

0

) �W [J ℄� hJ�i : (13.26)

1

We will suppress the subsript  on the lassial �eld from now on and use brakets hJ�i to indiate

integration.
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13. Symmetries and symmetry breaking

In general we will not be able to solve the quantum ation. Studying SSB, we an how-

ever make use of a onsiderable simpli�ation: The �elds we are interested in are onstant.

Performing then a gradient expansion of the quantum ation �[�℄,

�[�℄ =

Z

d

4

x

�

�V

eff

(�) +

1

2

F

2

(�)(�

�

�)

2

+ : : :

�

; (13.27)

only the zeroth order term V

eff

(�) of the expansion in (�

�

�)

2

survives. If we now hoose the

soure J(x) to be onstant, the �eld �(x) has to be uniform too, �(x) = �, by translation

invariane. Together this implies that

� = �
V

eff

; and � J =

Æ�[�℄

Æ�

= �


�V

eff

(�)

��

; (13.28)

where 
 denotes the spae-time volume. In the absene of external soures, J = 0, Eq. (13.28)

simpli�es to V

0

eff

(�) = 0. This is the quantum version of our old approah where we minimised

the lassial potential V (�) in order to �nd the vauum expetation value of �. Therefore

V

eff

(�) is alled the e�etive potential, whih inludes all quantum orretions to the lassial

potential in the limit of zero gradients.

In order to proeed, we use that we know the lassial potential and we assume that

quantum utuations are small. Then we an perform a saddle-point expansion around the

lassial solution �

0

, given by the solution to ��

0

+ V

0

(�

0

) = J(x). We split the �eld as

� = �

0

+

~

� and approximate the path integral as

Z = e

iW

' expfi [S[�

0

℄ + hJ�

0

i℄g

Z

D

~

� exp

�

i

Z

d

4

x

1

2

h

(�

�

~

�)

2

� V

00

(�

0

)

~

�

2

i

�

: (13.29)

The negleted terms are of order O(~

2

) and orrespond thus to two- and higher loop ontribu-

tions. The funtional integral over

~

� is quadrati and is formally given by Det(�+ V

00

)

�1=2

.

Using then the identity lnDetA = Tr lnA, we �nd

W = S[�

0

℄ + hJ�

0

i+

i

2

Tr ln[�+ V

00

(�

0

)℄ +O(~

2

) : (13.30)

The trae implies a summation over all disrete and an integration over the ontinuous quan-

tum numbers. In the ase of a salar partile, no disrete quantum numbers exist and we have

to integrate the matrix element hxj ln[�+V

00

℄jxi only over spae-time. To �nd the eigenvalues

of the operator, we insert a omplete sets of plane waves,

Tr ln[�+ V

00

℄ =

Z

d

4

xhxj ln[�+ V

00

℄jxi =

Z

d

4

x

d

4

k

(2�)

4

hxj ln[�+ V

00

℄jkihkjxi =

=

Z

d

4

x

d

4

k

(2�)

4

ln[�k

2

+ V

00

℄hxjkihkjxi = 


Z

d

4

k

(2�)

4

ln[�k

2

+ V

00

℄ : (13.31)

Performing the Legendre transformation and using S[�

0

℄ = �
V (�

0

), we obtain for the

e�etive potential V

eff

(�

0

) inluding the �rst quantum orretions

V

eff

(�

0

) = V (�

0

)�

i

2

Z

d

4

k

(2�)

4

ln

�

�k

2

+ V

00

(�

0

)

�

+O(~

2

) : (13.32)
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As an example we an use the ��

4

theory: From

V

00

(�

0

) = �

2

+

1

2

��

2

0

; (13.33)

we see that V

00

(�

0

) an be interpreted as an e�etive mass, onsisting of �

2

and the on-

tribution ��

2

0

=2 due to the onstant bakground �eld �

0

. The total e�etive potential at

order O(~

2

) onsists of the lassial potential V (�), i.e. the lassial energy density of a salar

�eld with vauum expetation value �, while the �rst quantum orretion is given by the

zero-points energies

2

of a salar partile with e�etive mass V

00

(�

0

).

Not surprisingly, the e�etive potential is divergent and we have to introdue ounter-terms

that eliminate the divergent parts. Our e�etive potential is then

V

eff

(�

0

) = V (�) +

1

2

Z

d

4

k

E

(2�)

4

ln

�

k

2

E

+ V

00

(�

0

)

k

2

E

�

+B�

2

0

+ C�

4

0

+O(~

2

) : (13.34)

Here, we Wik rotated the integral to Eulidean spae and subtrated an in�nite onstant in

order to make the logarithm dimensionless. (Equivalently we ould have added an additional

onstant ounter-term A renormalising the vauum energy density.) The integral an be

evaluated in di�erent regularisation shemes. Here we will expand the logarithm,

ln

�

1 +

V

00

k

2

E

�

=

1

X

n=1

1

n

�

V

00

k

2

E

�

n

; (13.35)

and uto� the integral at some large momentum �. The �rst two terms of the sum will

depend on the uto�, being proportional to �

2

and ln(�

2

=V

00

), respetively. Performing the

integral and negleting terms that vanish for large �, we obtain

V

eff

(�

0

) = V (�

0

) +

�

2

32�

2

V

00

(�

0

) +

V

00

(�

0

)

2

64�

2

ln

�

V

00

(�

0

)

�

2

�

: (13.36)

Now we see that if we start out with a massless ��

4

theory, our uto�-dependent terms are

V

00

=

1

2

��

2

0

; and (V

00

)

2

=

�

2

4

�

4

0

; (13.37)

whih both an be absorbed into the ounter-terms B and C by imposing appropriate renor-

malisation onditions.

Let us stress the important point in this result: The renormalisation of the ��

4

theory

using the e�etive potential approah is not a�eted by a shift of the �eld: We are free to

use both signs of �

2

and any value of the lassial �eld �

0

in Eq. (13.36). Independently of

the sign of �

2

, we need only symmetri ounter-terms, as a ubi term does not appear. We

an rephrase this point as follows: If we renormalise before we shift the �elds, we know that

we obtain �nite renormalised Green funtions. But shifting the �elds does not hange the

total Lagrangian. Thus the quantum ation and the e�etive potential are unhanged too.

Consequently the theory has to stay renormalisable after SSB.

Let us now disuss what happens with a non-renormalisable theory in the e�etive potential

approah. Inluding e.g. a �

6

term leads to (V

00

)

2

/ �

8

whih requires an additional ounter-

term D�

8

, generating in turn even higher order terms and so forth. Thus in this ase an

2

Integrating i�

F

(0) w.r.t. m

2

reprodues the one-loop term.
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13. Symmetries and symmetry breaking

= + + . . .

Figure 13.2.: Perturbative expansion of the one-loop e�etive potential V

(1)

eff

for the ��

4

the-

ory; all external legs have zero momentum.

in�nite number of ounter-terms is needed for the alulation of V

(1)

eff

. The reason for this

behaviour beomes lear, if we look again at the series expansion of the logarithm in the one

loop ontribution V

(1)

eff

,

V

(1)

eff

= i

1

X

n=1

Z

d

4

k

(2�)

4

1

2n

�

V

00

(�

0

)

k

2

�

n

: (13.38)

This ontribution is an in�nite sum of single loops with progressively more external legs with

zero-momentum attahed, see Fig. 13.2 for the ase of V

00

(�

0

) =

1

2

��

2

0

. (We added the fator

i, beause we returned to Minkowski spae; the symmetry fator 2n appearing automatially

in this approah aounts for the symmetry of a graph with n verties under rotations and

reetion.) As we saw, the super�ial degree of divergene inreases with the number of

external partiles for a ��

n

theory and n > 4. Hene every single diagram in the in�nite sum

ontained in V

(1)

eff

diverges for n > 4 and requires a ounter-term of higher order. As disussed

in setion 12.5, we should treat non-renormalisable theories as e�etive theories only valid

below a physial uto� �. Calulating then loop orretions as in V

(1)

eff

, we have to us a mass

independent renormalisation sheme instead of a dimensionfull uto�. An alternative is the

funtional RGE approah, for whih we give next a brief example:

Remark 13.1: A RGE ow equation for the e�etive potential:

Let us de�ne V

k

as the e�etive potential utting o� the loop integrals at the sale k. We an repeat

the saddle point expansion, splitting � as � = �

0

+  , where now �

0

ontains the modes k < p and

 the modes p � k � �. For simpliity, we assume that the minimum of the potential is at zero and

treat the slow �eld �

0

as uniform. Integrating out the �eld  , we obtain then

V

k

(�

0

) = V

�

(�

0

) +

~

2

Z

�

k

d

4

k

(2�)

4

ln

�

k

2

E

+ V

00

(�

0

)

k

2

E

+ V

00

(0)

�

: (13.39)

Next we di�erentiate w.r.t. k and obtain

k

�

�k

V

k

(�

0

) = �

~k

4

16�

2

ln

�

k

2

E

+ V

00

(�

0

)

k

2

E

+ V

00

(0)

�

; (13.40)

i.e. a di�erential equation desribing how the e�etive potential hanges integrating out UV modes

with momentum k. Similar equations, alled RGE ow equations, an be derived also for the quantum

ation. If we onsider now an asymptotially free theory, then for suÆiently high sales, �[�℄ ' S[�℄.

Then also V

k

an be approximated by the lassial potential, �xing our initial ondition.
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13.2. Renormalisation of theories with SSB

Finally, we note that the result for a single, real salar generalises as

V

(1)

eff

= (�1)

s

g

i

V

(1)

eff;salar

(13.41)

to a partile with spin s and g

i

internal degrees of freedom. This should ome as now surprise,

sine the one-loop expression of the e�etive potential sums up the logarithm of the zero-point

energies.

Another proof of the Goldstone theorem With the help of the e�etive potential we an

give another simple proof of the Goldstone theorem. We know that the zero of the inverse

propagator determines the mass of a partile. From Eq. (12.14), the exat inverse propagator

in momentum spae for a set of salar �elds is given by

�

�1

ij

(p

2

) =

Z

d

4

x e

�ip(x�x

0

)

Æ

2

�

Æ�

i

(x)Æ�

j

(x

0

)

: (13.42)

Massless partiles orrespond to zero eigenvalues of this matrix equation for p

2

= m

2

. If we

set p = 0, the �elds are onstant. But di�erentiating the quantum ation w.r.t. to onstant

�elds is equivalent to di�erentiating simply the e�etive potential,

�

2

V

eff

��

i

(x)��

j

(x

0

)

= 0 : (13.43)

Thus our previous analysis of Goldstone's theorem using the lassial potential holds also in

the quantum ase, if we replae the lassial by the e�etive potential.

Coleman-Weinberg Problem We an use the e�etive potential to investigate if quantum

utuations an trigger SSB in an initially massless theory. Rewriting the e�etive potential

(and going bak to our normalisation ��=4!) we have

V

eff

(�) =

�

�

2

64�

2

�+B

�

�

2

+

�

�

4!

+

�

2

(16�)

2

ln

�

2

�

2

+ C

�

�

4

: (13.44)

Now we impose the renormalising onditions, �rst

d

2

V

eff

d�

2

�

�

�

�

�=0

= 0 ; (13.45)

whih implies that

B = �

��

2

64�

2

: (13.46)

Renormalising the oupling onstant, we have to pik a di�erent point than � = 0, beause

the logarithm is ill-de�ned there. This means that we have to introdue a sale �. Taking

the fourth derivative and ignoring terms that are independent of �, we �nd

d

4

V

eff

d�

4

�

�

�

�

�=�

= � = 24

�

2

(16�)

2

ln

�

2

�

2

: (13.47)

We an onvine ourselves that this expression gives the orret beta funtion,

�(�) = �

��

��

=

3

16�

2

�

2

+O(�

3

) : (13.48)
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Using the omplete expression for Eq. (13.47), we an determine C and obtain for the

renormalised e�etive potential (problem 13.6)

V

eff

(�) =

�(�)

4!

�

4

+

�

2

(�)

(16�)

2

�

4

�

ln

�

2

�

2

�

25

6

�

+O(�

3

) : (13.49)

This potential has two minima outside of the origin, so it seems that SSB does indeed happen.

These minima lie however outside the expeted range of validity of the one loop approximation:

Rewriting the potential as V

eff

(�) = ��

4

=4!(1 + a� ln(�

2

=�

2

) + : : : suggest that we an trust

the one-loop approximation only as long as (3=32�

2

)� ln(�

2

=�

2

)� 1.

13.3. Abelian Higgs model

After we have shown that the renormalisability is not a�eted by SSB, we now try to apply

this idea to a the ase of a gauge symmetry. First of all, beause we aim to explain the

masses of the W and Z bosons as onsequene of SSB. Seondly, we saw that SSB of global

symmetries leads to massless salars whih are however not observed. As SSB annot hange

the number of physial degrees of freedom, we hope that eah of the two diseases is the ure of

the other: The Goldstone bosons whih would remain massless in a global symmetry hopefully

disappear beoming the required additional longitudinal degrees of freedom of massive gauge

bosons in ase of a spontaneously broken gauge symmetry.

The Abelian Higgs model, whih is the simplest example for this mehanism, is obtained

by gauging a omplex salar �eld theory. Introduing in the Lagrangian (13.11) the ovariant

derivative

�

�

! D

�

= �

�

+ ieA

�

(13.50)

and adding the free Lagrangian of an U(1) gauge �eld gives

L = �

1

4

F

��

F

��

+ (D

�

�)

y

(D

�

�) + �

2

�

y

�� �(�

y

�)

2

: (13.51)

The symmetry breaking and Higgs mehanism is best disussed hanging to polar oordinates

in �eld-spae, � = � expfi#g. Then we insert

D

�

� =

�

�

�

�+ i�(�

�

#+ eA

�

)

�

e

i#

(13.52)

into the Lagrangian, obtaining

L = �

1

4

F

��

F

��

+ �

2

(�

�

#+ eA

�

)

2

+ (�

�

�)

2

+ �

2

�

2

� ��

4

: (13.53)

The only di�erene to the ungauged model is the appearane of the gauge �eld in the prospe-

tive mass term �

2

(�

�

#+ eA

�

)

2

. This allows us to eliminate the angular mode # whih shows

up nowhere else by performing a gauge transformation on the �eld A

�

: The ation of a U(1)

gauge transformation A

�

! A

0

�

= A

�

��

�

� on the original �eld � is just a phase shift, hene

� is unhanged and # is shifted by a onstant, # ! #

0

= # + e�. This means that if we

onsider the gauge invariant ombination

B

�

= A

�

+

1

e

�

�

# (13.54)

222



13.3. Abelian Higgs model

as new variable, we eliminate # ompletely, as F

��

(A

�

) = F

��

(B

�

) is gauge invariant,

L = �

1

4

F

��

F

��

+ e

2

�

2

(B

�

)

2

+ (�
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�)

2
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2

�

2

� ��

4

: (13.55)

It is now evident that the Goldstone mode # has disappeared. Eliminating the �eld � in

favour of utuations � around the vauum v =

p

�

2

=�, i.e. shifting as usually the �eld as

� =

1

p

2

(v + �) ; (13.56)

we �nd as new Lagrangian
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4

�

4

:

(13.57)

As in the ungauged model we obtain a �

3

self-interation and a ontribution to the vauum

energy density. The gauge �eld B

�

aquired the mass M = ev, therefore having now three

spin degrees of freedom. The additional longitudinal one has been delivered by the Goldstone

boson whih in turn disappeared: The gauge �eld has \eaten" the Goldstone boson. We also

see that the number of degrees of freedom before SSB (2+2) mathes the number afterwards

(3 + 1). The phenomenon that breaking spontaneously a gauge symmetry does not lead to

massless Goldstone bosons beause they beome the longitudinal degree of freedom of massive

gauge bosons is alled the Higgs e�et.

The gauge transformation we used to eliminate the # �eld orresponds to the Higgs model

in the unitary gauge, where only physial partiles appear in the Lagrangian. The massive

gauge boson is desribed by the Proa Lagrangian and we know that the resulting propagator

beomes onstant for large momenta. Hene, this gauge is onvenient for illustrating the

onept of the Higgs mehanism, but not suited for loop alulations. For several reasons

we expet that the renormalisability of this model is only hidden in the unitary gauge: The

model before shifting the �elds is renormalisable, and our disussion of SSB using the e�etive

potential has taught us that suh a shift has no impat. Moreover, we should be able to neglet

v in a sattering proess like B

�

+B

�

! B

�

+B

�

for s� v

2

. Thus the broken theory should

have the same UV behaviour as the unbroken one.

We should therefore explore alternative gauges of the same model. Avoiding the unitary

gauge, we re-start using Cartesian �elds � = (�

1

+ i�

2

)=

p

2 for the omplex salar. Then the

Lagrangian is
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(13.58)

Performing the shift due to the SSB, �

1

= v +

~

�

1

and �

2

=

~

�

2

, the Lagrangian beomes
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(13.59)
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where we have omitted interation and vauum terms not relevant to the disussion. As we

see, the Goldstone boson

~

�

2

does not disappear and it ouples to the gauge �eld A

�

. On the

other hand, the mass spetrum of the physial partiles is the same as in the unitary gauge.

The degrees of freedom before and after breaking the symmetry do not math, hene there is

an unphysial degree of freedom in the theory, namely that orresponding to

~

�

2

.

Gauge �xing and gauge boson propagator In order to make the generating funtional

Z[J

�

; J; J

�

℄ of the abelian Higgs model well-de�ned, we have to remove the gauge freedom

of the lassial Lagrangian. Using the Faddeev-Popov trik to ahieve this implies to add a

gauge-�xing and a Faddeev-Popov ghost term to the lassial Lagrangian,

L

eff

= L

l

+L

gf

+L

FP

= L

l

�

1

2�

G

2

+ �

�G

�#

 : (13.60)

Here G(A

�

; �) = 0 is a suitable gauge ondition, # is the generator of the gauge symmetry

and ; � are Gra�mannian ghost �elds.

In the unbroken abelian ase we used as gauge ondition G = �

�

A

�

. With the gauge

transformation A

�

! A

�

� �

�

# the ghost term beomes simply L

FP

= �(��). Thus

the ghost �elds ompletely deouple from any physial partiles, and the ghost term an be

absorbed in the normalisation. In the present ase of a theory with SSB, we want to use the

Faddeev-Popov term to anel the mixed A

�

�

�

�

2

term. Therefore we inlude the Goldstone

boson �

2

in the gauge ondition,

G = �

�

A

�

� �ev�

2

= 0 ; (13.61)

what de�nes the R

�

gauge. From �

2

= �

�

A

�

=(�ev) we see that the unitary gauge orresponds

to � !1, while we ome bak to G = �

�

A

�

for v ! 0. We alulate �rst G

2

,

G

2

= (�

�

A

�

)(�

�

A

�

)� 2�ev�

2

�

�

A

�

+ �

2

e

2

v

2

�

2

2

; (13.62)

integrate by parts the ross term and insert the result into L

gf

,

L

gf

= �

1

2�

G

2

= �

1

2�

(�

�

A

�

)

2

� evA

�

�

�

�

2

�

1

2

�(ev)

2

�

2

2

: (13.63)

Now we see that the seond term anels the unwanted mixed term inL

l

, while a � dependent

mass term �M

2

for �

2

appeared.

If we write out the terms in L

eff

quadrati in A

�

and �

2

,

L

eff;2

= �

1

4

F

��

F

��

+

1

2

M

2

A

2

�

�

1

2�

(�

�

A

�

)

2

+

1

2

(�

�

�

2

)

2

�

1

2

�M

2

�

2

2

; (13.64)

we an �nd the boson propagator. Using the antisymmetry of F

��

and a partial integration,

we transform F

2

=4 into standard form, A

�

(�

��

�� �

�

�

�

)A

�

=2. The part of the Lagrangian

quadrati in A

�

then reads

L

A

=

1

2

A

�

�

�

��

�� �

�

�

�

�

A

�

+

1

2

A

�

�

��

M

2

A

�

+

1

2�

A

�

�

�

�

�

A

�

(13.65a)

=

1

2

A

�

�

�

��

(�+M

2

)� (1� �

�1

)�

�

�

�

�

A

�

: (13.65b)
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13.3. Abelian Higgs model

To �nd the propagator we want to invert the term in the braket, whih we denote by P

��

.

If we go to momentum spae, then

P

��

(k

2

) = �(k

2

�M

2

)�

��

+ (1� �

�1

)k

�

k

�

: (13.66)

Next we split P

��

(k

2

) into a transverse and a longitudinal part by fatoring out terms

proportional to P

��

T

= �

��

� k

�

k

�

=k

2

,

P

��

= �(k

2

�M

2

)

�

P

��

T

+

k

�

k

�

k

2

�

+ (1� �

�1

)k

�

k

�

(13.67a)

= �(k

2

�M

2

)P

��

T

� �

�1

(k

2

� �M

2

)P

��

L

; (13.67b)

with the longitudinal part given by P

��

L

= k

�

k

�

=k

2

. We an invert the two parts separately

and obtain

iD

��

F

(k

2

) =

�iP

��

T

k

2

�M

2

+ i"

+

�i�P

��

L

k

2

� �M

2

+ i"

(13.68a)

=

�i

k

2

�M

2

+ i"

h

�

��

� (1� �)

k

�

k

�

k

2

� �M

2

+ i"

i

: (13.68b)

The transverse part propagates with mass M

2

, while the longitudinal part propagates with

mass �M

2

. The limit � !1 orresponds again to the unitary gauge and � = 1 orresponds

to the easier Feynman-'t Hooft gauge. For �nite �, the propagator is proportional to 1=k

2

as

in the massless ase. The Goldstone boson �

2

has the usual propagator of a salar partile,

however with gauge-dependent mass �M

2

. As usual in a ovariant gauge, the unphysial

gauge-dependent modes have to be anelled by ghosts whih we disuss next.

Ghosts Using the Faddeev-Popov ansatz introdues ghosts �eld through the term L

FP

=

� (ÆG=Æ#)  into the Lagrangian. To alulate ÆG=Æ#, we have to �nd out how the gauge

�xing ondition G hanges under an in�nitesimal gauge transformation. Looking �rst at the

hange of the omplex �eld,

�!

~

� = �+ ie#� = �+ ie#

1

p

2

(v + �

1

+ i�

2

) ; (13.69)

we see that the �elds �

1

and �

2

are mixed under the gauge transformation.

A

�

!

~

A

�

= A

�

� �

�

# (13.70a)

�

1

!

~

�

1

= �

1

� e#�

2

(13.70b)

�

2

!

~

�

2

= �

2

+ e#(v + �

1

) : (13.70)

Inserting this into the gauge �xing ondition (13.61) and di�erentiating with respet to the

generator, we obtain

ÆG

Æ#

=

Æ

Æ#

�

�

�

~

A

�

� �ev

~

�

2

�

= ��� �e

2

v(v + �

1

) : (13.71)

Thus after spontaneous symmetry breaking the ghost partiles reeive a �-dependent mass

and interat with the Higgs �eld �

1

. To see this expliitly we insert ÆG=Æ# into the ghost

Lagrangian,

L

FP

= ��

�

�+ �e

2

v(v + �

1

)

�

 = (�

�

�)(�

�

)� �M

2

�� �e

2

v�

1

� : (13.72)
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13. Symmetries and symmetry breaking

The seond term on the RHS orresponds to the mass �e

2

v

2

= �M

2

for the ghost �eld, while

the third one desribes the ghost-ghost-Higgs interation.

In summary, we have the following propagators in the R

�

gauge, where we denote with h

the physial Higgs with mass M = ev, with � the Goldstone boson and with  the ghost:

i

k

2

�M

2

+ i"

�

��

��

+ (1� �)

k

�

k

�

k

2

� �M

2

�

(13.73)
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Before losing this hapter, we should answer why the Goldstone theorem does not apply to

the ase of the Higgs model. The harateristi property of gauge theories that no manifestly

ovariant gauge exists whih eliminates all gauge freedom is also responsible for the failure

of the Goldstone theorem: In the �rst version of our proof, we may either hoose a gauge as

the Coulomb gauge. Then only physial degrees of freedom of the photon propagate, but the

potential A

0

(x) drops only as 1=jxj and the harge Q de�ned in (13.23) beomes ill-de�ned.

Alternatively, we an use a ovariant gauge as the Lorentz gauge. Then the harge is well-

de�ned, but unphysial salar and longitudinal photons exist. The Goldstone theorem does

apply, but the massless Goldstone bosons do not ouple to physial modes. In the seond

version of our proof, the e�etive potential for the salar and for the gauge setor do not

deouple and mix by the same reason after SSB. This invalidates our analysis inluding only

salar �elds.

Summary

Examining spontaneous symmetry breaking of internal symmetries, we found three qualita-

tively di�erent types of behaviours: For a broken global ontinuous symmetry, Goldstone's

theorem predits the existene of massless salars. In the ase of broken approximate sym-

metries, this an explain the existene of light salar partiles|an example are pions. The

ase of broken global ontinuous symmetry whih are exat seems to be not realised in na-

ture, sine no massless salar partiles are observed. If we gauge the broken symmetry, the

would-be massless Goldstone bosons beome the longitudinal degrees of freedom required for

massive spin-1 bosons. Finally, neither Noether's nor Goldstone's theorems apply to the ase

of disrete symmetries; therefore the breaking of disrete symmetries does not hange the

mass spetrum of the theory.

The e�etive potential is a onvenient tool to study the renormalisability of spontaneously

broken theories: This approah allows the alulation of all quantum orretions to the las-

sial potential in the limit of onstant �elds and is invariant under a shift of �elds. Thereby
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13.3. Abelian Higgs model

we ould establish that renormalisability is not a�eted by SSB.

Further reading

Our disussion of the e�etive potential is based on the 1966 Erie leture \Seret Symmetry"

of Coleman198802.

Problems

13.1 Contribution to the vauum energy

density from SSB.

Calulate the di�erene in the vauum energy

density before and after SSB in the SM using

v = 256GeV andm

2

h

= 2�

2

= (125)

2

GeV

2

. Com-

pare this to the observed value of the osmologial

onstant.

13.2 Salar Lagrangian after SSB.

Derive Eq. (13.9) and write down the expliit form

of L

int

.

13.3 Quantum orretions to h�i.

We impliitly assumed that quantum orretions

are small enough that the �eld stays at the hosen

lassial minimum. Calulate h�(0)

2

i for d spae-

time dimensions and show that this assumption is

violated for d � 2.

13.4 Instability of h�i.

Calulate the imaginary part of the self-energy for

a salar �eld with the Lagrangian (13.1), i.e. with

a negative squared mass �

2

< 0. Disuss the phys-

ial interpretation.

13.5 Goldstone mode as zero mode.

Show that the state jsi de�ned in Eq. (13.24) has

zero energy for k ! 0.

13.6 Coleman-Weinberg problem.

Derive Eq. (13.49), �nd the minima of the poten-

tial and disuss the validity of the one-loop ap-

proximation.

13.7 E�etive potential in DR.

Repeat the alulation of the e�etive potential

using DR.
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14. Thermal �eld theory

The Green funtions we have onsidered so far were de�ned as the expetation value of �eld

operators in a pure state, the vauum j0i in the absene of real partiles. Out of these Green

funtions, we ould built up our quantities of prime interest, deay or sattering amplitudes

for 1! n and 2! n partiles via the LSZ formalism. In this hapter, we disuss how Green

funtions should be alulated for a system whih is not in its ground state but desribed by a

density matrix �. Examples for suh systems are the early Universe or the dense, hot interior

of a star. The simplest and at the same time most important ases of thermal systems

are those in equilibrium. The appendix of this hapter ollets a few basi formulas from

statistial physis we will need later.

14.1. Overview

In equilibrium statistial physis, the partition funtion Z is of entral importane as all

thermodynami quantities an be derived from it. In the grand anonial ensemble (where

both partiles and energy may be exhanged between the system and the reservoir) the

partition funtion takes the form

Z(V; T; �

1

; �

2

; : : : ) =

X

n

hnj e

��H��

i

N

i

jni = e

��


; (14.1)

where � � 1=T is the inverse temperature of the system, n denotes a omplete set of quantum

numbers, �

i

the hemial potential and N

i

the number of partiles of type i. The Landau or

grand anonial free energy


(V; T; �

i

) = �T lnZ = U � TS � �

i

N

i

= �PV (14.2)

onnets the mirosopi partition funtion to thermodynamis: While the partition funtion

is losely related to the generating funtional of the orresponding �eld theory in Eulidean

spae, we an derive from 
 all relevant thermodynamial quantities. For instane, we ob-

tain the pressure P from 
 as P = �
=�V j

T;�

i

. In addition, the expetation value of any

observable O is given as

hOi = Z

�1

Tr

h

e

��H��

i

N

i

O

i

: (14.3)

In the following, we will always set �

i

= 0. Then the partition funtion Z(N;V; T ) determines

the free (Helmholtz) energy F as F = �T lnZ.

Calulational approahes Two main approahes to alulations are used in thermal �eld

theory:

228



14.1. Overview

� In the real-time formalism, one applies the formula (14.3) valid for any observable

diretly to Green funtions, that is one evaluates

G(x

1

; : : : ; x

n

) = hT (�(x

1

) � � � �(x

n

))i

= Z

�1

Tr

h

e

��H

T (�(x

1

) � � � �(x

n

))

i

:

(14.4)

The main advantage of this method is that it an be extended to the non-equilibrium

ase. In partiular, one an investigate the time evolution of a system towards thermal

equilibrium. The proper de�nition of the propagators beomes, however, more involved

than in the vauum.

� In the imaginary time formalism, we perform a Wik rotation from Minkowski to Eu-

lidean spae, t! t

E

= it, so that the transition amplitude from an initial state, jq(t

i

)i,

to a �nal state, jq(t

f

)i, is given by

hq(t

f

)j e

�(t

f

�t

i

)H

jq(t

i

)i =

Z

q(t

f

)

q(t

i

)

Dq e

�S

; (14.5)

where S is now the Eulidean ation. If we set the evolution time, t

f

� t

i

, equal to the

inverse temperature � and integrate over all periodi paths q(t

f

) = q(t

i

+ �), we obtain

Z =

X

q

hqj e

��H

jqi =

Z

q(t+�)

q(t)

Dq e

�S

: (14.6)

We now see that we have formally onneted the path integral formulation of quantum

mehanis (in Eulidean spae) to the partition funtion of statistial mehanis. In

ontrast to �eld theories at zero temperature, the partition funtion in the Eulidean

and the resulting Eulidean Green funtions are not merely a mathematial tool but our

main objets of interest. Sine the Eulidean Green funtions depend on temperature

instead of time, we are not able to desribe time-dependent phenomena in this approah.

Thermal Green funtions The trae in the partition funtion of statistial physis implies

that we have to sum over on�gurations onneting the same physial state at t and t + �.

In the path integral orresponding to statistial mehanis, the periodiity ondition q(t) =

q(t + �) for the real oordinate q is learly the only possible hoie. In ontrast, �elds may

only be observable through bilinear quantities, as e.g.

�

 � for a fermion �eld. This raises

the question, if we should require periodi or anti-periodi boundary onditions.

We start by onsidering thermal Green funtions G

�

for a free salar �eld. We split

the Feynman propagator into two piees, setting G

+

(x; x

0

) = h�(x)�(x

0

)i for t > t

0

and

G

�

(x; x

0

) = h�(x

0

)�(x)i for t < t

0

. From the Heisenberg equation for the �eld operator,

�(t;x) = e

iHt

�(0;x)e

�iHt

; (14.7)

we �nd inserting 1 = e

�H

e

��H

into the de�nition (14.3) and using then (14.7),

G

+

�

(t

0

;x

0

; t;x) = Tr [e

��H

�(t

0

;x

0

)�(t;x)℄=Z (14.8a)

= Tr [e

��H

�(t

0

;x

0

)e

�H

e

��H

�(t;x)℄=Z (14.8b)

= Tr [�(t

0

+ i�;x

0

)e

��H

�(t;x)℄=Z (14.8)

= Tr [e

��H

�(t;x)�(t

0

+ i�;x

0

)℄=Z = G

�

�

(t

0

+ i�;x

0

; t;x) : (14.8d)
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14. Thermal �eld theory

Hene Green funtions satisfy G

�

�

(t

0

;x

0

; t;x) = G

�

�

(t

0

+i�;x

0

; t;x). Repeating the proedure,

we obtain G

�

�

(t

0

;x

0

; t;x) = G

�

�

(t

0

+ i�;x

0

; t;x) = G

�

�

(t

0

+ 2i�;x

0

; t;x), implying periodi

boundary ondition for the thermal propagators of bosoni �elds,

G

�

(t

0

;x

0

; t;x) = G

�

(t

0

+ 2i�;x

0

; t;x) : (14.9)

We de�ne now the Matsubara propagator G

�

(�;x), i.e. the analogue to the Feynman prop-

agator in the imaginary-time formalism, setting the real part of the temporal argument to

zero and applying time-ordering to its imaginary part � = =(t),

G

�

(�

0

;x

0

; �;x) = G

�

(�

0

+ 2�;x

0

; �;x) = Tr fe

��H

T

�

[�(�

0

;x

0

)�(�;x)℄g=Z : (14.10)

The derivation (14.8d) goes through unhanged for fermioni �elds,

S

�

�

(t

0

;x

0

; t;x) = S

�

�

(t

0

+ i�;x

0

; t;x) : (14.11)

But now the anti-ommuting nature of fermioni �elds, i.e. the minus sign in the de�nition

of time-ordered produt (8.85), leads to anti-periodi boundary ondition for their thermal

propagators,

S

�

(t

0

;x

0

; t;x) = �S

�

(t

0

+ 2i�;x

0

; t;x) : (14.12)

Both periodiity onditions disretise the frequeny spetrum of the thermal wave-funtions

and propagator. Moreover, they onstrain the set of allowed frequenies, suh that bosoni

�elds ontain only even frequenies, while fermioni �elds ontain only odd frequenies,

f. problem 15.??. Thus the Fourier transform of thermal �elds ontained in a box of size

� � V is given by

�(t;x) =

1

p

�V

1

X

n=�1

X

p

�

n;p

e

�i(!

n

t+p�x)

(14.13)

with !

n

= 2n�T for bosoni and !

n

= (2n+1)�T for fermioni �elds, respetively, and n 2 Z.

The frequenies !

n

are alled Matsubara frequenies. Similarly, the Green funtions for a free

salar �eld is given in the limit V !1 by

G

�

(t;x) =

1

�

1

X

n=�1

Z

d

3

p

(2�)

3

G

n

(!

n

;p) e

�i(!

n

t+p�x)

(14.14)

with

G

n

(!

n

;p) =

1

!

2

n

+ p

2

+m

2

: (14.15)

Thermal Green funtions and verties ome without imaginary units, beause we have trans-

formed the path integral to Eulidean time.

14.2. Salar gas

We will illustrate the basis of thermal �eld theory onsidering the simplest example, a gas

of salar partiles, evaluating its free energy density F = F=V as a power series in �,

F = F

0

+ �F

1

+ �

2

F

2

+ : : : (14.16)

The free energy is determined by onneted vauum diagrams. The lowest order ontribu-

tion in perturbation theory is given by a one-loop vauum diagram and orresponds to the

Stefan-Boltzmann law valid for a free, non-interating gas. Going on to the two-loop vauum

diagrams, we will be able to derive the �rst quantum orretion to the Stefan-Boltzmann law.
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14.2. Salar gas

14.2.1. Free salar gas

In the ase of a non-interating salar �eld, we an perform the path integral in the free

partition funtion Z, obtaining as formal solution in Eulidean spae

Z

D� e

�S

0

= N Det(��

2

+m

2

)

�1=2

: (14.17)

Negleting the temperature independent normalisation onstant N and using the identity

lnDetA = Tr lnA, we arrive at

�F = � lnZ =

1

2

Tr ln(��

2

+m

2

) : (14.18)

We evaluate the operator trae as in the ase of the e�etive potential in setion 13.2, but

take into aount the hanges

Z

1

�1

dt!

1

�

Z

�

0

d� and

Z

1

�1

dk

0

!

1

�

1

X

n=�1

in the ompleteness relation for thermal states. Inserting a omplete set of plane waves, we

�nd

Tr ln[��

2

+m

2

℄ =

Z

�

0

d�

Z

d

3

xh�;xj ln[��

2

+m

2

℄j�;xi

=

Z

�

0

d�

Z

d

3

x

1

�

X

n

d

3

k

(2�)

3

h�;xj ln[��
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2
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n

;kih!

n

;kj�;xi (14.19)

=V

X

n

d

3

k

(2�)

3

ln[!

2

n

+ k

2

+m

2

℄ :

The free energy density F = F=V follows as

�F =

1

2

1

X

n=�1

Z

d

3

k

(2�)

3

ln

�

!

2

n

+ k

2

+m

2

�

: (14.20)

In order to evaluate the sum, it is suÆient to onsider

A = T

X

n

ln

�

�(i!

n

)

2

+E

2

k

�

(14.21)

with E

2

k

= k

2

+m

2

. First we eliminate the logarithm by di�erentiating A w.r.t. E

k

,

dA

dE

k

= �2TE

k

X

n

1

(i!

n

)

2

�E

2

k

: (14.22)

The funtion dA=dE

k

has poles in the omplex ! plane along the imaginary axis at ! =

i!

n

= 2�nT i plus two poles on the real axis at ! = �E

k

� i", f. Fig. 14.1. We onvert the

sum into a ontour integral using Cauhy's theorem in \reverse order". Beause of oth(z) =

sinh

0

(z)= sinh(z), we see that oth(z) has simple poles at k�i with residue 1 and k 2 Z. Thus

oth(�!=2) has poles at i!

n

with residua 2=�, and we obtain

dA

dE

k

= �2TE

k

�

2

X

n

res

!

n

�

oth(�!=2)

!

2

n

�E

2

k

�

=

E

k

2�i

I

C

d!

oth(�!=2)

!

2

�E

2

k

: (14.23)

231



14. Thermal �eld theory

Im(!)

Re(!)

�! + i"

+
! � i"

+

+
+
+
+
+
+
+
+
+

Im(!)

Re(!)

�! + i"

+
! � i"

+

+
+
+
+
+
+
+
+
+

Figure 14.1.: Poles and ontours in the omplex ! plane used for the evaluation of the free

energy F .

The integrand vanishes as 1=j!j

2

for j!j ! 1, and thus we an break up the ontour C into

two piees whih we lose at �i1. Note that we pik up thereby a minus sign, sine we hange

the orientation of the integration path. Now we an use Cauhy's theorem in the \normal

order" to evaluate the residua of the two enlosed poles at �E

k

� i",

dA

dE

k

= E

k

X

�

res

�E

k

�

oth(�!=2)

!

2

�E

2

k

�

= oth(�E

k

=2) = 1 +

2

e

�E

k

� 1

: (14.24)

Integration gives

F =

1

2

Z

d

3

k

(2�)

3

h

E

k

+ 2T ln(1� e

��E

k

) + 

i

: (14.25)

The integration onstant  anels against the normalisation onstant of the path integral;

dropping also the T = 0 vauum part and taking the high-temperature limit T � m gives

F = T

Z

d

3

k

(2�)

3

ln(1� e

��E

k

)

=

T

4

2�

2

Z

1

0

dxx

2

ln

�

1� expf�

p

x

2

+ (�m)

2

g

�

' �

�

2

T

4

90

+

m

2

T

2

24

:

(14.26)

With F = �P , the Stefan-Boltzmann law P = �

2

T

4

=90 for a massless real salar gas follows.

Example 14.1: Derive the high-temperature expansion (14.26) of the free energy F .

Performing a Taylor expansion of ln(1� expf�[x

2

+ (�m)

2

℄

1=2

g) around �m = 0, we �nd

Z

1

0

dxx

2

ln(1� e

�[x

2

+(�m)

2

℄

1=2

) =

Z

1

0

dxx

2

ln(1� e

�x

) +

(�m)

2

2

Z

1

0

dx

x

e

x

� 1

+O(�m)

4

:

In the �rst integral we expand the logarithm,

Z

1

0

dxx

2

ln(1� e

�x

) = �

1

X

n=1

Z

1

0

dxx

2

e

�nx

= �2

1

X

n=1

1

n

4

= �2�(4) = �2

�

4

90

;

while we use in the seond integral 1=(e

x

�1) = e

�x

=(1�e

x

) =

P

1

n=1

e

�nx

. With the de�nition (A.24)

for the Gamma funtion, the seond integral results in �(2)�(2) = �

2

=6.
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14.2.2. Interating salar gas

As main appliation of the formalism of thermal �eld theory we next alulate the �rst

quantum orretion to the equation of state of a gas of salar partiles interating with a ��

4

interation. This O(�) orretion is given by the two-loop vauum diagram we onsidered

already at T = 0; the overlapping divergenes of the type 1=" ln(p

2

=�

2

) orrespond now to

UV divergent terms multiplied by temperature-dependent fators. Again, suh terms have to

be anelled by ounter-terms found at lower order.

Equation of state of a salar gas The �rst-order ontribution �F

1

to the free energy density

orresponds to the two-loop vauum diagram,

�

=

�

4!




�

4

�

=

3�

4!




�

2

�


�

2

�

=

�

8

�

�(0)

�

2

;

Reall from setion 4.2 that the fator three aounts for the three possible ways of joining

the lines to form the two loops. Alternatively, we an determine this fator using that h�

n

i

is the expetation value of �

n

times a Gaussian. We ould now insert into this formula the

Matsubara Green funtion derived in the imaginary time formalism. Instead, we use a more

intuitive argument to obtain the propagator (for oiniding points) in the real-time formalism.

At T = 0, we an express the propagator at oinident points as the sum over the zero-point

energies,

�(0) = h0j�(x

0

)�(x)j0i

x

0

&x

=

Z

d

3

k

(2�)

3

2!

k

e

�ik(x

0

�x)

�

�

�

�

x

0

&x

=

Z

d

3

k

(2�)

3

1

2!

k

: (14.27)

The vauum ontains no real partiles, and the a

y

k

a

k

term in H

0

=

P

k

!

k

(1=2 + a

y

k

a

k

) gives

zero ontribution. For T > 0, the expetation value of the number operator N

k

= a

y

k

a

k

is

just the number distribution n

k

of � partiles,

�(t = 0; x = 0) =

Z

d

3

k

(2�)

3

1

!

k

�

1

2

+

D

a

y

k

a

k

E

�

=

Z

d

3

k

(2�)

3

1 + 2n

k

2!

k

: (14.28)

In thermal equilibrium the number density n

k

of a salar �eld is a Bose-Einstein distribution,

n

k

=

1

e

�!

k

� 1

: (14.29)

This result an be derived diretly from the periodiity ondition of the Green funtions

(problem 15.??). Note that we an view the propagator as the sum of a vauum part (\1/2")

and a thermal part (\n

k

"). In the latter, the high energy modes are exponentially suppressed

and thus no UV divergenes should appear in the temperature dependent parts of physial

observables. Thus our standard renormalisation program at T = 0 should apply in the same

way at T > 0.

Continuing the derivation of the �rst-order orretion to F we have

�

4!




�

4

�

=

�

8

h

X

k

1 + 2n

k

2!

k

i

2

(14.30)

=

�

8

"

�

X

k

1

2!

k

�

2

| {z }

vauum

+

�

X

k

n

k

!

k

�

2

| {z }

T dependent

+2

�

X

k

1

2!

k

��

X

k

n

k

!

k

�

| {z }

vauum � T dependent

#

: (14.31)
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The mixed term gives rise to a temperature dependent UV divergene, whih from the previous

argument should not appear in our alulation. Similarly as at T = 0, this term should be

anelled by a one-loop ounter-term. We onsider therefore the one-loop self-energy �, whih

is given by

� =

�

2

�(t = 0;x = 0) =

�

2

X

k

1 + 2n

k

2!

k

; (14.32)

and ontains the usual T = 0 divergene oming from the unsuppressed sum over frequen-

ies. We use renormalised perturbation theory, adding the ounter-term Æ

m

m

2

�

2

to the

Lagrangian, where Æ

m

is hosen suh that m orresponds to the physial mass. Thus Æ

m

m

2

is determined by

Æ

m

m

2

+

�

2

X

k

1

2!

k

= 0 : (14.33)

Beause the produt Æ

m

m

2

�(0) is of O(�), we have to add the following vauum diagram to




1

,

1

2

Æ

m

m

2

�(0; 0) = =

1

2

 

�

�

2

X

k

1

2!

k

! 

X

k

1 + 2n

k

2!

k

!

: (14.34)

Comparing this expression to the troublesome mixed term, we see that they agree but have

the opposite sign. Thus the one-loop subdivergene anels the temperature dependent UV

divergene at two-loop in 


1

. As result, we obtain the onsistent expression

�

4!




�

4

�

=

�

8

�

X

k

n

k

!

k

�

2

+ va ; (14.35)

whih we an now alulate expliitly. For simpliity, we restrit ourselves to the high-

temperature limit setting m = 0,

X

k

n

k

!

k

=

Z

d

3

k

(2�)

3

1

!

1

e
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� 1

=
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2

Z

1

0
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x

e
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� 1
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�

2

=6

=

T

2

12

; (14.36)

Hene our �nal result for F

1

is

F

1

=

�

8

�

T

2

12

�

2

=

�

1152

T

4

; (14.37)

whih we may ompare to the non-interating result, 


0

= �

2

T

4

=90: The ratio 


1

=


0

�

10

�2

� seems to indiate a fast onvergene of the perturbative expansion of the pressure for

any reasonable value of the oupling.

We simply quote the result to three loops or seond order in � from the literature,

P =

�

2

T

4

9

�

1

10

�

1

8

�

16�

2

+

1

8

�

3 ln

�

4�T

+

31

35

+ C

��

�

16�

2

�

2

�

: (14.38)

The parameter � in Eq. (14.38) is not the hemial potential but as usually the renormalisation

sale. As the pressure is a physial quantity, it should not depend upon suh a parameter.
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14.2. Salar gas

However, the trunation of the perturbative series leads to a residual � dependene of O(�

3

).

Examining this � dependene of P we obtain

�

dP

d�

=

�

2

T

4

9

�

�

1

8

1

16�

2

�

d�

d�

+

3

8

�

�

16�

2

�

2

+O(�

3

)

�

= O(�

3

) ; (14.39)

where we have used �d�=d� = � = 3�

2

=16�

2

. Thus the dependene on the renormalisation

sale � is indeed of higher order in � than the order of perturbation theory we are working

with. Still we an try to minimise the remaining dependene by a suitable hoie of �:

Clearly, a sensible hoie in this ase is � = 4�T , for whih the logarithm vanishes. Still,

any other hoie is mathematially as orret as this one. Instead of being worried about this

dependene on the renormalisation sale, we may take advantage of it as follows: Varying

the renormalisation sale � in a \reasonable range", say between � = 2�T and � = 8�T , we

obtain an error estimate for the missing higher-order orretions. Finally, note that � / T

implies that a QCD plasma beomes in the large temperature limit an asymptotially free

gas of quarks and gluons. Sine we know that at T = 0 quarks and gluons are on�ned in

hadrons, we expet that at T = O(�

QCD

) a phase transition from a quark-gluon gas to a gas

of olourless mesons and baryons takes plae. Both analytial alulations and lattie QCD

simulations on�rm this piture.

IR behaviour We have found a fast onvergene of the perturbative expansion from the

results for the pressure of a salar gas. For appliations partiularly interesting is the ase of

a massless partile and we onsider now as a toy-model for QCD a ��

4

theory with m = 0.

Looking bak at our previous result for the self-energy, Eq. (14.32), setting m ! 0 and

dropping the vauum term, we have

� =

�

2

�(t = 0;x = 0)!

�

2

Z

d

3

k

(2�)

3

n

k

!

k

=

�

2

T

2

12

: (14.40)

Thus the thermal part of the self-energy indues at �rst order in � a thermal or Debye mass,

m

2

D

=

�

2

T

2

12

: (14.41)

Swithing to the ovariant form of the thermal propagator, Eq. (14.14), the ontribution

shown in the left panel of Fig. 14.2 at seond order is

�

2

= �
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2

T

X

n

Z

d

3

k

(2�)

3

m

2

D

(!

2

n

+ k

2

)

2

: (14.42)

While in the terms with n 6= 0 the !

n

at as a IR uto�, we see that for n = 0 and thus

!

0

= 0 the integral is proportional to

R

dk=k

2

and thus IR divergent. If we go to higher terms

in the expansion and add additional loops to the \primary loop" as shown in the right panel

of Fig. 14.2, then the degree of the IR divergene inreases.

The solution to this problem is to aount for the thermal mass of the salar partile

properly. If we use an e�etive propagator whih inludes the Debye mass of the partile,

1

!

2

n

+ k

2

!

1

!

2

n

+ k

2

+m

2

D

; (14.43)
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Figure 14.2.: Left: A seond order orretion to the mass; Right: Ring diagram, eah external

bubble orresponds to an insertion of m

2

D

.

then the n = 0 term of Eq. (14.42) with !

0

= 0 is given by

�

2;n=0

= �

�

2

T

Z

d

3

k

(2�)

3
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D
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2
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2
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8�m

D

�

(14.44)

and thus �nite. Sine the Debye mass sales as m

D

/ �

1=2

, the ontribution of �

2;n=0

in the

perturbative expansion is not of order �

2

but of order �

3=2

. Thus we obtained a term whih

is non-analyti in the oupling|what an not happen, if we sum a �nite number of terms.

As explanation, we have to look at the expansion of the e�etive propagator for small m

D

(restriting ourselves again to the n = 0 term),

1

k

2

+m

2

D

=

1

k

2

�

m

2

D

k

4

+

m

4

D

k

6

+ : : : (14.45)

Here we an view e.g. the m

4

D

=k

6

term as a ring diagram with three massless propagators

k

�2

and two fators m

2

D

produed by self-energy insertions. Thus inluding the thermal mass

orresponds to summing up the in�nite sum of diagrams shown in the right panel of Fig. 14.2.

We an formalise the inlusion of the Debye mass in the originally massless salar theory

as follows: We reorganise perturbation theory by adding a mass term to the free Lagrangian

and subtrating it from the the interation term,

L

0

=

1

2

(�

�

�)

2

�

1

2

m

2

�

2

and L

int

= �

�

4!

�

4

+

1

2

m

2

�

2

: (14.46)

Here we may set m

2

= m

2

D

or keep it as a free parameter to be determined by, for example,

that the free energy is independent of this parameter, dF=dm

2

= 0. This reformulation of the

perturbative expansion in thermal �eld theories is alled sreened or optimised perturbation

theory.

Symmetry restoration at high temperature We have hosen the sign of the mass term suh

that the ��

4

theory is in the unbroken phase, and the minimal energy is obtained for h�i = 0.

In this ase thermal e�ets simply inrease the e�etive mass of the � partile,

V (�; T ) =

1

2

�

m

2

+

�

24

T

2

�

�

2

+

�

4!

�

4

; (14.47)

Something more interesting happens, if we onsider the broken phase hoosing m

2

< 0. Then

for T = 0 the minimal energy is obtained for �

0

= �

p

�6m

2

=�, and the �! �� symmetry
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Figure 14.3.: Potential with negative mass term showing restoration of symmetry for T > T



.

of the Lagrangian is broken. Inreasing the temperature, the positive thermal mass grows.

Above some ritial temperature, the e�etive mass beomes therefore positive and the min-

imal energy on�guration beomes �

0

= 0, f. with Fig. 14.3. This behaviour resembles the

one we know from a ferromagnet: Below some ritial temperature, spontaneous magnetisa-

tion breaks rotation invariane, whih is above T



restored. In the ontext of osmology, this

observation suggests that symmetries that are broken today might have been unbroken in the

early, hot universe.

14.A. Appendix: Equilibrium statistial physis in a nut-shell

The one-partile distribution funtion f(p) of a free gas in kineti equilibrium is given by

f(p) =

1

exp[�(E � �)℄� 1

(14.48)

where � = 1=T is the inverse temperature, E =

p

m

2

+ p

2

, and +1 refers to fermions and �1 to

bosons, respetively. A speies X stays in kineti equilibrium, if in the reation X + Y 
 X + Y the

energy exhange with at least one other speies Y , whih is in thermal equilibrium is fast enough. The

hemial potential � is the average energy needed, if an additional X partile is added, dU = �

X

dN

X

.

If the speies X is also in hemial equilibrium with other speies, e.g. via the reation X+

�

X 
 +,

then their hemial potentials are related by �

X

+ �

�

X

= 2�



= 0.

The number density n, energy density � and pressure P of a speies X (whih may be not in

equilibrium) are onneted to its one-partile distribution funtion f(p) as

n = g

Z

d

3

p

(2�)

3

f(p) ; � = g

Z

d

3

p

(2�)

3

Ef(p) ; (14.49)

P = g

Z

d

3

p

(2�)

3

p

2

3E

f(p) : (14.50)

The fator g takes into aount the internal degrees of freedom like spin or olour. Thus for a photon,

a massless spin-1 partile g = 2, for an eletron g = 2, a quark g = 6, et.
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Table 14.1.: The number of relativisti degrees of freedom g

�

present in the Universe as fun-

tion of its temperature T .

Temperature new partiles 4�g

�

4g

�

T < m

e

 + �

i

4� (2 + 3� 2� 7=8) 29

m

e

< T < m

�

e

�

14 43

m

�

< T < m

�

�� 14 57

m

�

< T < T

QCD

�

�

; �

0

12 69

T

QCD

< T < m

s

u; �u; d;

�

d; g 6� 14 + 4� 8� 2� 12 205

m

s

< T < m



s; �s 3� 14 = 42 247

m



< T < m

�

; � 42 289

m

�

< T < m

b

�

�

14 303

m

b

< T < m

W;Z

b;

�

b 42 345

m

W;Z

< T < m

h

W

�

; Z 4� 3� 3 = 36 381

m

h

< T < m

t

h 4 385

m

t

< T < ? t;

�

t 42 427

In the non-relativisti limit T � m or e

�(m��)

� 1, and thus di�erenes between bosons and

fermions disappear,

n =

g

2�

2

e

��(m��)

Z

1

0

dp p

2

e

��

p

2

2m

= g

�

mT

2�

�

3=2

exp[��(m� �)℄ ; (14.51)

� = mn and P = nT � �. These expressions orrespond to the lassial Maxwell-Boltzmann statistis.

The number of non-relativisti partiles is exponentially suppressed, if their hemial potential is small.

In the relativisti limit T � m with T � �, all properties of a gas are determined by its temperature

T ,

n =

g T

3

2�

2

Z

1

0

dx

x

2

e

x

� 1

= "

1

�(3)

�

2

gT
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; (14.52)

� = 3P =

g T
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Z
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0

dx
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e

x

� 1

= "

2

�

2

30

gT

4

; (14.53)

where for bosons "

1

= "

2

= 1 and for fermions "

1

= 3=4 and "

2

= 7=8, respetively.

Sine the energy density and the pressure of non-relativisti speies is exponentially suppressed,

the total energy density and the pressure of all speies present in the universe an be approximated

inluding only the relativisti ones,

�

rad

= 3P

rad

=

�

2

30

g

�

T

4

; (14.54)

where

g

�

=

X

bosons

g
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�

T

i

T

�

4

+

7

8

X

fermions

g

i

�

T

i

T

�

4

: (14.55)

We denote the relativisti speies also olletively as radiation. Table 14.1 shows the number of

relativisti degrees of freedom g

�

in the SM as funtion of the temperature. Here T

QCD

denotes the

temperature of the QCD phase transition, above whih quarks and gluons as free partiles exist.

The total entropy density s � S=V of the universe an again approximated by the relativisti

speies,

s =

2�

2

45

g

�S

T

3

; (14.56)
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where now

g

�;S

=

X

bosons
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i
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+

7

8

X

fermions
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i

�

T

i
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�

3

: (14.57)

The entropy S is a useful quantity, beause it is onserved if the universe evolves adiabatially. Then

the onservation of S implies that S / g

�;S

a

3

T

3

= onst:, where a(t) is the sale fator desribing the

expansion of the universe. Thus the temperature of the universe evolves as T / g

�1=3

�;S

a

�1

, and when

g

�

= onst:, the temperature sales as T / 1=a. Consider now the ase that a partile speies, e.g.

eletrons, beomes non-relativisti at T � m

e

. Then the partiles annihilate, e

+

e

�

! , and their

entropy is transferred to photons. Formally, g

�;S

dereases and therefore the temperature dereases

for a short period less slowly than T / 1=a.

Sine the net number density n of partiles with a onserved harge and the entropy density sale

both as / a

�3

, the ratio n=s is onstant. Therefore it is often onvenient to onsider the time evolution

of the dimensionless variable Y = n=s.

Summary

Thermal Green funtions are (anti-) periodi funtions in imaginary time, leading to disrete

energies with !

n

= 2n�T for bosoni and !

n

= (2n+ 1)�T for fermioni �elds, respetively.

No new UV divergenes appear for T > 0, sine the thermal distribution funtion vanish

exponentially for E=T !1. In a plasma, even massless partiles an aquire a temperature

dependent (Debye) mass and symmetries of the Lagrangian may be hidden at low tempera-

tures.

Further reading

This hapter ould give only a avour of what thermal �eld theory is. The leture notes

of [Bla11℄ are a useful starting point to learn more, before turning to text books dediated to

thermal �eld theory as [LV16℄ or [KG11℄.
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15. Phase transitions and topologial defets

We introdued at the end of the last hapter the idea that spontaneously broken symmetries

of �eld theories ould be restored at high temperatures. In this ase, the hot early Universe

would be in a symmetri phase, followed by transitions to phases with more and more broken

symmetries. Phase transitions in the early Universe an lead to observable onsequenes

for mainly two reasons: First, phase transitions lead often to the formation of topologial

defets. These defets are zero-, one- or two-dimensional extended solutions of the lassial

equations of motion for the Higgs-gauge setor whih ontain in their ore the unbroken h�i =

0 vauum. Depending on the symmetry breaking sale and their dimensionality, they lead to

(un-) desirable osmologial onsequenes and an thus be used to onstrain partile physis

models beyond the SM. Seond, the state of the Universe deviates from thermodynamial

equilibrium during a �rst-order phase transition. Thus proesses like the generation of a

baryon asymmetry whih require out-of-equilibrium onditions may take plae during �rst-

order phase transitions.

15.1. Phase transitions

E�etive potential at T > 0 We have seen that the ground-state of a quantum �eld theory

inluding quantum utuations is determined by the e�etive potential V

eff

. We an inlude

additionally thermal utuations by studying the temperature-dependent e�etive potential.

The latter is obtained in a rather straight-forward way in the imaginary-time formalism, where

we only have to replae vauum expetation values with thermal averages in the de�nition

of lassial �elds, and to use periodi boundary onditions in the Eulidean e�etive ation

and e�etive potential. In partiular, we an transform the T = 0 e�etive potential (13.32)

de�ned in Eulidean spae,

V

eff

(�) = V (�) +

1

2

Z

d

4

k

(2�)

4

ln

�

k

2

+ V

00

(�)

�

+O(~

2

) ; (15.1)

into the temperature-dependent e�etive potential replaing the integration over the ontin-

uous energy k

0

by a summation over disrete Matsubara frequenies !

n

,

�V

eff

(�) = �V (�) +

1

2

X

n

Z

d

3

k

(2�)

3

ln

�

!

2

n

+ k

2

+ V

00

(�)

�

+O(~

2

) : (15.2)

The sum over n is performed in the same way as in the alulation of the free energy F of a

non-interating salar gas in setion 14.2.1,

�V

(1)

eff

(�) =

1

2

Z

d

3

k

(2�)

3

h

�E

k

+ 2 ln(1� e

��E

k

)

i

(15.3)
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15.1. Phase transitions

with E

2

k

= k

2

+ V

00

(�). Next we split the one-loop ontribution �V

(1)

eff

(�) into the T = 0

vauum part V

(1)

eff

(�; 0) and a temperature dependent thermal part V

(1)

eff

(�; T ),

V

(1)

eff

(�) =

1

2

Z

d

4

k

(2�)

4

ln

�

k

2

+ V

00

(�)

�

+ T

Z

d

3

k

(2�)

3

ln

�

1� e

��E

k

�

; (15.4)

where we dropped a �-independent onstant.

In order to simplify the disussion we onsider separately the two limiting ases that quan-

tum or thermal utuations dominate. In the latter ase, V

(1)

eff

(�; 0)� V

(1)

eff

(�; T ), we evaluate

V

(1)

eff

(�; T ) in the high-temperature limit

1

V

(1)

eff

(�; T ) = T

Z

d

3

k

(2�)

3

ln(1� e

��E

k

) =

T

4

2�

2

Z

1

0

dxx

2

ln(1� e

�

p

x

2

+a

) (15.5)

= �

�

2

T

4

90

+

aT

4

24

+ : : : : (15.6)

with a = �

2

V

00

(�). For the hoie V

00

(�) = ��

2

+

1

2

��

2

, the e�etive potential beomes

V (�) + V

(1)

eff

(�; T ) = �

1

2

�

2

�

2

+

�

24

�

4

�

�

2

T

4

90

�

1

24

�

2

T

2

+

1

48

��

2

T

2

+

�

12

�

4

: (15.7)

The terms quadrati in the �eld � reprodue the thermal or Debye mass m

2

D

= �T

2

=24

whih we found in (14.41). The minimum of V

eff

(�) moves smoothly away from � = 0 below

the ritial temperature and no barrier is formed, as shown in Fig. 14.3. Thus the phase

transition is in this ase of seond order. More interesting is a �rst order phase transition

whih is shown shematially in Fig. 15.1. As the system ools down, a loal minimum h�i 6= 0

develops at the temperature T

1

. The harateristi feature of a �rst order transition is that

in the temperature range T

2

< T < T

1

the two loal minima at h�i = 0 and h�i 6= 0 oexist.

Thus a potential barrier has to separate them. At the ritial temperature T



, the minimum at

h�i 6= 0 beomes the global minimum. Beause of the barrier, the transition from h�i = 0 to

h�i 6= 0 annot proeed lassially, but has to proeed via a quantum or thermal utuation.

This tunnelling proess may lead to deviations from thermal equilibrium whih in turn may

lead to traes observable today.

An example for a �rst order phase transition is given by the SM for a small Higgs mass,

m

h

<

�

70GeV. In this (unphysial) limit, V

eff

(�; T ) is given for large T by

V

eff

(�; T ) '

1

2

a(T

2

� T

2

1

)�

2

�

1

3

bT�

3

+

1

4

��

4

(15.8)

with

a =

3

16

g

2

+

�

1

2

+

m

2

t

m

2

h

�

� ; b =

9g

3

32�

; T

1

=

m

h

2

p

a

: (15.9)

The ritial temperature of the �rst-order phase transition follows as T



=

T

1

=

p

1� 2b

2

=(9a�) > T

1

. Between T



and T

1

, the e�etive potential V

eff

(�; T ) has two

degenerate minima at � = 0 and �



= 2bT



=(3�) separated by a barrier. This orresponds to

the e�etive potential skethed in Fig. 15.1.

1

The derivation follows the one of Eq. (14.26); reall also that a resummation of ring diagrams may be

neessary.
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Tc 

V
(φ

)

φ

Figure 15.1.: The e�etive potential V

eff

(�; T ) in ase of a �rst-order phase transition.

15.2. Deay of the false vauum

When the Universe goes through a �rst order phase transition as it ools down, the �elds

sitting in the false vauum have to tunnel to the true minimum. The true vauum nuleates

at a loalised position in spae-time, when a quantum (or thermal) utuation tunnels through

(or above) the barrier. It forms an extending bubble whih ontains the energetially favoured

ground-state. In the ase of thermal utuations, this phenomenon is known to everybody

from boiling water. The equivalent problem in quantum mehanis is the tunnelling through

the barrier in a double-well potential V (x) depited in the left panel of Fig. 15.2. The

tunnelling probability P an be alulated using the WKB method as

P � exp

�

�i

Z

b

a

dx

p

2m[V (x)�E℄

�

; (15.10)

where a and b are the turning points of the tunnelling trajetory. In order to translate this

presription to a �eld theory, we rewrite the tunnelling probability P �rst as an Eulidean

path integral. The exponent is the integral over the (imaginary) momentum of the partile,

whih we an express as

i

Z

dx p = i

Z

dt p _x = i

Z

dt (E + L) =

Z

dt

E

(�L

E

) : (15.11)

In the last step we assumed that the energy of the partile is normalised to zero and hanged

to Eulidean time t

E

= it. Thus the tunnelling probability is given by the Eulidean path

integral

P =

Z

Dx exp(�S

E

[x℄) (15.12)

with

S

E

[x℄ =

Z

dx

�

1

2

d

2

x

dt

2

E

+ V (x)

�

: (15.13)
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15.2. Deay of the false vauum

From (15.10), we know that the (Minkowski) path integral is dominated by the path depited

on the left of Fig. 15.2. Sine the potential V hanges sign performing a Wik rotation,

a lassially forbidden path in Minkowski spae orresponds to an allowed Eulidean path

shown in the right panel of Fig. 15.2. Thus �nding the tunnelling probability between two

vaua amounts to �nding solutions in the Eulidean theory whih onnet the two vaua and

minimise the ation.

Figure 15.2.: Tunnelling through a double-hill potential in Minkowski spae orresponds to

the lassially allowed path from one maxima to another one in Eulidean spae.

Boune solution We now turn to the ase we are interested in, namely the tunnelling of a

salar �eld � sitting in the false, metastable vauum a into the true vauum b, f. Fig. 15.3. In

Eulidean spae, we should �nd solutions of the lassial ation starting from b whih boune

at the lassial turning point a bak to b. These solutions are alled \boune" or instanton,

sine the tunnelling happens instantaneously in Minkowski spae. Moreover, these solutions

should have a �nite ation suh that they give a non-zero ontribution to the semi-lassial

limit of the path integral. In priniple, we should �nd all solution with a �nite ation and

then integrate their ontribution. Sine the tunnelling probability is however exponentially

suppressed, the integral is dominated by the solution whih minimises the ation.

Solutions whih are symmetri under rotations minimise the gradient energy. We use

therefore an O(4) symmetri ansatz, where the real salar �eld � is only a funtion of the

radial oordinate r

2

= x

2

+ t

2

E

. Then the Eulidean ation for a real salar �eld beomes

S = 2�

2

Z

1

0

dr r

3

"

1

2

�

d�

dr

�

2

+ V (�)

#

(15.14)

and the �eld equation simpli�es to (problem 16.2)

d

2

�

dr

2

+

3

r

d�

dr

�

dV

d�

= 0 : (15.15)

The boundary onditions � ! 0 for r ! 1 and d�=drj

r=0

= 0 ensure a regular solution at

r = 0 and a �nite ation. Viewing (15.15) as a mehanial problem, it desribes the motion

of a partile in a potential with the frition term

3

r

d�

dr

. Thus the two parts a! b and b! a
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15. Phase transitions and topologial defets

b

a

φ

V (φ) V (φ)

φb a

Figure 15.3.: Left: Transition from the false vauum (a) to the true one (b) requires in

Minkowski spae tunnelling through a barrier. Right: In Eulidean spae, a

lassially allowed path starts from b and bounes at a bak to b; the zero point

of the potential is hosen to agree with a.

of the boune are not equivalent: We should hoose the starting position �(t = �1) uphill

of b suh that at t = +1 the �eld omes to rest at a.

We an proeed analytially, if we onsider the limiting ase that either the potential

di�erene between the true and the false vauum is muh smaller or muh larger than the

potential barrier whih separates them. We will onsider here the �rst ase, whih orresponds

to the so alled thin-wall approximation. This allows us to approximate the potential as

V (�) = V

0

(�) +O(") ; (15.16)

where V

0

(�) is the symmetri potential and the di�erene " = V (�

+

) � V (�

�

) between the

false and the true minima is a small parameter. For small ", the volume energy / "r

4

of a

bubble dominates the surfae energy / r

3

only, if the bubble is suÆiently large. In this ase,

the thikness of the bubble wall, i.e. the region where d�=dr deviates signi�antly from zero,

is also muh smaller than the bubble size. Thus we an neglet the

3

r

d�

dr

term in (15.15), and

the �eld equation simpli�es to the one of a one-dimensional problem,

�

00

�

d

2

�

dr

2

=

dV

0

d�

: (15.17)

Using the hain rule, dV

0

=d� = V

0

0

=�

0

and (�

0 2

)

0

= 2�

00

�

0

, we �nd after one integration

1

2

�

0 2

� V

0

=  : (15.18)

We determine the integration onstant by asking that the ontribution to the ation S goes

to zero for r !1. With �

0

(1) = 0, this gives  = �V (�

+

). Separating variables in (15.18)

leads then to

r =

Z

d�

p

2[V

0

(�)� V (�

+

)℄

: (15.19)

To gain more insight, we onsider now a spei� potential. We hoose our favourite ��

4

potential,

V

0

(�) =

�

4

�

�

2

� �

2

�

2

: (15.20)
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15.2. Deay of the false vauum

Compared to hapter 13, we shifted the potential suh that the two minima at � = �� =

�

p

�

2

=� have the value zero, V

0

(�

�

) = 0, as required. Inserting this potential into

Eq. (15.19), we �nd

r = �

p

2

�

p

�

artanh (�=�) + r

0

: (15.21)

The integration onstant r

0

determines the position of the bubble wall. Inverting (15.21)

gives as �eld pro�le

�

�

(r) = �� tanh
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�
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2

(r � r

0

)

!

: (15.22)

The solution �

�

interpolate between the two vaua �� of the symmetri potential V

0

(�).

The thikness of the bubble wall is determined by the argument of the tanh and is given by

Æ �

p

2=(�

p

�).

Knowing the solution �(r), we an alulate the ation. For r � r

0

, the �eld is onstant,

� � �, and V (�

+

) = 0. Therefore, the ontribution S

>

from this region to the ation is zero.

For r � r

0

, the �eld � � �� is again onstant, but the potential ontributes V (�

�

) ' �"

and thus
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Finally, the ontribution from the bubble wall is
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(15.24)

with �

1=2

� �(r

0

� Æ). The quantity

I =

Z

�

2

�

1

d�

p

2V (�) (15.25)

has the interpretation of the surfae tension of the bubble. Adding the two ontributions, the

total ation follows as

S = S

<

+ S

w

= �

1

2

�

2

"r

4

0

+ 2�

2

r

3

0

I : (15.26)

We �nd the solution whih gives the largest tunnelling probability minimising the ation S

w.r.t. r

0

, resulting in the ondition

r

0

=

3I

"

: (15.27)

For our hoie (15.19) for the potential, the surfae tension is I = 2�

3

=(3�) and the ation

S =

27�

2

I

4

2"

3

=

8�

2

�

12

3�

4

"

3

: (15.28)

For " ! 0, the ation beomes in�nite. Equivalently, the tunnelling from one to another

ground-state �� of the symmetri potential V

0

(�) osts an in�nite amount of energy, as we

argued in hapter 13.
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15. Phase transitions and topologial defets

The tunnelling probability per time and volume follows then as

p = A

Z

D� exp(�S[�℄) ; (15.29)

where the prefator A is determined by Det(� � V

00

(�))

�1=2

and its zero-modes [CC77℄. In

pratie, the result is rather insensitive to the exat value of A, and setting A � V

00

(�

0

) is

suÆient for simple estimates.

We an now justify the assumptions made: Our starting assumption that " is small implies

that r

0

is large, r

0

/ 1=". Moreover, a small " implies that the bubble of true vauum is

separated by a thin wall from the metastable vauum, Æ � ("r

0

)

�1=3

. This is the reason for

the name thin-wall approximation.

In order to desribe the time evolution of a bubble, we have to ontinue analytially the

O(4) symmetri solution r

2

0

= x

2

+ t

2

E

bak to Minkowski spae. From r

2

0

= x

2

� t

2

, we see

that the bubble extends lose to the speed of light for t� r

0

. The resulting O(1,3) symmetry

means that all inertial observers

2

will measure the same expansion law.

Salar instantons For the ase of a massless ��

4

theory we an �nd a lass of exat solutions

for the boune (15.15), whih are often alled salar instantons. For a massless partile, the

lassial solution should fall o� as a power-law. Then dimensional analysis tell us that � has

the dimension of an inverse length. Sine the massless theory is sale-invariant, the solutions

should be parametrised by an arbitrary parameter � haraterising their size. This suggests

to insert as ansatz �(r) / �=(r

2

+ �

2

) into Eq. (15.15) what results in (problem 16.3)

�(r) =

�

8

�

�

1=2

�

r

2

+ �

2

: (15.30)

Thus the ation of the boune beomes

S =

27�

2

I

4

2"

3

=

8�

2

3�

: (15.31)

Example 15.1: Deay of the metastable SM vauum:

We use V = �

eff

�

4

=4 as rude approximation for the salar potential of the SM, where �

eff

is the

running Higgs self oupling at the sale � = �. Using the thin-wall approximation, we an hek that

the result (15.31) makes sense: The surfae tension is I � (j�

eff

j=2)

1=2

�

3

=3 and " � j�

eff

j�

4

=4. Thus

the ation of the boune beomes

S =

27�

2

I

4

2"

3

=

8�

2

3j�

eff

j

agreeing with (15.31). An analysis of the RGE of the SM gives for the e�etive Higgs boson oupling

at the Plank sale �

eff

(M

Pl

) � �0:01, using the entral experimental values for m

h

and m

t

. For the

estimate of the probability P that a bubble of the true vauum has nuleated in the past-light one

of an observer, we an set V T � t

4

0

with t

0

as the present age of the universe. Setting the prefator A

by dimensional reasons equal to A � �

4

�M

4

Pl

, the tunnelling probability is

P � (t

0

M

Pl

)

4

expf�8�

2

=(3j�

eff

j)g � 10

�900

: (15.32)

2

The fats that the bubble extends with v � 1 and that the bubble is thin imply (un?)-fortunately that any

potential observers will be dissolved without having the time to notie the arrival of the wall.
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Despite of the enormous volume fator, (t

0

M

Pl

)

4

� (8�10

60

)

4

the tunnelling probability is exeedingly

small.

Although the SM vauum is unstable when extrapolated to the Plank sale, the probability

that inside the past-light one of the observed universe a tunnelling has happened is pratially

zero. This orresponds to the \metastable region" of the SM shown in Fig. ??.

15.3. Topologial defets

A rather generi onsequene of phase transitions is the formation of extended solutions to

the �eld equations whih are stable by virtue of a topologial quantum number. The latter

arises if the spae of possible vauum �eld on�gurations onsists of two or more subspaes

whih annot be onneted by solutions with a �nite lassial ation. We all two �eld

on�gurations �

1

and �

2

topologially equivalent, if they an be transformed ontinuously

into eah other keeping the the potential energy and the Eulidean ation �nite during the

transformation. Thus topologially equivalent �eld on�gurations form equivalene lasses

whih an be haraterised by a topologial quantum number and are separated by an in�nite

energy barrier. Within eah equivalene lass, the minimal energy solution will be stable. The

spatially uniform ground-state we have assumed up to now as our vauum in perturbative

alulations may thus be disonneted from other stable solutions whih annot spread out

to beome spatially uniform due to their non-trivial topology.

As a system rosses its ritial temperature ooling down, it performs a transition from its

symmetri state to a state with broken symmetry. While the orrelation length � = h�(0)�(x)i

beomes formally in�nite at the phase transition, the order parameter in the broken phase

an take the same value only in a �nite volume, restrited by the �nite propagation speed

of the relevant waves. In the ase of the expanding Universe, we expet the formation of

order one topologial defet per ausally onneted region. This proess was �rst suggested

by Kibble, and is therefore alled Kibble mehanism. In a big bang model, it follows thus

�(t) < t with t as the age of the universe. The number density n of topologial defets reated

in a phase-transition at time t is therefore bounded from below as n > �

�3

� t

�3

.

Domain walls are two-dimensional topologial defets whih separate three-dimensional

volumes ontaining a di�erent vaua. Examples are ferromagnets where domains of uniform

magnetisation exist. Depending on the gauge group and the pattern of symmetry breaking,

topologial defets with one and zero dimensions are also possible: In the �rst ase, an one-

dimensional line or string ontains a vaua di�erent from the surrounding, while it is the

seond ase a point-like objet alled monopole. We will proeed as in hapters 13 and ??,

starting with a Higgs model with a single salar �eld and inreasing then the number of salar

�elds. At the same, the dimensionality of the topologial defets formed will derease. As

start, we will onsider however the Sine-Gordon model whih is de�ned in 1+1 spae-time

dimensions.

Sine-Gordon solitons We have hosen in general as potential V (�) a polynomial in the

�eld �. In the ase of SSB, the periodiity of the angular variable in � = �e

i#

leads to a

periodiity of the potential. Another example for a Lagrangian with a periodi potential is

the Sine-Gordon model de�ned by

L =

1

2

(�

�

�)

2

� V (�) =

1

2

(�

�

�)

2

�

a

b

2

[1� os(b�)℄ (15.33)
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15. Phase transitions and topologial defets

with � = f0; 1g and two real parameters a and b. The potential V (�) has zeros for � = 2�n=b.

Expanding V (�) for small �,

L =

1

2

(�

�

�)

2

�

1

2

a�

2

�

ab

2

4!

�

4

+ : : : (15.34)

and omparing to our usual ��

4

potential, we see that they agree for small � if we identify

3

a = m

2

and b

2

= �.

From the Lagrangian (15.33), the Sine-Gordon equation

�

2

�

�t

2

�

�

2

�

�x

2

+

a

b

sin(b�) = 0 (15.35)

follows. It admits stati and travelling wave solutions, �(x; t) = f(�(x� vt)) � f(��). You

an hek that

f(�) =

4

b

artan[exp(�

p

a=b�)℄ (15.36)

is a solution with  = (1� v

2

)

�1=2

as usual Lorentz fator (problem 16.4). The solution with

the plus sign is alled a kink, the one with the minus an anti-kink. The kink interpolates

between the n = 0 ground-state at x ! �1 and n = 1 (� = 2�=

p

�) at x ! 1. The

extension ` of the kink is determined by the argument of the artan and is given by ` =

p

b=(

p

a) = �=(m), f. Fig. 15.4.
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ξ/l

Figure 15.4.: Left: Kink solution �(�) for a = b = 1; Right: its derivative d�(�)=d�.

The energy (or mass) of a stati solution interpolating between n = 0 and n = 1 is

E =

Z

1

�1

dx

"

1

2

�

��

�x

�

2

+ V (�)

#

=

Z

1

�1

dx 2V (�) =

Z

2�=b

0

d�

�x

��

V (�) =

=

Z

2�=b

0

d�

p

2V (�) =

p

2a

b

2

Z

2�

0

d# [1� os(#)℄

1=2

=

8m

�

: (15.37)

3

Reall that a salar �eld has dimension [�℄ = (d � 2)=2 in d spae-time dimensions. Thus the argument of

os(b�) is dimensionless while the �

4

interation requires a m

2

prefator.
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15.3. Topologial defets

Here we used in the seond step the �eld equation together with the requirement that the

energy E is �nite, i.e. Eq. (15.18) with  = 0. More generally, a stati solution onneting

n

1

and n

2

has the energy E = 8jn

1

� n

2

jm=�. Thus the energy spetrum of these solutions

is disrete and inverse proportionally to the oupling onstant. The latter property implies

that these solutions are not aessible in a perturbative alulation whih is a power series in

the oupling onstant �. In the weak oupling regime, the mass 8m=� of the kink is muh

larger than the mass m of the elementary �eld �, while in the strong oupling limit the kink

is the lightest exitation.

We an imagine the Sine-Gordon model as a hain of arrows, whih the fore F = ��

x

V

tries to orient e.g. downwards. Then a kink is a solution whih points from x = �1 : : : � `

downwards, turning at � � 0 by 2�, and pointing at x

>

�

` again downwards. To untwist the

hain, we would have to turn the arrows on one of the two sides of � � 0 whih would ost an

in�nite amount of energy. Therefore the winding number � � n

1

�n

2

is a onserved quantum

number and the solutions are stable. We an understand why the winding number is alled a

topologial quantum numbers as follows: Identifying the points x = �1 and x =1, we map

R on a ompat interval. Then the kink beomes a M�obius band, whih annot be smoothly

transformed into a irle S

1

.

A onserved quantum number implies the existene of a onserved urrent: The ondition

E <1 requires that the �eld approahes for x�1 one of the vauum states, and thus

�(1)� �(�1) =

2�

p

�

� : (15.38)

We an rewrite this is an integral,

Z

1

�1

dx�

x

� =

2�

p

�

� : (15.39)

Sine the solution is two-dimensional, we an set as urrent

j

�

=

p

�

2�

"

��

�

�

� : (15.40)

The antisymmetry of "

��

ensures then that �

�

j

�

= 0. The onserved harge follows with

"

01

= 1 as

Q =

Z

dx j

0

=

p

�

2�

Z

dx �

x

� =

p

�

2�

[�(1)� �(�1)℄ = n

1

� n

2

; (15.41)

i.e. it equals the winding number �. In ontrast to the onserved harges we have enountered

up to now, the urrent is not the Noether urrent of a global symmetry and we did not have

to use the equations of motion in its derivation. Instead, the harge has a topologial origin.

The solutions of the Sine-Gordon equation maintain their shape, although the equation is

non-linear. Classial solutions with this property are alled solitons. The distintive property

of the Sine-Gordon solitons in 1+1 spae-time dimensions is that this holds also for the

asymptoti regions of a sattering event: In partiular, two solitons emerge from a ollision

unhanged exept possibly for a phase shift, although the superposition priniple is not valid

for non-linear equations of motion.
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15. Phase transitions and topologial defets

Domain walls We now move to topologial defets in 3 + 1 dimensions onsidering two-

dimensional topologial defets alled domain walls. Assuming that the domain wall is uni-

form in the y � z plane, its energy (per area) is

E[�℄ =

Z

1

�1

dx

�

1

2

(�

0

)

2

+ V (�)

�

: (15.42)

We assume that the potential energy V (�) is shifted suh that min(V (�)) = 0. Then the

energy is the sum of two (semi-) positive terms, E[�℄ � 0. Instead of integrating the equation

of motions, as in Eqs. (15.17) to (15.19), we will use now an argument due to Bogomolnyi:

He suggested to rewrite the energy \ompleting the square" as

E[�℄ =

1

2

Z

1

�1

dx

h

�

0

�

p

2V (�)

i

2

�

Z

�(1)

�(�1)

d

~

�

q

2V (

~

�) : (15.43)

The seond integral depends only on the boundary values of the �eld at in�nity. For �eld

on�gurations whih onnet the same ground-state at x = �1 and +1, this boundary

term vanishes, and the minimum E[�℄ = 0 of the energy is attained for onstant �elds. If the

�eld on�gurations onnet however di�erent ground-states, then we an assoiate the seond

integral to a non-zero topologial harge. The winding number in the Sine-Gordon ase is a

spei� example for suh a topologial harge.

A lower bound for the energy of �elds with non-zero topologial harge is

E[�℄ �

�

�

�

�

�

Z

�(1)

�(�1)

d

~

�

q

2V (

~

�)

�

�

�

�

�

; (15.44)

whih is attained when the �rst integral vanishes. In this ase, the �eld satis�es a �rst-order

equation �

0

= �

p

2V (�) whih is generally muh easier to solve than the original seond-order

equation of motion. Separating again variables, we arrive at

x = �

Z

d�

p

2V (�)

: (15.45)

To proeed, we have to hoose a de�nite potential. For the hoie (15.20), we ome bak to

the solution

�

�

(x) = �� tanh

 

�

p

�

p

2

(x� x

0

)

!

(15.46)

whih we have used in the alulation of the boune. The solution �

�

interpolates between

the two vaua �� of the symmetri potential V

0

(�) and ontains at x = x

0

a two-dimensional

plane with the unbroken vauum � = 0. More generally, the two-dimensional surfaes whih

separate domains with opposite values of � an have a �nite size.

Global osmi strings We ontinue our way through possible topologial defets looking at

the onsequenes of a global ontinuous symmetry. Thus we replae the single real �eld by a

set of two real or one omplex �eld � = �

1

+ i�

2

with potential

V (�) =

�

4

�

�

y

�� �

2

�

2

: (15.47)
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15.3. Topologial defets

We use ylinder oordinates �; �; z, and searh for stati solutions using as ansatz

� = �e

in#

f(�) : (15.48)

The phase e

in#

an be hosen arbitrarily at � = 0, unless the �eld is zero at the origin. In

order to ensure a single-valued �eld, we have therefore to impose the boundary ondition

f(�) ! 0 for � ! 0. In the opposite limit, � ! 1, the �eld should approah one of its

minima,

�! �e

in#

and f(�)! 1 ; (15.49)

in order to minimise the energy.

For the ansatz (15.48), the �eld equations are separable and we �nd from �� = �(�

2

��

2

)�

as di�erential equation for f

d

2

f

d�

2

+

1

�

df

d�

�

n

2

�

2

f = �(f

2

� 1)f : (15.50)

Here we have introdued also the new dimensionless variable � = �

1=2

��. This di�erential

equation together with the two boundary onditions for � ! 0 and � ! 1 has to be solved

numerially.

We an however estimate the extension of a osmi string by dimensional arguments. The

sale of the problem is set by �=� = �

�1=2

�

�1

. Thus the ore ontaining the unbroken

vauum � = 0 has the radius O(�

�1=2

�

�1

), while for larger distanes �� �

�1=2

�

�1

the �eld

approahes the broken phase j�j = �. The extended solution should have a �nite energy E

per length L,

E

L

=

Z

1

0

d��

Z

2�

0

d#

h

jr�j

2

+ V (�)

i

(15.51a)

=

Z

1

0

d��

Z

2�

0

d#

�

�

�

�

y

�

�

�+

1

�

2

��

y

�#

��

�#

+ V (�)

�

: (15.51b)

The �rst and the last term in (15.51b) give a �nite ontribution to E=L, sine �

�

f(�) ! 0

and V (�) ! 0 for � ! 1. In ontrast, the middle term ontributes /

R

R

0

d��

�1

f(�), i.e.

a logarithmially diverging term ln(R=Æ) to the linear energy density. The sale Æ has to

be determined by the typial extension of the string, and thus the energy density inside the

radius R around the string is E=L � ln[R=(�

1=2

�)℄. If we onsider instead of the idealisation

of an isolated global string the realisti ase of a string network, then R should be given by

the typial distane of strings.

Loal osmi strings We an avoid the (formal) problem of the in�nite energy assoiated

with a string if we gauge the model. In this ase we obtain the abelian Higgs model,

L = �

1

4

F

��

F

��

+ (D

�

�)

y

(D

�

�) + �

2

�

y

�� V (�) : (15.52)

The kineti term D

�

� = �

�

� + ieA

�

� ontains now two ontributions whih an anel for

�!1. We require therefore that A

�

is a pure gauge �eld for �!1 with

A

�

� �

i

e

�

�

ln(�=�) : (15.53)
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15. Phase transitions and topologial defets

Then D

�

� and F

��

approah zero for � ! 1, and the energy density per length of a loal

string is �nite.

A loal string arries magneti ux � of the orresponding gauge �eld. Integrating (15.53)

around a irle in a plane with z = onst: and large � gives

� =

Z

B � dS =

I

A � dl = �

i

e

Z

2�

0

d#�

#

(in#) =

2�n

e

: (15.54)

Thus the magneti ux arried by loal strings is quantised in units of 2�=e. If we go bak

to gs units, then the unit of magneti ux beomes h=e, determined ompletely by the

three fundamental onstants of a relativisti quantum theory. A loal osmi string with

winding number n arries n ux quanta, analogous to quantised tubes of magneti ux in a

superondutor.

Global monopoles Let us try to ondense our results before we proeed: If we split omplex

salar �elds intro real ones, � = �

1

+ i�

2

, then we onsidered in d = 4 potentials of the type

V (�) =

�

4

 

n

X

i=1

�

2

i

� �

2

!

2

: (15.55)

For n = 1, the possible ground-states �

2

= �

2

orrespond to the zero-dimensional sphere

S

0

. The single onstraint �(x

1

; x

2

; x

3

) = 0 de�nes a two-dimensional surfae in R

3

, whih

orresponds to a domain wall. The abelian Higgs model with one omplex salar doublet has

n = 2. Now �

2

1

+ �

2

2

= �

2

de�nes an one-dimensional sphere S

1

as manifold of the possible

ground-states, while a topologial defet de�ned by �

1

= �

2

= 0 is as the setion of two

surfaes a line. These results are summarised in the �rst two entries of Table 15.1.

The logial next step is to onsider three salar �elds whih transform under SO(3). Then

the vauum manifold is the sphere S

2

and we expet zero-dimensional topologial defets

whih are alled monopoles. We start again examining the global ase. Using spherial

oordinates, we searh for stati solutions using as ansatz

�

i

= �h(r)

x

i

r

; (15.56)

whih satis�es the requirement

�

i

�

i

= �

2

for jxj ! 1 ; (15.57)

if h(r)! �1 for r !1. Additionally, the funtion h(r) should satisfy the boundary ondition

h(r) ! 0 for r ! 0 to ensure a non-singular �(0). Estimating again the energy density at

defet n d homotopy group

domain wall 1 2 �

0

(M

0

)

osmi string 2 1 �

1

(M

0

)

monopole 3 0 �

2

(M

0

)

texture 4 { �

3

(M

0

)

Table 15.1.: The number n of salars de-

termines the dimension d of

the vauum manifoldM

0

and

the dimension 3�n of the hy-

persurfae ontaining the un-

broken vauum.
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15.3. Topologial defets

large r by simple dimensional analysis gives

� �

1

2

(�

i

�)

2

�

3

2

�

2

r

2

(15.58)

and thus the energy ontained inside a sphere of radius R diverges linearly, E � 3�

2

R=2. In

ontrast to the mild logarithmi divergene in ase of global strings, the behaviour E � 3�R=2

is learly disastrous.

The natural way-out is to go on to loal monopoles and to hek if the gauge �elds an

ompensate the salar gradient energy. Before we do so, we ask however if there is a way

to ensure that the total energy of global monopoles is �nite. Imagine a monopole (h(r) = 1

for r ! 1) and an anti-monopole (h(r) = �1 for r ! 1) pair separated by the distane d:

Their �elds �

i

(r) will anel for r � d, leaving over only higher multipole moments �

i

� r

�2

.

Thus the energy density of a monopole-antimonopole pair sales as � � �r

�4

and therefore

their total energy E is �nite. Separating a monopole-antimonopole pair would ost an in�nite

amount of energy|instead a new monopole-antimonopole pair will be reated as soon as the

potential energy between the pair exeeds a ertain threshold. We an view this behaviour

therefore as a model for the on�nement of oloured partiles as quarks and gluons in QCD,

where the potential energy V (r) for distanes r

>

�

�

�1

QCD

sales also linearly.

't Hooft-Polyakov monopoles The simplest model exhibiting loal monopoles is the Georgi-

Glashow model. It ontains a SO(3) gauge �eld A

a

�

supplemented by a triplet of real Higgs

salars �

a

. Choosing a uniform vev as �

a

= (0; 0; v) leaves a residual U(1) symmetry unbroken,

orresponding to rotations around the 3-axis in isospin spae. Thus one an view the Georgi-

Glashow model as a toy model for the eletroweak setor of the SM, where the gauge �eld

A

3

�

plays the role of the photon and the Z boson is missing.

't Hooft and Polyakov showed �rst that this model ontains extended lassial solutions

whih have �nite energy and orrespond to loal magneti monopoles. Using the adjoint

representation (T

a

adj

)

b

= �if

ab

for the salar triplet of real Higgs salars �

a

, the ovariant

derivative beomes

D

i

�

a

= �

i

�

a

� e"

ab

A

b

i

�



(15.59)

or in vetor notation D

i

� = �

i

��eA

i

��. Here, we assumed for simpliity that the monopole

arries no eletri harge, setting A

a

0

. We �x again the asymptoti behaviour of the gauge

�elds by requiring that the kineti term D

i

�

a

vanishes for r !1. From

�

i

�

a

� �

Æ

ai

� x

i

x

a

r

2

;

we onlude that A

b

i

should be onstant, while (15.59) implies that A

i

is perpendiular to �.

Evaluating D

i

�

a

using "

aij

"

akl

= Æ

ik

Æ

jl

� Æ

il

Æ

jk

shows that

A

a

i

=

�

e

[1� f(r)℄"

aij

x

j

r

(15.60)

with f(r)! 0 for r !1 leads to the desired asymptoti behaviour of the ovariant derivative.

Now the regularity of the solution A

a

i

at r = 0 requires f(0) = 1.

Inserting the two Ans�atze (15.56) and (15.60) into the energy funtional of the Georgi-

Glashow model and minimising the energy results in two oupled di�erential equations for
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15. Phase transitions and topologial defets

the funtions h(r) and f(r). In order to be be able to proeed analytially, we onsider only

the limit �=g

2

=m

2

h

=(2m

2

W

)! 0. Then the potential energy V (�) is negligible,

V (�) =

�

4

 

3

X

a=1

�

2

a

� �

2

!

2

! 0 for �! 0 ; (15.61)

if the �elds satisfy the onstraint (15.57). Thus the boundary onditions (15.57) remain valid

in the limit onsidered. Negleting V (�), we an use Bogomolnyi's trik to derive an exat

solution. We express the stati energy as

E =

1

2

Z

d

3

x

�

(B

a

i

)

2

+ (D

�

�

a

)

2

�

=

1

2

Z

d

3

x

�

(B

a

i

�D

i

�

a

)

2

� 2B

a

i

D

i

�

a

�

� 0 : (15.62)

Then we obtain the bound

E �

Z

d

3

xB

a

i

D

i

�

a

(15.63)

whih is attained, if the �elds satisfy D

i

�

a

= �B

a

i

. Now we have to solve only the simpler

�rst-order equation D

i

�

a

=

1

2

"

ijk

F

a

jk

. Its solution is alled a Bogomolnyi-Parad-Sommer�eld

(BPS) monopole and, generalising, all solitons whih minimise the lassial ation are denoted

as BPS states or BPS solitons.

Example 15.2: Find the solution of the �rst-order equation D

i

�

a

= �B

a

i

.

We evaluate with (15.56) the LHS,

D

i

�

a

= �

Æ

ai

� x

i

x

a

r

fh+ �

x

i

x

a

r

2

h

0

(15.64)

and with (15.60) the RHS,

B

a

i

=

1
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ijk
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(15.65a)
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=

1

g

r

2

Æ

ai

� x

i

x

a

r

2

f

0

+

1

g

x

i

x

a

r

3

(1� f

2

) : (15.65b)

Sine the two tensors r

2

Æ

ai

� x

i

x

a

and x

i

x

a

are orthogonal, the two oupled di�erential equations for

the pro�le funtions h(r) and f(r) simplify to

f

0

(r) = �g�f(r)h(r) and h

0

(r) =

1

g�r

2

[1� f(r)

2

℄ : (15.66)

Taking into aount the boundary onditions, the solution expressed through the dimensionless variable

� = g�r is given by

h(r) = oth(�)�

1

�

and f(r) =

�

sinh(�)

: (15.67)

Finally, we want to determine the harge of a BPS monopole. While the massive �elds

fall o� exponentially for r ! 1, the omponent of F

a

ij

onneted to the massless photon

derease as a power-law. Moreover, the �elds (15.56) and (15.60) are pratially uniform at

large distanes r from the enter of the monopole. Thus in a laboratory at x, the �eld F

ij

orresponds to the massless photon, while the two states orthogonal to F

ij

are the massive
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weak gauge bosons. This implies that the part of F

a

ij

whih orresponds to the eletromagneti

�eld is parallel to �

a

,

F

ij

= F

a

ij

�

a

v

: (15.68)

The magneti part of the SU(2) �eld-strength tensor is

B

a

i

=

1

2

"

ijk

F

a

jk

= "

ijk

�

j

A

a

k

�

1

2

e"

ijk

"

ab

A

b

j

A



k

; (15.69)

where we inserted the de�nition of F

a

jk

. If we are far away from the enter of the soliton, we

an use the asymptoti expression for the �elds, setting f(r) = 0 and h(r) = 1. Performing

the di�erentiations (problem 16.8) we arrive at

B

a

i

=

1

g

n

i

n

a

r

2

: (15.70)

Thus the U(1) magneti �eld is given by

B

i

=

1

g

n

i

r

2

: (15.71)

Comparing this to the expression qn

i

=(4�r

2

) for the �eld of a monopole, we onlude that

the magneti harge of the BPS monopole is q

m

= 4�=g.

Textures Finally we should omment on the ase n = 4 whih orresponds to the ele-

troweak model. The four equations �

i

(x

1

; x

2

; x

3

) = 0 have in general no solution in R

3

. Thus

regions whih ontain the unbroken vauum �

i

= 0 will be not formed during the eletroweak

phase transition. Still, orrelations an not exist beyond the horizon sale and thus non-zero

gradients �

�

�

i

an be produed. In the ase of global textures, stati solutions with positive

energy density an exist. In the ase of a broken gauge symmetry, gauge �elds will ompen-

sate the �

�

�

i

term in D

�

�

i

. Thus loal textures as predited by the SM have no observable

onsequenes.

Homotopy groups and winding numbers The topologial quantum numbers we have met

disussing extended lassial solutions an be assoiated to winding numbers of maps between

the ground states of a �eld theory and its on�guration spae. Let us de�ne the ground-state

or vauum manifold M

0

of a theory as the set of all global minima V (�) = 0 of its potential,

M

0

= f� : V (�) = 0g : (15.72)

The ondition that the potential energy is �nite requires that

lim

jxj!1

�(x) = � 2M

0

: (15.73)

We an ompatify R

n

(where n is the number of spatial dimensions) to the sphere S

n

using

e.g. a stereographi projetion as shown in Fig. 15.5. Then we an view the ondition that

the potential energy is �nite as a mapping S

n

! M

0

. We ask now the question when two

suh mappings are topologially distinguished.

We onsider only the mappings S

1

! S

1

� R

2

nf0g whih are easiest to visualise. Two

losed loops with base point x

0

, i.e. urves x(t) with t 2 [0 : 1℄ and x(0) = x(1) = x

0

,

255



15. Phase transitions and topologial defets

N

P

P

0

R

n

S

n

Figure 15.5.: A stereographi projetion maps points P 2 R

n

onto points P

0

2 S

n

. The north

pole N of the sphere S

n

orresponds to the sphere S

n�1

R

at spatial in�nity,

x

2

i

+ � � �+ x

2

n

= R

2

!1, of R

n

.

are shown in Fig. 15.6. While the dashed loop is ontratable, the solid one is wrapped one

around f0g and therefore not ontratable to its base-point x

0

by ontinuous transformations.

We de�ne the maps

U

(�)

= e

i#�

=

h

U

(1)

i

�

; (15.74)

whih ount the number of times a loop is wrapped around the origin. The integer � is alled

the winding number of the map and an be rewritten as an integral,

� =

i

2�

Z

2�

0

d#U�

#

U

y

: (15.75)

Clearly, this formula reprodues the orret values for the mappings de�ned above. Moreover,

it is useful for the proof that � is invariant under ontinuous transformations. It is suÆient

to investigate an in�nitesimal hange ÆU . Unitarity UU

y

= 1 implies that ÆUU

y

+UÆU

y

= 0

and ÆU

y

= �U

y

ÆUU

y

. Sine we will interested later in the non-abelian version of the winding

number, we will not use that the U are ommuting omplex numbers.

We alulate the variation of the integrand in the integral formula (15.75) for �,

Æ(U�

#

U

y

) = ÆU�

#

U

y

+ U�

#

ÆU

y

(15.76a)

= ÆU�

#

U

y

� U�

#

U

y

ÆUU

y

� UU

y

�

#

ÆUU

y

� UU

y

ÆU�

#

U

y

(15.76b)

= �U

h

�

#

U

y

ÆU + U

y

�

#

ÆU

i

U

y

= �U�

#

h

U

y

ÆU

i

U

y

: (15.76)

Here, we inserted �rst ÆU

y

= �U

y

ÆUU

y

and performed the di�erentiations. Then the �rst

and fourth terms anel, and �nally we ombined the remaining two terms using the produt

rule. In ase of the abelian winding number � of (15.75), we obtain then

Æ� =

i

2�

Z

2�

0

d# Æ(U�

#

U

y

) = �

i

2�

Z

2�

0

d#�

#

h

U

y

ÆU

i

= 0 : (15.77)

Thus the winding number � is an integer whih is invariant under in�nitesimal deformations

of the loop. Sine any ontinuous transformation an be built up out of in�nitesimal ones,
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#

x

y

x

0

x

0

Figure 15.6.: Two loops in R

2

nf0g with ommon base point x

0

: the dashed line is ontratable

and has winding number � = 0, the solid loop is wrapped one around f0g and

has winding number � = �1.

the maps S

1

! S

1

an be divided into di�erent equivalene lasses, eah haraterised by

the value � 2 Z. Only maps within eah lass an be ontinuously transformed into eah

other. Mathematiians say that suh maps are homotopi. The theory of homotopy groups

addresses the question into how many homotopy lasses �

n

(X) the set of maps S

n

! X

an be divided. If �

n

(M

0

) 6= 1, then the theory with vauum manifoldM

0

ontains stable

topologial defets, f. table 15.1. Expressed in the language of homotopy groups, we have

shown that �

1

(S

1

) = Z. Sine S

1

' U(1), this shows also that �

1

(U(1)) = Z.

A general results from the theory of homotopy groups says that the seond homotopy

group �

2

(G=H) of the quotient group G=H equals the �rst homotopy group �

1

(H) of H. If

we identify the SM with H, then H = SU(3) 
 U(1) and �

1

(U(1)) = Z is non-trivial. Thus

the sequene

�

2

(G=H) = �

1

(H) = �

1

(SU(3)
 U(1)) = Z 6= 1 (15.78)

shows that, if U

em

(1) is uni�ed at a higher sale within a larger semi-simple groupG, then mag-

neti monopole solutions exist. Thus a grand uni�ed theory implies that magneti monopoles

are produed at the GUT phase transition. We will see later that suh monopoles would

overlose the universe, leading to a very short life-time of the universe. The wish to dilute

the density of monopoles was a prime motivation for the invention of ination.

Summary

Classial stati solutions of theories with SSB an fall into di�erent equivalene lasses whih

are separated by an in�nite potential energy barrier. This an lead to two-, one- or zero-

dimensional topologial defets whih ontain in their ore the unbroken vauum of the sym-

metri phase. Instantons or bounes are solutions of the lassial �eld equation in Eulidean

spae whih evolve in Eulidean time between two di�erent vaua. If their ation is �nite,
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15. Phase transitions and topologial defets

they desribe in Minkowski spae instantaneous tunnelling from the false to the true vauum.

Further reading

A lear aount of topologially non-trivial solutions of the lassial �eld equations is given

by [Rub02℄. For a alulation of the e�etive potential of the SM and the resulting tunnelling

probability see [Esp14℄ and the referenes therein.

Problems

15.1 Order of the phase transition.

Determine the ritial temperature T



of the ��

4

theory from Eq. (15.7). Calulate the pressure and

the heat apaity above and below T



and on�rm

thereby that the phase transition is of seond or-

der.

15.2 Field equation for the boune solution.

Show that Eq. (15.15) agrees with the Klein-

Gordon equation �� = V

0

(�) for a radial symmet-

ri �. (Use Eq. (6.61) to evaluate �� = r

a

r

a

�.)

15.3 Salar instantons.

Show that the ansatz �(r) = A�=(r

2

+ �

2

) solves

(15.15). Determine the ation S.

15.4 Soliton solution of the Sine-Gordon

equation.

Show that Eq. (15.36) solves the Sine-Gordon

equation and disuss the behaviour under Lorentz

transformations. .

15.5 Domain wall

Estimate the extension of a domain wall using di-

mensional analysis.

15.6 Derrik's theorem.

Consider the behaviour of the energy funtional

E[�℄ = T [�℄ +V [�℄ for a salar �eld � under sale

transformation x ! �x in D spae dimensions.

Show that for D � 2 no stable solutions with �-

nite energy exist.

15.7 D

�

for the adjoint representation.

Show that D

�

= �

�

+ eA

�

results for SO(3) in

Eq. (15.59) for the adjoint representation.

15.8 Duality of Maxwell

Show that the soure-free Maxwell equations are

invariant under the duality transformation E

0

=

E os� + B sin� and B

0

= �E sin� + B os�.

Show that the invariane of the Maxwell equa-

tions with soures requires the existene of mag-

neti monopoles.

15.9 Magneti �eld of a monopole

Derive Eq. (15.70).
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16. Anomalies, instantons and axions

At the lassial level, any global ontinuous symmetry of a system desribed by a Lagrangian

leads to a loally onserved urrent. In order to deide if these symmetries do survive quan-

tisation, we have to study if the generating funtional Z[J ℄ retains the symmetries of the

lassial Lagrangian L . Several examples where a quantised system does not share the sym-

metries of its lassial ounter-part have been found. As this behaviour ame as a surprise, it

was alled \anomalous" and the non-zero terms violating on the quantum level the lassial

onservation laws were alled \anomalies". A ase we enountered already is the breaking of

sale invariane (or onformal symmetry) in the proess of renormalising massless theories;

we will alulate this anomaly in the next hapter. The only other example of anomalous

theories in d = 4 spae-time dimensions are models ontaining hiral fermions, i.e. theories

where left- and right-hiral fermions interat di�erently. This anomaly is alled axial or hiral

anomaly and shows up in loop graphs ontaining hiral fermions oupled to gauge �elds or

gravitons. In the SM, the axial anomaly leads to three important phenomenologial on-

sequenes: First, the anomaly in the eletroweak urrents vanishes, if the eletri harges

of all left-handed fermions sum up to zero. Thus the fat that eletroweak Ward identities

hold restrits the partile ontent of the theory. Seond, the axial anomaly in onjuntion

with topologially non-trivial solutions of the Yang-Mills equations leads to the violation of

CP invariane in strong interations, in ontradition to observations. This is the so-alled

\strong CP problem". Finally, the violation of CP is a neessary ondition for the generation

of a baryon asymmetry, and thus these topologially non-trivial solutions play an important

role in models of baryogenesis.

The fat that a lassial symmetries is broken by quantum e�ets is often desribed as

\the anomaly breaks the lassial symmetry". One should keep in mind that on the quantum

level there is no symmetry to start with. Thus there is no Goldstone boson assoiated to a

symmetry broken by an anomaly.

16.1. Axial anomalies

Anomaly from non-invariane of the path integral measure The simplest model exhibiting

an axial anomaly is axial eletrodynamis, i.e. a fermion oupled via its vetor and axial

urrent to two di�erent gauge �elds. The Lagrangian for this system reads

L =

�

 i

�

(�

�

+ iqV

�

+ igA

�



5

) �

1

4

F

2

�

1

4

G

2

(16.1)

with

F

��

= �

�

A

�

� �

�

A

�

and G

��

= �

�

V

�

� �

�

V

�

: (16.2)

Performing a ombined U

V

(1)
U

A

(1) gauge transformation,

V

�

! V

0

�

= V

�

� �

�

�(x) and A

�

! A

0

�

= A

�

� �

�

�(x) ; (16.3)
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indues the following hange of the fermion �elds,

 (x)!  

0

(x) = exp fiq�(x) + ig�(x)

5

g (x) ; (16.4a)

�

 (x)!

�

 

0

(x) =

�

 (x) exp f�iq�(x) + ig�(x)

5

g : (16.4b)

In order to determine the transformation properties of the fermioni path integral measure,

we introdue �rst eigenfuntions of the gauge-invariant Dira operator iD= ,

iD=�

n

= �

n

�

n

and

X

n

�

x

(x)�

y

n

(y) = Æ(x � y)1 : (16.5)

Then we an expand the fermion �elds as

 (x) =

X

n

a

n

�

n

(x) and

�

 (x) =

X

n

�

y

n

(x)

�

b

n

; (16.6)

where the oeÆients a

n

and

�

b

n

are Gra�mann variables. Thus we an rewrite the path

integral measure as D D

�

 =

Q

n

da

n

d

�

b

n

. Next we relate the hange in the fermion �elds to

a hange in the expansion oeÆients,

 

0

(x) =

X

n

a

0

n

�

n

(x) =

X

n

a

n

exp fiq�(x) + ig�(x)

5

g�

n

(x) (16.7a)

�

 

0

(x) =

X

n

�

y

n

(x)

�

b

0

n

=

X

n

�

y

n

(x) exp f�iq�(x) + ig�(x)

5

g

�

b

n

: (16.7b)

Thus the variation introdued by a vetor U

V

(1) gauge transformation anels in the fermioni

measure D D

�

 , while the orresponding hange under the axial U

A

(1) gauge transformation

adds up. We an determine the latter taking into aount that the �

n

are an orthonormal

basis as

a

0

m

=

X

n

Z

d

4

x�

y

m

(x) exp fig�(x)

5

g�

n

(x)a

n

� C

mn

a

n

: (16.8)

Realling the transformation rules for Gra�mann integrals, D ! D J

�1

= D [Det(C)℄

�1

,

the produt D D

�

 of the fermioni measure hanges as

D D

�

 ! D D

�

 [Det(C)℄

�2

= D D

�

 exp

 

�2ig

X

n

Z

d

4

x �(x)tr �

y

n

(x)

5

�

n

(x)

!

: (16.9)

Here we used also the identity Det exp(A) = expTr(A). The sum ontains a trae over the

spinor indies whih is zero, but also a divergent sum over the eigenfuntions of iD= . Therefore

we have to regularise the expression. We add as gauge-invariant regulator the funtion

f = exp

�

��

2

n

=M

2

	

= exp

n

D=

2

=M

2

o

; (16.10)

whih approahes zero fast for �

2

n

! 1. The limit f ! 1 of the regulator orresponds to

M !1, whih will allow us later an expansion of our result for

A(x) �

X

n

tr

n

�

y

n

(x)

5

exp

�

D=

2

=M

2

�

�

n

(x)

o

(16.11)
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in powers of 1=M

2

. Note that we have expressed the hange of the measure as an additional

term ÆL = 2g�(x)A(x) in the Lagrangian.

As the vetor U

V

(1) gauge transformation keeps the integration measure invariant, we

ignore it in the following alulations. Thus we need to alulate D=

2

inluding only the axial

gauge �eld A,

D=D= = 

�



�

D

�

D

�

= D

2

+

g

2

�

��

F

��

(16.12)

with

D

2

= (�

�

+ igA

�

)(�

�

+ igA

�

) = �

2

+ 2igA

�

�

�

+ ig

�

�

�

A

�

�

� g

2

A

�

A

�

: (16.13)

We evaluate D

2

using for �

n

plane-waves, �

n

= e

�ikx

1. Then we an replae the di�erentia-

tions by momenta,

exp

�

D

2

M

2

�

�

n

(x) = exp

�

�

(k

�

+ gA

�

)

2

M

2

+

ig(�

�

A

�

)

M

2

�

�

n

(x) : (16.14)

Taking the ontinuum limit of the sum and writing out the full regulator, we obtain

A(x) =

Z

d

4

k

(2�)

4

tr

n

e

ikx



5

exp

h

D=

2

=M

2

i

e

�ikx

o

(16.15a)

=

Z

d

4

k

(2�)

4

tr

�



5

exp

�

�

(k

�

+ gA

�

)

2

M

2

+

ig�

�

A

�

M

2

+

g

2

�

��

F

��

M

2

��

: (16.15b)

The seond term in f� � � g is zero beause it does not depend on k

�

and tr[

5

℄ = 0. Shifting

variables to the dimensionless MK

�

= k

�

+ gA

�

we obtain

A(x) =M

4

Z

d

4

K

(2�)

4

e

�K

2

tr

�



5

exp

�

g

2

�

��

F

��

M

2

��

: (16.16)

If we expand the exponential in powers of 1=M

2

, only the terms up to O(M

�4

) will survive

in the limit M !1. Using the antisymmetry of F

��

, we an also replae �

��

by i

�



�

and

�nd then

exp

�

: : :

	

= 1 +

ig

2



�



�

F

��

1

M

2

+

1

2

�

ig

2

�

2



�



�



�



�

F

��

F

��

1

M

4

+O

�

1

M

6

�

: (16.17)

The trae properties of the gamma matries inform us that the �rst two terms vanish, while

the third results in a term proportional to the totally antisymmetri tensor "

����

. Introduing

the dual �eld-strength tensor

~

F

��

=

1

2

"

����

F

��

and then performing the Gaussian integral

over K we are left with

ÆS =

g

2

8�

2

Z

d

4

x�(x)

~

F

��

F

��

: (16.18)

It is sometimes stated that this result is exat, beause our derivation seems not to rely on

perturbation theory. However, we replaed in the evaluation of D=

2

�

n

the orret solutions �

n

aounting for the external gauge �elds by plane-waves. Therefore our derivation orresponds

to an one-loop result, similar to our alulation of the e�etive potential in setion 13.2.

In a lassial theory without gauge �elds, a loal axial gauge transformation leads to the

hange

L ! L + g(�

�

�)

�

 

�



5

 : (16.19)
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Thus the non-invariane of the measure in the path integral violates the lassial onservation

of the axial urrent,

�

�

j

�

5

= �

�

(

�

 

�



5

 ) = �

�

(j

�

R

� j

�

L

) =

g

2

8�

2

~

F

��

F

��

: (16.20)

This equation is also known as the Adler-Bell-Jakiw anomaly equation.

The extra term introdued in the Lagrangian by an axial gauge transformation is pro-

portional to

~

F

��

F

��

and transforms thus odd under CP. If this interation were physially

relevant, eletrodynamis oupled to hiral fermions would violate CP. The

~

F

��

F

��

term is

gauge invariant, has dimension four and orresponds therefore to a renormalisable interation.

The reason why we have not onsidered it earlier is that it is a total derivative,

F
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~

F
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=

1

2

"

����

(�
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� �
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)(�

�

A

�

� �
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�
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����
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�
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�

) � �

�

K

�

:

(16.21)

Sine the four-divergene K

�

is not gauge invariant, it annot be an observable. Therefore it

is not exluded that K

�

is singular, leading after integration to non-zero e�ets in the ation.

Before we disuss in more detail when it is justi�ed to neglet a total derivative term, we will

re-derive the anomaly using a diagrammati approah.

Perturbative appearane of anomalies Historially, the hiral anomaly was �rst enoun-

tered alulating the proess �

0

!  using perturbation theory. Desribing the neutral pion

within a non-relativisti quark piture as a �

0

= (�uu+

�

dd)=

p

2 state, we an view the proess

as

k + p2

kk − p1

p2

p1

γµγ5

γλ

γκ

+

k + p1

kk − p2

p1

p2

γµγ5

γκ

γλ

Here, the 

5

matrix aounts for the fat that the pion is a pseudosalar partile. The two

diagrams are onneted by the rossing symmetry �$ �, p

1

$ p

2

. The total matrix element

of this proess is thus given by the sum

A

���

(p

1

; p

2

) = S

���

(p

1

; p

2

) + S

���

(p

2

; p

1

) ; (16.22)

where the matrix element S

���

desribing the �rst diagram (negleting oupling onstants)

is given by

S

���

= �(�i)

3

Z

d

4

k

(2�)

4

tr

�



�

i

k= � p=

1



�



5

i

k= + p=

2



�

1

k=

�

: (16.23)

It is suÆient to onsider only massless fermions: The anomaly is onneted to the UV

divergenes of these diagrams and in this limit masses play no rôle.

We hek now, if the lassial onservation law for the vetor and the axial urrent hold also

at the one-loop level. Current onservation implies the following three relations in momentum
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16.1. Axial anomalies

spae,

p

�

1

A

���

= p

�

2

A

���

= 0 (16.24a)

(p

1

+ p

2

)

�

A

���

= 0 ; (16.24b)

where (16.24a) are the equations for the onservation of the vetor urrent, and (16.24b) for

the onservation of the axial urrent. Crossing symmetry implies that these relations must

also hold for the two individual amplitudes S.

We hek �rst, if the axial urrent is onserved. In evaluating

I

��

� (p

1

+ p

2

)

�

S

���

= �

Z

d

4

k

(2�)

4

tr

�



�

(k= � p=

1

)(p=

1

+ p=

2

)

5

(k= + p=

2

)

�

k=

�

(k � p

1

)

2

(k + p

2

)

2

k

2

(16.25)

we use

(p=

1

+ p=

2

)

5

= p=

1



5

� 

5

p=

2

= �(k= � p=

1

)

5

� 

5

(k= + p=

2

)

and (k= � p=

i

)

2

= (k � p

i

)

2

, so that we an split the integral into two parts,

I

��

=

Z

d

4

k

(2�)

4

tr

�



�



5

(k= + p=

2

)

�

k=

�

(k + p

2

)

2

k

2

| {z }

A

��

(p

2

)

+

Z

d

4

k

(2�)

4

tr

�



�

(k= � p=

1

)

5



�

k=

�

(k � p

1

)

2

k

2

| {z }

B

��

(p

1

)

: (16.26)

Observe now that the LHS is a pseudo-tensor of rank 2, while the RHS is the sum of the

two quantities A

��

and B

��

whih eah only depend on one momentum. As it is not possible

to reate a pseudo-tensor of rank 2 from that, the RHS must be zero. We have thus shown

(ostensibly!) that the axial urrent is onserved.

Next we verify the onservation of the vetor urrent, following the same line of argument

as in the ase of the axial urrent. Starting from

J

��

� p

�

1

S

���

= �

Z

d

4

k

(2�)

4

tr

�

p=

1

(k= � p=

1

)

�



5

(k= + p=

2

)

�

k=

�

(k � p

1

)

2

(k + p

2

)

2

k

2

; (16.27)

we shift the integration variable k

0

= k + p

2

and reorder the terms in the trae, obtaining

J

��

= �

Z

d

4

k

0

(2�)

4

tr
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0

� p=

1

� p=
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k=
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(k
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1
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2
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+

Z

d

4

k

0
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4

tr

�

(k=
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2



�



5

k=
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(k

0

� p
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| {z }

B
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(p

2

)

: (16.28)

Thus we onlude that J

��

also vanishes. For the p

�

2

S

���

part, we follow the same argument,

but we shift the integration variable by k

0

= k � p

1

instead.

We have now shown that both the axial urrent and the vetor urrent are onserved. Using

these results in the alulation for the deay width of a �

0

leads however to a width whih

vanishes in the limit of a massless pion. Inluding the small pion mass leads still to life-time

muh longer than observed. Looking bak at our alulation, we should hek therefore if

all our manipulations were legitimate, although we have not regularised the divergent loop

integrals. In partiular, the super�ial divergene of the diagrams S

���

is worse than the

logarithmi divergenes we have beome austomed to,

S

���

= �

Z

d

4

k

(2�)

4

tr

�



�

k=

�



5

k=

�

k=

�

k

6

+ subleading terms (16.29)
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produing a linearly divergent term.

An essential ingredient for the derivation of the urrent onservation was the shift of our

integration variable. Suh a shift an only be done if the integral is properly onvergent (after

regularisation, if required) or only logarithmi divergent. By ontrast, in the ase of a linearly

divergent integral, the shift k

0

= k � a

Z

d

4

k

0

f(k

0

)

?

=

Z

d

4

kf(k � a) =

Z

d

4

k

�

f(k)� a

�

�f

�k

�

+ : : :

�

(16.30)

hanges the value of the integral: Using Gauss' theorem, we an onvert the gradient term

into a surfae integral whih will lead to a �nite hange of the integral beause of dS

�

/ k

3

and f / k

�3

. You should show in problem 17.?? that the shift k

�

� a

�

in (16.29) hanges

S

���

as

S

���

! S

0

���

= S

���

+

1

8�

2

�

����

a

�

(16.31)

where �

����

is again the totally anti-symmetri tensor.

We an look bak at the orresponding proof of gauge invariane for the vauum polari-

sation, Eqs. (12.36{12.38). There we used dimensional regularisation whih respets gauge

symmetry. Sine 

5

is not well-de�ned for d 6= 4, we annot apply this regularisation method

here. Using Pauli-Villars regularisation as an alternative would break axial symmetry, sine

it onsists of adding massive partiles. Thus, from a tehnial point of view, anomalies arise,

if no regularisation proedure exists whih respets the lassial symmetry.

Sine the shifts of the integration variables required to obtain urrent onservation di�er

for the vetor and axial urrent, we an absorb only one of the resulting boundary terms

(16.31) by a suitably hosen ounter-term. Clearly, we will hoose the vetor urrent to be

onserved: Otherwise eletri harge onservation would be violated, while the axial urrent

is anyway broken by mass e�ets. If we onsider as amplitude inluding a ounter-term

A

���

= S

���

(p

1

; p

2

) + S

���

(p

2

; p

1

) +

1

4�

2

�

����

(p

�

1

+ p

�

2

) ; (16.32)

the vetor urrent will still be onserved, but the axial urrent will not

(p

1

+ p

2

)

�

A

���

=

1

2�

2

�

����

p

�

2

p

�

1

: (16.33)

The added ontribution gives a non-zero ontribution to the divergene of the axial urrent

whih is idential to our previous result (16.18),

�

�

j

�

5

=

e

2

8�

2

F

��

~

F

��

: (16.34)

Let us ome bak to the question, if these results are exat. Studying higher-order orretions,

one an show that these orretions vanish and thus the perturbative one-loop result for the

anomaly is exat. As an heuristi argument we an use that adding additional propagators

will redue the super�ial degree of divergene, while the anomaly is onneted to linearly

divergent diagrams. As a onsequene, proesses whih are dominated by the anomaly like

�

0

! 2 an be alulated reliably in lowest-order perturbation theory, although for Q

2

=

m

2

�

� �

2

QCD

the strong oupling onstant �

s

(Q

2

) is ertainly not small and higher-order

orretions are naively expeted to be large.
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16.1. Axial anomalies

Canellations of anomalies Anomalies may be useful when they an break "aidental"

global symmetries like baryon and lepton number. As we will see later, this opens the possi-

bility to explain why the universe onsists mainly of matter. Similarly, the expliit breaking

of global symmetries in the quark Lagrangian an explain why in ertain ases no Goldstone

bosons are observed. In ontrast, symmetries and the resulting Ward identities between

Green funtions are ruial for the renormalisability of gauge theories. If these identities are

not satis�ed, physial observables in renormalisable gauges depend on the gauge-�xing pa-

rameter �, while Lorentz invariane is violated in unitary gauges. The exellent agreement of

eletroweak preision data with experiment is a strong argument that the underlying theory

is renormalisable. As the V{A struture of the eletroweak interations is however similar to

our toy model of axial eletrodynamis, we an only expet that the anomalies of individual

loop diagrams anel after summing over all ontributions.

Compared to axial eletrodynamis, we have to onsider in the GSW model both U

Y

(1)

and SU(2) urrents. Then eah vertex i omes with the orresponding generator, T

i

= Y 1

and T

i

= �

a

=2, respetively. The anomaly is thus proportional to

A

ab

= tr

�

T

a

T

b

T



�

+ tr

�

T

a

T



T

b

�

= tr

�

T

a

�

T

b

T



	�

; (16.35)

where the trae is over SU(2) doublets and the seond term orresponds to the exhange

diagram b $ . Conentrating on diagrams ontaining SU(2) urrents, we have to onsider

A

(1)

ab

= tr

�

�

a

�

�

b

; �



	�

, A

(2)

ab

= tr

�

�

a

�

Y

b

; Y



	�

and A

(3)

ab

= tr

�

�

a

�

Y

b

; �



	�

. In the �rst two ases,

the properties of the Pauli matries imply that the anomaly vanishes automatially,

A

(1)

ab

/ tr (�

a

f�

b

; �



g) = 2Æ

b

tr(�

a

) = 0 and A

(2)

ab

/ tr(�

a

) = 0 : (16.36)

In the third ase, we use the Gell-Mann{Nishijima relation to replae the hyperharge, Y =

2(T

3

�Q), obtaining

A

(3)

ab

/ tr (�

a

fQ

b

; �



g) = tr (Q

b

f�

a

; �



g) = 2Æ

ab

X

i

Q

i

: (16.37)

Realling that only the left-hiral fermions ouple to the W boson, the ondition that this

anomaly vanishes is thus

P

i

Q

L

i

= 0. If we now only look at the leptons and quarks separately,

then

Q

e

+Q

�

= �1 6= 0 and Q

u

+Q

d

=

2

3

�

1

3

=

1

3

6= 0 : (16.38)

Inluding both leptons and quarks where we aount by the fator three for their olour

quantum number we �nd as required for the anomaly anellation

Q

e

+Q

�

+ 3(Q

u

+Q

d

) = �1 + 3

1

3

= 0 : (16.39)

The last remaining triangle ontribution to the anomaly ontains three U

Y

(1) urrents,

A

(4)

ab

= tr

�

Y

a

�

Y

b

; Y



	�

. Again, the anomaly vanishes, if the ondition

P

i

Q

i

= 0 is met,

f. problem 17.??. Thus hiral anomalies are anelled within eah full fermion generation.

In the SM, there is no explanation for this onspiray between the quark and lepton setor,

and this has been one of the major motivations to onsider GUTs. Note also that if a single

member of a hypothetial fourth generation of fermions would be found, anomaly anellation

would require the existene of a omplete set of quarks and leptons.
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16. Anomalies, instantons and axions

We have restrited our analysis of the anomaly to an abelian model. In the non-abelian ase,

the �eld-strength ontains term linear and quadrati in the gauge �elds. As a result, additional

anomalies in square and pentagon diagrams appear. However, the absene of anomalies in

the triangle diagrams guaranties also their absene in square and pentagon diagrams.

Remark 16.1: Grand Uni�ed Theories: The gauge group of the SM ontains four ommuting gen-

erators, i.e. it has rank four. Beause SU(n) has rank n � 1, SU(5) is thus the smallest SU(n) group

enompassing the SM. In the 5-dimensional fundamental representation, we an set T

a

=

�

�

a

=2 0

0 0

�

and T

i

=

�

0 0

0 �

i

=2

�

, with �

a

and �

i

as the Gell-Mann and Pauli matries. Thus SU(5) ontains SU(3)

and SU(2) as subgroups. The remaining diagonal matrix an be hosen proportional to hyperharge,

T

0

/ diag(�2;�2;�2; 3; 3). Additionally, there are 12 o�-diagonal matries.

We ombine three olour states of down-like quarks together with a lepton doublet in  =

(

�

d

r

;

�

d

b

;

�

d

g

; �

e

; e)

T

, while the remaining ten states an be �tted into an antisymmetri 5 � 5 matrix.

From this, we an draw immediately three onlusions: First, the 12 o�-diagonal matries orrespond

to new gauge boson (alled X

�

and XY

�

) whih interhange quarks and leptons. Thus baryon and

lepton number is generially broken in GUTs, and the X

�

and XY

�

bosons have to be suÆiently

heavy suh that proton deay is suppressed. Seond, the eletri harge is diagonal, and thus any

multiplet has zero eletri harge. Applied to  = (

�

d

r

;

�

d

b

;

�

d

g

; �

e

; e)

T

, this leads to harge quantisation,

Q

�

d

= �Q

e

=3. Finally, above the energy sale M

GUT

where the SU(5) symmetry is restored, a single

gauge oupling ontrols all interations. In suh a piture, one expets that the SM ouplings meet in

one point at the sale M

GUT

.

16.2. Instantons and the strong CP problem

The e�etive Lagrangian indued by the hiral anomaly is a surfae term. This suggests that

a term of the same struture an be obtained as the topologial harge of a Yang-Mills theory,

following the argument of Bogomol'nyi in Eq. (15.43). If suh a topologial harge exists,

then an unbroken Yang-Mills theory has a non-trivial vauum. Suh a non-trivial vauum

struture has however only physial onsequenes if the orresponding lassial tunnelling

solutions have a �nite ation. We should therefore searh for lassial solutions of a pure,

Eulidean Yang-Mills theory with S

YM

< 1. These solutions are the non-abelian analogue

of the salar boune solution we have onsidered earlier.

Instantons We de�ne an Eulidean Yang-Mills theory by the ation
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1
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d

4

x tr
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F
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; (16.40)

where F
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= F

a
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T
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= �
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�
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+ ig[A
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; A
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℄ and derivatives and integrations are with

respet to Eulidean oordinates (x

1

; x

2

; x

3

; x

4

= ix

0

) with x

i

2 R. Sine the metri tensor

is �

��

= Æ

��

, we do not need to distinguish between lower and upper indies. Note that in

Eulidean spae the dual of the dual �eld-strength tensor is again the �eld-strength tensor,

~

~

F

��

= F

��

, while in Minkowski spae it is its negative,

~

~

F

��

= �F

��

. Next we de�ne instantons

as self-dual and anti-self-dual solutions,

~

F

��

= F

��

and

~

F

��

= �F

��

; (16.41)
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of the lassial Yang-Mills equations. Using Bogomol'nyi's trik, we an show that they

orrespond to the topologially non-trivial solutions with the lowest energy|if suh non-

trivial solutions exist. We write �rst

tr

�

(F

��

�

~

F

��

)

2

	

= tr

�

F

2

��

+

~

F

2

��

� 2F
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��

	

� 0 : (16.42)

For the alulation of

~

F

2

we use �

����
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����

= 2(Æ
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) and end up with
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.

Thus
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; (16.43)

whih is minimised if F is self-dual. We obtain the same bound for an antiself-dual solution,

if we hoose a plus sign in Eq. (16.42).

We �rst examine if QED, i.e. an abelian Yang-Mills theory, ontains instantons. A �nite

ation,

�
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requires that F dereases faster than �

�2

in the limit �

2

= x

2

+ x

2

4

!1. But as a lassial

Yang-Mills theory ontains no sale,

~

FF must be a polynomial in � : Thus F � O(�

�3

),

A � O(�

�2

), and then the total derivative (16.21) behaves as
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�
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� O(�
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) : (16.45)

As a result, the surfae term in
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FF =

Z
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dS

�

K
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! 0 (16.46)

vanishes and we see that in an abelian theory

~

FF does not inuene physial quantities. This

argument justi�es our usual pratise to neglet surfae terms in QED.

We now turn to the non-abelian ase. Then we an express tr f

~

F

��

F

��

g again as a four-

divergene,
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= 2 tr
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(16.47)

where now
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= 2"

����

tr

�

A

�

F

��

+

2

3

igA

�

A

�

A

�

�

: (16.48)

Choosing at in�nity a pure gauge �eld,

A

�

=

i

g

(�

�

U)U

y

; (16.49)

results in F

��

= 0 for � ! 1 and ensures that the ation is �nite. On the other hand, a

gauge transformation U whih beomes onstant for � ! 1, i.e. depends in this limit only

on the angles, gives A � O(�

�1

) and thus K � O(�

�3

). As a result, the surfae integral

may beome non-zero. One may wonder if we an gauge away A

�

/ (�

�

U)U

y

on � = 1 by

performing a suitable gauge transformation

~

U : Sine

~

U has to be regular in all R

4

, it must

be onstant a � = 0 and independent of the angles. Thus

~

U is ontinuously onneted to the

identity and an be used only to gauge away �elds A

�

in the same homotopy lass. Thus the

surfae term F

~

F has only physial signi�ane, if the gauge �elds at � ! 1 are split into

non-trivial topologial lasses.
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We next move to the spei� ase of SU(2). Any SU(2) matrix an be written as U = a+ib��

with a

2

+ jbj

2

= 1. Thus SU(2) is isomorphi to S

3

. Compatifying the boundary �R

4

= R

3

of

Eulidean spae at large � to S

3

, the funtion (16.49) de�nes a map S

3

! S

3

. The question

if non-trivial instanton solutions exist is thus equivalent to the existene of topologially

non-trivial mappings S

3

! S

3

, what in turn requires that �

3

(S

3

) is not the identity. We

an generalise the winding number (15.75) from S

1

! S

1

to the ase S

3

! S

3

as follows:

If we use as oordinates the three Euler angles speifying a point on S

3

, then eah angle i

ontributes a fator U�

i

U

y

as in the S

1

ase. Sine the winding number is a pseudo-salar, we

have to ontrat ijk with the Levi-Civita tensor and to take the trae over the SU(2) indies,

arriving at

� = �

1

24�

2

Z

dx

1

dx

2

dx

3

"

ijk

tr

h

�

U�

i

U

y

��

U�

j

U

y

��

U�

k

U

y

�

i

: (16.50)

Beause of dx

i

�

i

=

~

dx

i

~

�

i

, the expression is equally valid using Cartesian oordinates. In order

to show that the winding number is invariant under ontinuous transformations, Æ� = 0, it

is suÆient to onsider the variation of a single fator in the trae. Now we an pro�t from

(15.75) where we derived already the variation of this fator in the non-abelian ase as

Æ(U�

i

U

y

) = �U�

i

�

U

y

ÆU

�

U

y

:

Inserting this relation into the integrand results in

E � "

ijk

tr

h

�

U�

i

U

y

��

U�

j

U

y

�

Æ

�

U�

k

U

y

�

i

= �"

ijk

tr

h

�

i

U

y

U�

j

U

y

U�

k

�

U

y

ÆU

�

i

: (16.51)

Then we perform a partial integration and use that terms like �

k

�

i

U

y

vanish ontrated with

"

ijk

, obtaining

E = "

ijk

tr

h

�

i

U

y

�

k

U�

j

U

y

ÆU + �

i

U

y

U�

j

U

y

�

k

UU

y

ÆU

�

i

: (16.52)

In the seond term, we use U�

j

U

y

= ��

j

UU

y

and �

k

UU

y

= �U�

k

U

y

to symmetrise the

expression in j and k,

E = "

ijk

tr

h

�

i

U

y

�

k

U�

j

U

y

ÆU + �

i

U

y

�

j

U�

k

U

y

ÆU

i

= 0 : (16.53)

Thus the winding number � is invariant under in�nitesimal and thus under ontinuous trans-

formations.

Next we try to express the winding number as a volume integral over tr f

~

F

��

F

��

g. We

write (16.50) as a surfae integral,

� =

1

24�

2

Z

dS

�

"

����

tr

h

�

U�

�

U

y

��

U�

�

U

y

��

U�

�

U

y

�

i

(16.54a)

= �

ig

3

24�

2

Z

dS

�

"

����

tr [A

�

A

�

A

�

℄ ; (16.54b)

where we ould use U�

�

U

y

= igA

�

beause A

�

is a pure gauge �eld for � ! 1. Sine

then also F

a

��

= 0, only the seond term in the expression (16.48) for the four-divergene K

�

survives and we obtain

� =

g

2

32�

2

Z

dS

�

K

�

=

g

2

16�

2

Z

d

4

x tr f

~

F

��

F

��

g : (16.55)
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16.2. Instantons and the strong CP problem

Thus we have shown that gauge �elds A

a

�

exist whih are solutions of the lassial Yang-Mills

equations, have a �nite ation and fall into distint equivalene lasses haraterised by the

winding number

1

�. Our remaining task is to write down an expliit form of the mappings

S

3

! S

3

and to show that the de�nition (16.50) results in a integer winding number. We

hoose to write U(x) as

U

(n)

(x) =

�

x

4

+ ix � �

�

�

n

(16.56)

where x

�

is the unit vetor x

�

= (sin�e; os�). Evaluation of (16.50) for U

(1)

(x) on�rms

then that � = 1. Integrating now tr

�

F

��

F

��

	

� tr

�

F

��

~

F

��

	

over spae, we �nd on the LHS

twie the Eulidean ation, while the RHS equals 16�

2

�=g

2

. Thus the Eulidean ation is

bounded by

S �

8�

2

j�j

g

2

; (16.57)

and instantons as the non-trivial solutions with the lowest energy have the ation S = 8�

2

=g

2

.

We used for our disussion of instantons in non-abelian Yang-Mills theories the spei�

example of SU(2). A theorem of Brott states that for any simple Lie group G ontaining

SU(2) the maps S

3

! G an be deformed ontinuously to the ones of S

3

! SU(2). Thus

all our results apply identially to the ase of strong interations, SU(3). In the remaining

part of this hapter, we will disuss the impat of instantons on the QCD vauum, while we

postpone the eletroweak ase to hapter 21.

Tunnelling interpretation We onsider the four-dimensional ylinder de�ned by jx

4

j � T

and jxj � R in the limit T;R ! 1. At x

4

= �T , we hoose A

�

as a pure gauge �eld with

winding number �

1

, and at x

4

= T with �

2

. On the boundary jxj = R, we hoose U onstant

and thus A

�

is zero. Calulating the total winding number, we �nd

g

2

16�

2

Z




d

4

x tr

�

F

~

F

�

=

g

2

32�

2

Z

�


d

3

S

�

K

�

=

=

g

2

32�

2

Z

d

3

x

�

K

0

(t = �1)�K

0

(t = +1)

�

= �

1

� �

2

= � :

(16.58)

The minus sign appears, beause of the opposite orientations of the two aps. Thus the las-

sial solutions we have determined interpolate between a vauum with winding number �

1

at

time t = �1 and a vauum with winding number �

2

at time t = +1. The two vaua are

separated by a �nite energy barrier, and thus the solutions desribe the quantum tunnelling

between di�erent vaua. This agrees with our �nding in hapter 15.2 that tunnelling solutions

orrespond to solutions of the Eulidean �eld equations. These solutions were dubbed instan-

tons by 't Hooft, sine the tunnelling they desribe happens instantaneously in Minkowski

spae.

The # vauum The tunnelling interpretation indiates that the true vauum of a pure

Yang-Mills theory is the superposition of all vaua with �xed winding number �. Let us all

1

Mathematiians all the winding number of the mapping S

3

! S

3

the Pontryagin index, while mathematial

physiists use often the term Chern-Simon number.
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16. Anomalies, instantons and axions

these vaua j�i and the true one j#i. Applying a gauge transformation U � U

(1)

with unit

winding number results in

U j�i = j� + 1i : (16.59)

On the other hand, the Yang-Mills Hamiltonian is invariant under gauge transformations,

UHU

y

= H ; (16.60)

or [H;U ℄ = 0. Thus the true vauum j#i is a ommon eigenstate of H and U . Sine the

vauum is normalised, the eigenvalue of U has to be a phase,

U j#i = e

i#

j#i : (16.61)

The angle # is a onserved quantum number. Thus a lassial Yang-Mills theory is hara-

terised by two numbers, the oupling g and the angle #.

The true vauum j#i is a linear superposition of the vaua with �xed winding number n

given by

j#i =

1

X

n=�1

e

�in#

jni ; (16.62)

sine

U j#i =

1

X

n=�1

e

�in#

jn+ 1i = e

i#

1

X

n=�1

e

�in#

jni : (16.63)

The matrix elements hn

0

jH jni depend only on the di�erene � = n

0

�n, beause (16.60) gives




n

0

+ 1

�

�

H jn+ 1i =




n

0

�

�

H jni : (16.64)

Using also the parity properties, P jni = � jni and PHP

�1

= H, we obtain




n

0

�

�

H jni =




�n

0

�

�

H j�ni : (16.65)

Hene the matrix elements hn

0

jH jni depend only on the absolute value j�j = jn

0

� nj. We

onlude that instantons lead to an e�etive potential V

eff

(#) whih is periodi and even in

#

H j#i = L

3

V

eff

(#) j#i ; (16.66)

with V

eff

(#) = V

eff

(#+ 2�) and V

eff

(#) = V

eff

(�#), where L

3

is the onsidered volume. A

general argument due to Weinberg shows that points of enhaned symmetry are stationary

points of the ation. Thus we expet the minimum of V

eff

(#) to oinide with the CP

onserving point # = 0.

We inluded into our de�nition of the path integral using the Faddeev-Popov trik only

gauge �elds whih are ontinuously onneted with the identity. Thus our next task is to add

the e�et of the # vauum to the path integral. The path integral in the presene of external

soures is idential to the vauum persistene amplitude,

h#

0

j#i

J

=

X

n;n

0

e

i(n

0

#

0

�n#)

hn

0

jni

J

: (16.67)
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16.2. Instantons and the strong CP problem

Now we introdue the di�erene � = n

0

� n so that we an rewrite the phase as n

0

#

0

� n# =

n(#

0

� #) + �#

0

. But hn

0

jni

J

depends only on � and thus we an perform the sum over n.

This leads to a fator Æ

#

0

;#

, whih expresses the fat that # is onserved. Thus

h#j#i

J

=

X

�

e

i�#

Z

DA

(�)

e

�S+hJAi

; (16.68)

where DA

(�)

denotes the integration over all gauge �eld on�gurations with the �xed winding

number �. Replaing � with the help of Eq. (16.55) and introduing DA �

P

�

DA

(�)

gives

h#j#i

J

=

Z

DA e

�S+hJAi

exp

n

i

#g

2

16�

2

tr(F

~

F )

o

: (16.69)

Thus instantons indue an additional term L

#

to the lassial Yang-Mills Lagrangian,

L

eff

= L +

#g

2

16�

2

tr(F

~

F ) ; (16.70)

whih depends on the arbitrary parameter # 2 [0; 2�[. In order to disuss observable e�ets

of this additional term, we have to add fermions to the pure Yang-Mills theory we disussed

up to now.

Fermioni ontribution to # We have derived in Eq. (16.20) the axial anomaly for an abelian

gauge theory. The orresponding result for a Yang-Mills theory oupled to a single massless

fermion is

�

�

j

�

5

= �

�

(j

�

R

� j

�

L

) =

g

2

8�

2

tr(F

~

F ) : (16.71)

Thus the axial anomaly leads to the additional term

L

eff

= L +

�n

f

g

2

8�

2

tr(F

~

F ) ; (16.72)

in the e�etive QCD Lagrangian, if we perform a hiral U

A

(1) transformation q

L;R

! e

i�

5

q

L;R

on the n

f

quark �elds. This term has the same struture as the instanton ontribution, and

if we hoose

� = �

#

2n

f

(16.73)

the two terms anel. Thus for massless quarks the # parameter is unphysial and we an

hoose the # = 0 vauum.

We an understand this, if we onsider the e�et of an instanton transition. Integrating

Eq. (16.71) gives as hange of the axial harge Q

5

= N

R

�N

L

per massless quark avor

�Q

5

= Q

5

(t = �1)�Q

5

(t = +1) = 2� : (16.74)

Thus an instanton proess � = �1 hanges the axial quark number by two units, reating

a left-hiral and destroying a right-hiral quark and vie versa. As hirality is a onserved

quantum number for massless partiles, at least one of the two states onneted by the

instanton proess an therefore not orrespond to the vauum. By ontrast, for m > 0 the

mass term mixes left- and right-hiral �elds: the quark-antiquark pair an annihilate via the

mass term and the states an be identi�ed with the vauum.
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16. Anomalies, instantons and axions

We now onsider massive quarks. Then the onservation of the axial urrent is additionally

to the axial anomaly expliitly broken by the quark masses, sine a Dira mass term transform

as

m�qq ! m�qe

2i�

5

q = os(2�)m�qq + i sin(2�)m�q

5

q (16.75)

under a hiral transformation q

L;R

! e

i�

5

q

L;R

. The seond term violates T (CP) invariane,

as the originalL

#

we wanted to eliminate. Therefore, CP violation implied byL

#

is a physial

e�et for massive quarks. If we onsider n

f

avor of quarks, then the mass matrix M

ij

will

hange as M

ij

! e

2i�

M

ij

and thus

arg detM ! arg detM + 2n

f

� : (16.76)

Therefore only the ombination

�

# � #+ arg detM (16.77)

is an observable quantity: It is a question of onveniene, if we hoose real mass matries and

rotate all CP violation via the axial anomaly into the # term. Or if we eliminate L

#

and

transfer its e�et into CP violating omplex mass matries.

Example 16.1: Two Higgs doublet model: Let assume that the Higgs doublet �

1

= (�

+

; �

0

)

generates the masses for down-like fermions, while a seond Higgs doublet �

2

= (�

0

; �

�

) generates

the masses for up-like fermions,

L

Y

= �X

��

�

Q

�

�

1

d

R;�

� Y

��

�

Q

�

�

2

u

R;�

+ h.. (16.78)

with

h0j�

1

j0i =

1

p

2

�

0

v

1

e

iÆ

1

�

and h0j�

2

j0i =

1

p

2

�

v

2

e

iÆ

2

0

�

: (16.79)

The resulting quark mass matrix M

ij

, i; j = 1; : : : ; 6 has the determinant

det(M) =

(v

1

v

2

)

2

8

e

3i(Æ

1

+Æ

2

)

det(X) det(Y ) (16.80)

and thus

arg detM = argdet(XY ) + 3i(Æ

1

+ Æ

2

) : (16.81)

By an SU(2) gauge transformation U = exp(i��

3

=2) we an eliminate one of the two phases. Thus a

general two Higgs doublet model has one CP violating phase. In ontrast, the SM uses �

2

= i�

2

�

�

.

Then Æ

1

= �Æ

2

, and no CP violation arises in the Higgs setor.

We look now for observable onsequenes of the # vauum in the low-energy interations of

hadrons. Sine the # term and the axial anomaly are avour blind, the hange  in the quark

masses,

 � sin(2�

q

)m

q

; (16.82)

is the same for all quarks. In order to shift the e�ets of the # term ompletely into the mass

matrix of the quarks, we need also

P

n

f

q=1

2�

q

= �#. Eliminating �

q

in the limit of small #

gives

 = �

#

P

q

m

�1

q

; (16.83)

272



16.3. Axions

and thus the # dependent, CP violating part of the mass term beomes

L

(#)

m

= �i#

�

X

q

m

�1

q

�

�1

X

q

�q

5

q : (16.84)

For light nuleons and mesons whih onsist only of u and d quarks this simpli�es to

L

(#)

m

= �i#

m

u

m

d

m

u

+m

d

�

�u

5

u+

�

d

5

d

�

: (16.85)

This mass term generates a CP violating e�etive pion-nuleon interation whih in turn

leads to an eletri dipole moment d

n

of the neutron. The orresponding limit on d

n

bounds

the value of

�

# as j

�

#j � 2� 10

�10

. Although the value of

�

# is a free parameter within the SM,

it seems natural to ask for an explanation why

�

# is so small.

The most straight-forward explanation would be that one urrent quark mass is zero,

i.e. that one quark has no Yukawa oupling to the SM Higgs. Then (16.85) shows for

n

f

= 2 learly that the CP violating e�et disappears. This holds also for n

f

> 2, beause

arg detM = 0 if one mass eigenvalue is zero. While it has been debatable, if m

u

� 5MeV

dedued from hiral perturbation theory for the urrent u quark mass might be lowered to

m

u

= 0, this possibility was losed by lattie data around 2005. The question why

�

# is so

small is alled the strong CP problem of the SM.

16.3. Axions

Peeei and Quinn proposed to promote the parameter # to a dynamial variable whih settles

automatially at its minimum zero. The basi ingredient of this proposal is a new massless

pseudo-salar �eld a whih ouples to gluons with an interation of the same struture as the

# term,

L

a

=

1

2

(�

�

a)

2

�

g

2

16�

2

a

f

a

F

~

F : (16.86)

Sine a is a pseudo-salar, the interation term aF

~

F onserves CP. AddingL

a

to the e�etive

Lagrangian (16.70) of QCD means that observables depend only on the ombination #�a=f

a

.

If L

a

is invariant under the shift a! a+onst:, then we an use this arbitrariness to absorb

the # parameter into a rede�nition of the �eld a. Suh a shift symmetry is typial for a

Goldstone boson whih has only derivative ouplings. Thus the pseudo-salar partile a

should be the Goldstone boson of a spontaneously broken global symmetry, and the aF

~

F

interation suggests to hoose this symmetry as a hiral U(1) symmetry. This symmetry is

alled Peeei-Quinn symmetry U

PQ

(1) and its Goldstone boson a is the axion.

Weinberg and Wilzek realised that there is an additional twist in this proposal. The

e�etive potential (16.66) generated via the F

~

F term has two e�ets: First, instanton e�ets

break the shift symmetry, generating a mass term m

2

a

= �

2

V

eff

=�a

2

for the axion. Thus the

axion beomes a massive pseudo Goldstone boson. Seond, the vauum expetation value of

the axion �eld will relax to the minimum of the potential, �V

eff

=�a = 0. But we have argued

above that the minimum of V

eff

(#) is situated at # = 0. Thus also in the ase of a massive

axion the strong CP problem is solved.

Let us illustrate the key points of this idea with a simple model. We add a omplex salar

�eld � and a set of heavy fermions  to the SM,

L = i

�

 �= +

1

2

�

�

�

y

�

�

�� y

i

(

�

 

L

 

R

�+ h..)� V (�) : (16.87)
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16. Anomalies, instantons and axions

While � is a SM singlet, the fermions are harged under SU(3) and U(1). The Lagrangian is

invariant under the global hiral U

PQ

(1) gauge transformation

�! e

i�

� and  

L=R

! e

�i�=2

 

L=R

: (16.88)

We now break spontaneously the Peei-Quinn U

PQ

(1) symmetry, hoosing the usual Mexian

hat potential for V (�). Splitting � into its vauum expetation value and the utuating �elds,

� =

f

a

+ �

p

2

e

ia=f

a

�

0

1

�

; (16.89)

generates a mass term for � while a remains massless. We assume that f

a

is muh larger than

the energy sale E we are interested in, and thus we an neglet the �eld �,

L =

1

2

(�

�

a)

2

�m

i

�

 e

i

5

a=f

a

 � V (�) +O(E

2

=f

2

a

) : (16.90)

The ombined expression is learly invariant under U

PQ

(1) transformations a ! a + �f

a

.

Expanding the exponential, we generate mass terms m

i

= y

i

f

a

=

p

2 for the heavy fermions

plus fermion-axion interations,

L

int

= �m

i

�

  � i

m

i

f

a

a

�

 

5

 � : : : (16.91)

The latter lead to a AV V triangle graph for the proess a ! 2g whih in turn indues via

the axial anomaly the desired F

~

F term. In the same way, an e�etive a ! 2 oupling is

generated. Thus the harateristi features of an axion are its two-gluon and two-photon

ouplings. Moreover, the parameters of the pion and axion setor are onneted by

m

a

f

a

�m

�

f

�

; (16.92)

sine the two Goldstone bosons mix via their two-gluon oupling, a$ 2g $ �

0

.

Summary

The CP-odd term

~

F

��

F

��

is a gauge invariant renormalisable interation. Terms of this

type are produed by instanton transitions between Yang-Mills vaua with di�erent winding

numbers and by the hiral anomaly. While we an rotate lassially all CP violating phases

ontained in the quark mass matries into the single CP violating phase of the CKM matrix,

the hiral anomaly leads additionally to the hange #!

�

# = #+arg detM in the oeÆient of

the

~

F

��

F

��

term. Sine the physis origin of both ontributions seem to be disonneted, it is

puzzling that they sum up to j

�

#j

<

�

10

�10

. A possible solution is the Peeei-Quinn symmetry

whih promotes the parameter # to the �eld a = f

a

# whih settles automatially at the

minimum at

�

# = 0 of the instanton potential V

eff

.

Further reading

Instantons are disussed in more detail by [Rub02℄. For an introdution into the physis of

axions see [KN13℄, while [CL88℄ ontains a onise introdution to grand uni�ation.
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We introdued QCD as a non-abelian gauge theory that desribes strong interations in terms

of quarks and gluons. The harateristi feature of a Yang-Mills theory, asymptoti freedom,

implies however that perturbation theory breaks down for small momentum transfer: The

strong oupling �

s

(Q

2

) diverges in perturbation theory at a �nite value, introduing �

QCD

as a new mass sale. Thereby the sale invariane of QCD, lassially valid in the limit of

zero quark masses, is broken. Another onsequene of asymptoti freedom is on�nement

1

:

Quarks and gluons are not observed as isolated partiles, but exist only in bound-states

whih are olour-singlets. Aim of this hapter is to disuss how alulations in perturbation

theory using quarks and gluons an be onneted to experiments whih observe hadrons. For

instane, we aim to desribe proesses like

�

XX ! �qq ! hadrons, where the initial state ould

be e.g. a pair of leptons or dark matter partiles. We start the hapter however eluidating

the surprising fat that the masses of hadrons are muh larger than expeted from the Higgs

e�et.

17.1. Trae anomaly and hadron masses

The lassial QCD Lagrangian is sale and onformally invariant in the limit of zero quark

masses. We introdue �rst these symmetries before we alulate the anomalous term intro-

dued by quantum orretions whih breaks these symmetries. It is this \orretion" whih

is responsible for 95% of the mass of ordinary matter in the Universe.

Sale and onformal invariane We de�ned in hapter 7.4 the dynamial energy-momentum

stress tensor T

��

as the response of the matter ation S

m

under an in�nitesimal hange of the

metri tensor, T

��

= (2=

p

jgj)ÆS

m

=Æg

��

. This proedure implies that we leave temporarily

Minkowski spae, even if we are only interested in the behaviour of a Lorentz invariant �eld

theory. Having performed the variation Æg

��

, we move bak to Minkowski spae setting

g

��

! �

��

.

We want to study when we an extend the Poinar�e group as the symmetry group of

Minkowski spae ating on loal �elds to the larger group of onformal transformations. We

start onsidering sale transformations of the oordinates, x ! x

0

= e

!

x with �xed !. As a

result of this oordinate transformation, the metri tensor hanges as

g

��

(x)! g

��

(x

0

) = e

2!

g

��

(x) : (17.1)

Thus distanes are resaled by a onstant fator, while angles and hene the light-one stru-

ture given by ds

2

= 0 are onserved. Sine only the latter is important for theories without

mass parameters, we expet them to be invariant under suh transformations. For an in-

�nitesimal sale hange, x! x

0

= (1+ Æ!)x, the metri varies as Æg

��

= 2g

��

Æ!. The matter

1

While on�nement is an observational fat, it has not been derived from �rst priniples and is part of one

of the six open \millennium problems".
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ation S

m

hanges as a result of the variation of the metri as

ÆS

m

=

Z

d

4

x

ÆS

m

Æg

��

Æg

��

=

1

2

Z

d

4

x

p

jgj T

��

Æg

��

=

=

Z

d

4

x

p

jgj T

��

g

��

Æ! = Æ!

Z

d

4

x

p

jgj T

�

�

:

(17.2)

The variation ÆS

m

of the ation remains unhanged, if we add a total derivative r

�

K

�

to

T

�

�

. Thus we an onlude for ! = onst: only that the trae of the stress tensor has to equal

a total derivative,

T

�

�

= g

��

2

p

jgj

ÆS

m

Æg

��

= r

�

K

�

; (17.3)

whih may be zero. If we promote ! to a loal funtion !(x), the resulting spae-time

dependent transformations are alled speial onformal transformations. Now we annot

pull out Æ!(x) from the integral and onsequently the requirement ÆS

m

= 0 implies that the

trae of the stress tensor has to vanish, T

�

�

= 0. Clearly, onformal invariane implies sale

invariane. The opposite diretion holds in pratially all interesting ases, but exeptions

exist.

These additional symmetries should lead aording to Noether's theorem to onserved ur-

rents. We reall that the stress tensor has the properties T

��

= T

��

and �

�

T

��

= 0. For

a sale invariant ation, we an de�ne the additional onserved urrent D

�

= T

��

x

�

�K

�

,

beause then

�

�

D

�

= �

�

(T

��

x

�

�K

�

) = T

��

�

��

� �

�

K

�

= T

�

�

� �

�

K

�

= 0 : (17.4)

The onserved quantity D

�

is alled the dilatation urrent, the four-divergene K

�

the virial

urrent. For a onformally invariant ation, we obtain additionally the four onserved

urrents

S

�

= d

�

[�

��

x

2

� 2x

�

x

�

)℄T

�

�

; (17.5)

whih are parametrised by the vetor d

�

. The ondition that the stress tensor is traeless

(and symmetri) implies the onservation of these urrents,

�

�

S

�

= d

�

�

�

[�

��

x

2

� 2x

�

x

�

℄T

�

�

= 2d

�

[x

�

�

��

� x

�

Æ

�

�

� x

�

Æ

�

�

℄T

�

�

= 0 : (17.6)

In problem 6.??, we enountered already the onformal Killing equation. Its solutions, the

onformal Killing vetor �elds of Minkowski spae, agree with the in�nitesimal generators of

the group of onformal transformations, f. appendix B.3. This generalises our results for the

Poinar�e group from example 6.2.

Theories with traeless stress tensors we met already are eletrodynamis (or more generally

pure Yang-Mills theories) and the massless Dira �eld. Thus the invariane group of these

theories in Minkowski spae is the 15-dimensional onformal group. Now we look at the ase

of a salar �eld. In problem 5.??, we found that a massless salar �eld in invariant under

sale transformations. The trae of its stress tensor is given by

T

�

�

= (�

�

�)

2

� Æ

�

�

L

0

=

�

1�

d

2

�

(�

�

�)

2

: (17.7)
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17.1. Trae anomaly and hadron masses

The virial urrent follows using �� = 0 as K

�

= (1 � d=2)��

�

� and thus the ation for a

free massless salar �eld is sale invariant for all d. By ontrast, the ation is only in d = 2

dimensions onformally invariant, in whih ase the �eld is dimensionless and does not sale

2

.

Connetion to hadron masses The matrix element of the stress tensor T

��

for a hadron h(k)

an depend for zero momentum transfer only on the ombination k

�

k

�

. Assuming hadron

states normalised as hh(k)jh(k)i = 1, the matrix element of the stress tensor is therefore

hh(k)jT

��

jh(k)i = 2k

�

k

�

: (17.8)

Thus the vanishing of the trae T

�

�

would imply that all hadrons are massless,

hh(k)jT

�

�

jh(k)i = 2m

2

h

= 0 : (17.9)

In reality, the masses of the light quarks are non-zero and thus the sale invariane of strong

interations is broken already on the lassial level. Nevertheless, the relation (17.9) poses a

problem, sine the masses of the light quarks due to the Higgs e�et, m

u;d

� (4 � 10)MeV,

are muh smaller than the masses of the lightest hadrons, the pions. Thus the dominant

ontribution to hadron masses should ome from strong interations, but Eq. (17.9) informs

us that onformal invariane forbids suh a ontribution. The resolution to this apparent

problem lies in the fat that quantum orretions spoil lassial onformal invariane, beause

we have to introdue a dimensionful parameter alulating quantum orretions.

Trae anomaly The phenomenon that the trae of the stress tensor reeives non-zero or-

retions due to loop e�ets is alled trae anomaly. This e�et an be analysed using the

same approah as for the axial anomaly, and we summarise therefore only the main steps: If

the Jaobian J for the onformal transformation

 (x) = expf�3!(x)=2g 

0

(x) (17.10)

is not the identity, an anomalous ontribution to T

�

�

in addition to the usual mass term

appears,

i

Z

d

4

x ! T

�

�

= lnJ =3 + i

Z

d

4

x !m

�

  : (17.11)

Using the same regulator in the evaluation of the Jaobian as in the ase of the hiral anomaly,

J = exp!

X

n

Z

d

4

x�

�

n

(x) exp

n

�D=

2

=M

2

o

�

n

; (17.12)

the only hange ompared to Eq. (16.11) is the absene of the 

5

matrix. Following the same

steps but keeping trak of the non-abelian part of the QCD �eld-strength F

a

��

, one �nds

T

�

�

=

g

2

s

48�

2

F

a

��

F

a��

+m

�

  : (17.13)

2

The fat that we an express the trae in (17.7) as T

�

�

= �

�

�

�

L

��

(where L

��

= (2� d)=4�

��

�

2

using the

equation of motions) signals that we an \improve" the stress tensor adding appropriate terms suh that

the stress tensor beomes traeless and the ation onformally invariant.
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17. Hadrons, partons and QCD

This the O(g

2

s

) ontribution to the trae anomaly. We an obtain the full non-perturbative

expression for the trae anomaly by the following, more intuitive argument: We resale �rst

the Lagrange density by A

a

�

!

�

A

a

�

= A

a

�

=g

s

as

L = �

1

4

F

a

��

F

a��

+ i

�

 (�= + ig

s

A= ) ! �

1

4g

2

s

�

F

a

��

�

F

a��

+ i

�

 (�= + i

�

A= ) : (17.14)

If we view this Lagrange density as the renormalised Lagrange density, then g

s

depends on

the renormalisation sale � and the ation is not longer sale invariant: The hange ÆS under

an in�nitesimal sale transformations results solely from the dependene via the renormalised

oupling,

ÆS = �

1

4

Z

d

4

x

�

�!

�

1

4g

2

s

(�)

�

�

F

a

��

�

F

a��

!

Z

d

4

x

�(g

s

)

2g

s

F

a

��

F

a��

: (17.15)

Thus the full result for the trae of the stress tensor in QCD is, inluding the anomaly and

the mass terms of the quarks that break sale invariane expliitly, given by

T

�

�

=

�

(6)

QCD

2g

F

a

��

F

a��

+m

u

�uu+m

d

�

dd+m

s

�ss+

X

h

m

h

�qq : (17.16)

Sine the anomaly is due to an UV divergene, it is independent of the quark masses and we

should use the beta funtion �

QCD

for six avours, b

QCD

= 11� 2n

f

=3 = 7. We have singled

out in (17.16) the ontribution of the heavy quarks,

P

h=;b;t

m

h

�qq, sine they are present in

a hadron only as virtual utuations. Beause of m

h

� �

QCD

, a systemati expansion in

Q

2

=m

2

h

of the term

P

h

m

h

�qq is possible. At leading order, these utuations onnet m

h

via

a quark loop to two gluons. Therefore one an rewrite the mass term for heavy quarks using

the e�etive Lagrangian derived in problem 14.?? for the Higgs-gluon-gluon oupling,

m

h

�qq !

2

3

�

s

8�

F

a

��

F

a��

: (17.17)

Now we see that the mass terms anel the ontribution of the heavy quarks in the beta

funtion. As a result, we obtain for the matrix element between on-shell nuleons

m

2

N

= hN jT

�

�

jNi = hN j

�

(3)

2g

s

F

a

��

F

a��

jNi+

X

l=u;d;s

hN jm

l

�qq jNi (17.18)

with b

(3)

QCD

= 9. The matrix elements hN jm

l

�qq jNi � f

(N)

q

m

N

an be estimated using results

from lattie QCD simulations: Numerial values for the so-alled mass frations f

(N)

q

are

shown in Table 17.1. Thus only � 5% of the mass of proton is given by the urrent quarks

masses, or in other words by the Higgs e�et, while 95% of the proton mass is a onsequene

of the gluon ondensate via the trae anomaly.

17.2. DGLAP equations

Experiments studying eletron-nuleon sattering at large momentum transfer Q

2

� m

2

N

revealed in the late 1960s that a nuleon an be desribed as a olletion of nearly massless,

freely interating sattering enters whih share the total nuleon momentum. These point-

like sattering enters were alled partons and are formed by the valene quarks (whih
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Proton Neutron

f

(p)

u

0.019(5) f

(n)

u

0.013(3)

f

(p)

d

0.027(6) f

(n)

d

0.040(9)

f

(p)

s

0.009(22) f

(n)

s

0.009(22)

Table 17.1.: The mass frations f

(N)

q

(with

errors) ontributed by the

u; d and s quarks to the

nuleon mass dedued by

[HNN15℄ from lattie QCD

simulations.

quantum numbers sum up to those of the nuleon), a sea of virtual �qq pairs and gluons.

Moreover, ross setions were found in this limit to follow approximately saling invariant:

For instane, the energy spetrum of hadrons produed with energy E

h

in a reation at m

energy

p

s� m

N

an be approximated by

E

h

�

d�(s;E

h

)

dE

h

�

x

�

d�(x)

dx

; (17.19)

introduing the saling variable x = 2E

h

=

p

s. With hindsight, we an onnet these features

easily to the general properties of QCD: Asymptoti freedom explains why the onstituents of

the nuleon behave at large momentum transfer as unbound partiles. Moreover, we an treat

the light quarks for Q

2

� m

2

N

� m

2

q

as massless, and sattering on quark and gluons ontains

therefore no mass sale. Hene we expet only logarithmi saling violations, aused by the

running of the oupling �

s

(Q

2

), in quantities whih are not sensitive to IR singularities. As

we will disuss at the end of this setion, these are so alled \inlusive observables" like the

e

+

e

�

annihilation ross setion where at �xed order perturbation theory IR divergenes from

real and virtual gluon emission anel.

In ontrast, \exlusive quantities" like a di�erential ross setion to produe a �xed number

of partons ontain large IR logarithms. They are aused by the emission of soft and ollinear

partons, similar to the ase of QED disussed in setion 9.4, and spoil naive perturbation

theory. What omes to our resue, however, is that these logarithms are onneted to the

emission of additional partons in the semi-lassial regime: Therefore, we should be able to

develop an approximate probabilisti piture where quantum mehanial interferene terms

an be negleted. Additionally, we have to add to this semi-lassial piture a onnetion

between the perturbative desription using partons, valid at Q

2

� �

2

QCD

, and a desrip-

tion using hadrons, valid at Q

2

<

�

�

2

QCD

: This onnetion annot (yet) be derived from �rst

priniples and therefore one has to employ phenomenologial models.

Our aim in this setion is to desribe proesses like

�

XX ! �qq ! hadrons, where the initial

state ould be e.g. a pair of leptons or DM partiles. We an break this proess into several

steps: The alulation of the \hard" proess

�

XX ! �qq uses standard perturbation theory,

with whih we are familiar by now. Subsequently, a parton asade develops, q ! q + g !

q + g + g ! : : : In eah splitting proess, the virtuality t of the partons dereases, until we

have to stop at t � few � �

2

QCD

the perturbative evolution before �

s

(t) beomes too large.

Hadrons are then formed out of partons using a phenomenologial model. For the alulation

of this perturbative parton asade, we need two main ingredients: An evolution equation

whih determines the probability that a parton evolves from t

n

to t

n+1

without splitting,

and splitting funtions P

ij

(z) whih desribe how the energy is shared between the daughter

partons in a splitting proess.
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k

a

k

b

k



#

b

#



"

a

"

b

"



Figure 17.1.: Left: The momenta and angles used to desribe the parton splitting a ! b;

Right: Choie of the polarisation vetors.

Splitting funtions We start determining the splitting funtions desribing the time-like

evolution of a parton asade. We onsider the branhing of a parton a into the parton pair

b with t � k

2

a

� k

2

b

; k

2



> 0 in the small angle approximation, # = #

b

+ #



� 1, f. Fig. 17.1.

De�ning then the energy fration taken by the parton b as z = E

b

=E

a

= 1�E



=E

a

, we obtain

t = 2E

b

E



(1� os#) � z(1� z)E

2

a

#

2

: (17.20)

Conservation of transverse momentum implies #

b

E

b

= #



E



or

#

b

1� z

=

#



z

: (17.21)

Solving (17.20) for # and using (17.21) together with # = #

b

+ #



, we �nd

# =

s

t

z(1� z)

1

E

a

=

#

b

1� z

=

#



z

: (17.22)

To proeed, we have to �x the parton type and we onsider here as an example the proess

of gluon splitting, g ! gg. The triple gluon vertex is given by

V

ggg

= igf

ABC

"

�

a

"

�

b

"





[�

��

(k

a

� k

b

)



+ �

�

(k

b

� k



)

�

+ �

�

(k



� k

a

)

�

℄ ; (17.23)

where all momenta are de�ned as outgoing, k

a

= �k

b

� k



, and "

�

a

is the polarisation vetor

of gluon a. We assume that all three gluons are lose to mass shell, k

2

� 0, what allows us

to use transverse polarisation vetors. In order to use these onditions to simplify V

ggg

, we

replae k

a

= �k

b

�k



in the �rst and third, and k



= �k

a

�k

b

in the seond fator, obtaining

V

ggg

= �2igf

ABC

[("

a

� "

b

)("



� k

b

)� ("

b

� "



)("

a

� k

b

)� ("



� "

a

)("

b

� k



)℄ : (17.24)

Then we evaluate the salar produts "

i

�k

j

in the limit of small #, hoosing the two transverse

polarisation states as "

in

i

in the plane spanned by k

b

and k



as shown in the right panel of

Fig. 17.1 and "

out

i

perpendiular to this plane,

"

in

i

� "

in

j

= "

out

i

� "

out

j

= �1 and "

in

i

� "

out

j

= "

out

i

� k

j

= 0 :

Now we express the three remaining salar produts as funtions of E

a

and #,

"

in

a

� k

b

= �E

b

#

b

= �z(1� z)E

a

# ; (17.25)

"

in

b

� k



= E



# = (1� z)E

a

# ; (17.26)

"

in



� k

b

= �E

b

# = �zE

a

# : (17.27)
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17.2. DGLAP equations

a b  F (a; b; ; z)

in in in

1�z

z

+

z

1�z

+ z(1 � z)

in out out z(1 � z)

in in out

1�z

z

out out in

z

1�z

Table 17.2.: The funtion F

ab

(z) for dif-

ferent gluon polarisations.

Eah of the three terms in V

ggg

ontains one fator #. Combined with the propagator 1=t /

1=#

2

, this results in a ollinear 1=t singularity of the squared amplitude. We express jA

n+1

j

2

as

jA

n+1

j

2

�

4g

2

t

C

A

F (a; b; ; z)jA

n

j

2

; (17.28)

where the funtion F (a; b; ; z) for the various non-zero ombinations of polarisation vetors

is given in table 17.2. The olour fator C

A

equals for the gauge group SU(N) C

A

=

P

ab

f

ab

f

ab

= N , see Eq. (B.14).

Example 17.1: We evaluate the vertex as an example for the ase of fabg = fin, out, outg

polarisations,

V

ggg

= �2igf

ab

[("

in

a

� "

out

b

)("

out



� k

b

)� ("

out

b

� "

out



)("

in

a

� k

b

)� ("

out



� "

in

a

)("

out

b

� k



)℄

= �2igf

ab

[0� (�1)(�z(1� z)E

a

#)� 0℄ = 2igf

ab

[z(1� z)E

a

#℄ :

Thus the squared amplitude for this ombination of polarisation states is

jA

n+1

j

2

=

�

�

�

�

V

ggg

t

A

n

�

�

�

�

2

�

4g

2

t

C

A

z(1� z) jA

n

j

2

;

and thus F (in, out, out; z) = z(1� z).

The enhanement of the amplitude for z ! 0 (gluon b is soft) and z ! 1 ( is soft) omes

from the emission of soft gluons polarised in the plane of branhing. Therefore A

n+1

arries

some � dependene. As this dependene is small and washed out onsidering several suessive

splittings, one uses unpolarised splitting funtions P

i!j

(z) de�ned for g ! gg by

P

g!g

(z) =

1

2

C

A

X

a;b;

F (a; b; ; z) = C

A

�

1� z

z

+

z

1� z

+ z(1� z)

�

: (17.29)

The gluon splitting funtion P

g!g

(z) is obviously symmetri under an exhange of the two

gluons produed, P

g!g

(z) = P

g!g

(1 � z). It is alled an unregularised splitting funtion,

beause it beomes in�nite for z ! 1 (and z ! 0). These IR divergenes an be anelled

adding the e�et of virtual gluon emission, and one obtains thereby regularised splitting

funtions. Proeeding in the same way for the proesses g ! qq and q ! qg, you should

be able to derive the other three splitting funtions of QCD, P

g!q

(z), P

q!q

(z) and P

q!g

(z)

(problem 18.??).

We an now ompute the probability for the emission of an additional parton. We ompare

the ross setion d�

n+1

and d�

n

for the proess with and without emission of an additional

parton. Their phase spae is given by

d�

n

/

d

3

k

a

(2�)

3

2E

a

(17.30)
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g ! gg P

g!g

(z) = C

A

h

1�z

z

+

z

1�z

+ z(1� z)

i

g ! qq P

g!q

(z) = n

f

T

F

�

z

2

+ (1� z)

2

�

q ! qg P

q!q

(z) = C

F

h

1+z

2

1�z

i

q ! gq P

q!g

(z) = C

F

h

1+(1�z)

2

z

i

Table 17.3.: The four unreg-

ularised splitting

funtions of QCD,

with C

F

= 4=3,

T

F

= 1=2, N

C

= 3

and n

f

as the num-

ber of ative quark

avors.

and

d�

n+1

/

d

3

k

b

(2�)

3

2E

b

d

3

k



(2�)

3

2E



: (17.31)

With k



= k

a

� k

b

and d

3

k



= d

3

k

a

for �xed k

b

, we obtain trading the variables fE

b

; #

b

g

versus fz; tg in the small-angle approximation

d�

n+1

= d�

n

1

2(2�)

3

Z

E

b

dE

b

#

b

d#

b

d�dt

dz

1� z

Æ(t�E

b

E



#

2

)Æ(z �E

b

=E

a

)

= d�

n

1

4(2�)

3

dtdzd� :

(17.32)

Performing the � integral, we �nd for their ratio,

d�

n+1

d�

n

=

dt

t

dz

�

s

2�

P

i!j

(z) : (17.33)

This ratio is the relative probability density for the emission of an additional ollinear parton

with virtuality t and energy fration z by the state n. Integrating this probability using P (z) �

1=z for the emission of a soft gluon results in d�

n+1

=d�

n

/ ln

2

(t=t

min

). Thus the probability

for the emission of an additional parton inreases with t, spoiling naive perturbation theory.

Moreover, the preferene for the emission of ollinear partons is the basis for the explanation

of jets observed in hadroni �nal states.

Evolution equation We want to derive an equation whih determines how the number den-

sity f

i

(x; t) of partons of type i with a ertain energy fration x evolves by parton branhing

from t to t + Æt. In the ase of a spae-like evolution, t

n+1

> t

n

and x

n+1

< x

n

, suh an

equation an be used to determine the number of partons inside a hadron, if it is probed

e.g. by a photon with virtuality t. The funtions f

i

(x; t) are then alled parton distribution

funtions. For a time-like evolution, t

n+1

< t

n

and x

n+1

< x

n

, the same equation determines

the number of partons or hadrons whih are produed in a proess like e

+

e

�

! hadrons as

funtion of the squared m energy s. The funtions f

i

(x; t) are then alled fragmentation or

hadronisation funtions.

To be onrete, we onsider the spae-like evolution of a single parton type. Then the

hange Æf onsists of all paths arriving from x

0

> x and all paths leaving f , as shown in

Fig. 17.2. We obtain the number of inoming paths integrating from x

0

= x to x

0

= 1 under
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x

n�1

1

x

n

0

t

max

t

n

t

0

Figure 17.2.: Possible paths with

t

n+1

> t

n

and

x

n+1

< x

n

desrib-

ing the spae-like

evolution of par-

tons.

the onstraint x

0

= x=z,

Æf

in

(x; t) =

Æt

t

Z

1

x

dx

0

dz

�

s

2�

P (z)f(x

0

; t)Æ(x � zx

0

)

=

Æt

t

Z

1

0

dz

z

�

s

2�

P (z)f(x=z; t) :

(17.34)

Here, we extended the integration range from [x; 1℄ to [0; 1℄ in the seond step, whih is

possible beause of f(x=z; t) = 0 for z < x. In the same way, we �nd the number of leaving

paths as

Æf

out

(x; t) =

Æt

t

f(x; t)

Z

0

x

dx

0

dz

�

s

2�

P (z)Æ(x

0

� zx)

=

Æt

t

f(x; t)

Z

1

0

dz

z

�

s

2�

P (z) :

(17.35)

Combing both expressions, we obtain for the total hange

Æf(x; t) = Æf

in

(x; t)� Æf

out

(x; t) =

Æt

t

Z

1

0

dz

�

s

2�

P (z)

�

f(x=z; t)

z

� f(x; t)

�

: (17.36)

Now we introdue the \plus presription", de�ning

Z

1

0

dx

g(x)

x

+

�

Z

1

0

dx

�

g(x)� g(1)

x

�

; (17.37)

for any suÆiently regular funtion g(x), and regularised splitting funtions

^

P (z) by

^

P (z) = P (z)

+

: (17.38)

Thus the regularised splitting funtion

^

P (z) equals the unregularised splitting funtion P (z)

everywhere exept at z = 1 where a delta funtion is added so that Eq. (17.37) is satis�ed. For

z < 1, both splitting funtion desribe the emission of real partons and allow a probabilisti

interpretation. The emission of virtual partons does not hange the energy and orresponds

therefore to the ontribution at z = 1. The oeÆient of the delta funtion an be expliitly
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determined requiring momentum onservation, see problem 18.??, without the need to eval-

uate virtual proesses. Rewriting the evolution equation as a di�erential equation, we obtain

the DGLAP equation

3

,

t

�f(x; t)

�t

=

�

s

(t)

2�

Z

1

x

dz

z

^

P (z) f(x=z; t) : (17.39)

Given the initial values on [x

min

: 1℄ of the funtion f at a �xed sale t

0

, we an alulate

within perturbative QCD its evolution as funtion of the virtuality t. The initial values

f(x; t

0

), however, have to be determined from measurements. These funtions depend on the

hadron probed, but are independent of a spei� proess. Thus one an determine e.g. f

p

i

(x; t)

for a proton from a mixture of pp and e

�

p reations, and apply them then to neutrino-nuleon

sattering.

Monte Carlo methods The evolution equation (17.39) admits a probabilisti interpretation,

sine interferene terms disappeared in the semi-lassial limit. This allows a straightforward

appliation of Monte Carlo methods to solve it. Compared to a numerial integration of

(17.39), the Monte Carlo approah has the advantage of being more exible, allowing e.g. in

a straightforward way to add hadronisation models and experimental uts. Moreover, this

method reprodues event-by-event utuation whih is an important ingredient to estimate

the statistial signi�ane of an observed signal.

We an either start from Eq. (17.36) or use as short-ut the analogy to the radioative

deay problem with a time-varying deay onstant. Using the latter piture, we denote the

di�erential probability for the deay of an atom (or the branhing of a parton) at t by P(t).

It equals minus the time-derivative of the survival probability whih we all �(t). Moreover,

the di�erential probability P(t) that something happens at t is proportional to the survival

probability �(t), with a proportionality onstant F (t) whih equals the deay rate in the

radioative deay problem,

P(t) = �

d�(t)

dt

= F (t)�(t) : (17.40)

Integration gives

�(t) = �(0) exp

�

�

Z

t

0

dtF (t)

�

; (17.41)

if the evolution starts at t = 0, and thus

P(t) = F (t)�(t) = F (t) exp

�

�

Z

t

0

dt

0

F (t

0

)

�

: (17.42)

In the ase of a parton asade, P(t) denotes the di�erential probability that a splitting

happens at the virtuality t, while the probability that a parton survives, i.e. does not split

between the virtuality t and t

min

, is alled the Sudakov form fator �(t). In turn, the

probability for a parton to survive between t

0

and t is given by the ratio �(t

0

)=�(t). The

funtion F (t) playing the role of the deay onstant is given by the ratio d�

n+1

=d�

n

from

Eq. (17.33). Beause of its 1=t singularity, we have to introdue a uto� t

0

whih should be

3

Until the 1990s, equations of this type were alled Altarelli-Parisi equations. The name evolved then from

Gribov-Lipatov-AP to its present form, Dokshitzer-Gribov-Lipatov-Altarelli-Parisi or DGLAP equations.
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17.2. DGLAP equations

moreover large enough that we an trust perturbative alulations. Combining all this, the

di�erential probability distribution for the splitting of the parton i into the hannels j is

dP

i

(t; z) =

X

j

dt

t

dz

2�

�

s

P

ij

(z)

�

i

(t

0

)

�

i

(t)

: (17.43)

Here, the sum inludes all possible branhing hannels j, and �

i

is given by

�

i

(t) = exp

2

4

�

Z

t

t

min

dt

0

t

0

X

j

Z

z

max

z

min

dz

2�

�

s

P

ij

(z)

3

5

: (17.44)

As the use of distributions like Æ(1� x) is problemati doing numerial alulations, we have

used the unregularised splitting funtions P

ij

(z) given in Table 17.3 together with an IR uto�

t

min

. The latter serves both as a boundary to the non-perturbative regime, t

min

� �

2

QCD

,

and as a regulator of the IR singularities in the splitting funtions,

z

min

=

p

t

min

=t and z

max

= 1�

p

t

min

=t : (17.45)

We an now set up a simple Monte Carlo sheme for the simulation of parton asades. In

eah step (t

n

; x

n

) ! (t

n+1

; x

n+1

), we determine �rst the new t

n+1

from the Sudakov fator

as follows: We hoose a random number r from an uniform distribution between [0; 1℄. For a

spae-like parton asade, we ompare then this random number with the probability for the

evolution from t

n

to t

n+1

> t

n

,

r =

�(t

n+1

)

�(t

n

)

; (17.46)

and solve for t

n+1

. If t

n+1

is larger than the hard sale in the proess onsidered, the asade

stops. Otherwise we determine the splitting hannel j and the energy fration z = x

n+1

=x

n

aording to the probability distribution �

s

P

i!j

(z) and ontinue.

For a time-like parton asades, where the virtuality dereases, we ompare a random

number r with

r =

�(t

n

)

�(t

n+1

)

: (17.47)

If r < �(t

n

; t

0

), the equation has no solution and no further splitting happens. Otherwise we

solve again for the parton type and the energy fration z and ontinue. As �nal outome of

the time-like asade, we obtain a set of quarks and gluons whose virtualities are lose to our

uto� sale t

min

.

This desription of a parton asade has been shemati in few respets: First, we have not

yet spei�ed the argument of �

s

. A more areful analysis shows that hoosing p

2

?

= z(1� z)t

sums up partially NLL e�ets. Seond, in a time-like asade oherene e�ets lead to an

angular-ordered asade. As a result, the evolution parameter used di�ers for the two ases.

Hadronisation models The quarks and gluons produed as the �nal state of a parton shower

have to be onverted into hadrons using a phenomenologial model. An ansatz whih requires

no additional theoretial input is to determine fragmentation funtions f

h

i

(z; t

0

) from exper-

imental data. These funtions give the probability that a parton i with energy E produes

a hadron h with energy zE. Convoluting then the fragmentation funtions with the parton
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t

x

Figure 17.3.: Left: Yo-yo movement of a �qq pair in the massless limit. Right: Break-up of

the string into fragments.

spetra D

i

(x=z;

p

s; t

0

) obtained from the perturbative evolution from

p

s down to t

0

, one

obtains the hadron spetra as

D

h

(x;

p

s) =

X

i=q;g

Z

1

x

dz

z

D

i

(x=z;

p

s; t

0

)f

h

i

(z; t

0

) : (17.48)

An alternative to this purely phenomenologial method is to develop models that try to

apture basi properties of QCD like on�nement. The luster hadronisation model used �rst

in HERWIG is based on the idea of pre-on�nement, i.e. it assumes that the parton spetra

at the end of the asade resemble losely the hadron spetra. Sine the P

gg

splitting funtion

is the most singular one, the majority of partons in the asade are gluons. In order to reate

the valene quarks neessary to form mesons and baryons, one adds therefore an arti�ial

splitting g ! �qq after the parton asade stopped at t

min

.

The Lund string model whih is another sheme often employed in Monte Carlo simula-

tions is based on a rather di�erent ansatz: Lattie QCD alulations show that the poten-

tial between two stati quarks an be approximated at large distane by V (r) � �r with

� � 0:2GeV

2

. Thus in a on�ning theory like QCD, the fore lines between a �qq pair are

onentrated in a narrow tube onneting the pair. This tube of olour �eld an be viewed

as a string with tension �, trying to pull the quark pair together. The string model uses this

piture to desribe the hadronisation of partons into hadrons. Let us disuss the simplest ase

that a �qq pair is reated in an e

+

e

�

annihilation. As we will show in setion 22.3, a onstant

aeleration �x = �� leads to a hyperbola as trajetory. In the limit of massless quarks, we

an approximate the hyperbola by straight line segments as shown in Fig. 17.3: Negleting

further interations, the two quarks would osillate bak and forth in a yo-yo mode. Instead,

a new �qq pair will be reated when the energy ��x in the string tube is suÆiently large

suh that two olour singlet states an be formed, (�qq)(�qq). If one adds the assumption that

all breakings happen during the initial expansion phase of the yo-yo modes, a formulation of

the break-up proess as a probabilisti proess is possible. Moreover, this proess is Lorentz

invariant, sine it is based on the dynamis of a relativisti string.

While the basi piture underlying the luster hadronisation or the string model are theo-

retially well motivated, a rather large number of additional assumptions and parameters is

required to model the momentum distributions of the various types of mesons and baryons

produed and their branhing ratios. These parameters are partly obtained from �ts to ex-

perimental data and interfere with the properties of the basi hadronisation model. It is
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+

e

�

annihilation

therefore diÆult to di�erentiate whih one of these two models better desribes nature.

17.3. Corretions to e

+

e

�

annihilation

In this setion, we examine the total annihilation ross setion of an e

+

e

�

pair into hadrons.

While the sheme (17.43{17.44) allows us to alulate the relative fration of �nal-states

in a QCD proess, it aounts for the e�et of virtual proesses only indiretly, imposing

avour onservation,

P

i

R

dxP

q!q

(x) = 1, or momentum onservation,

P

i

R

dxxP

i

= 1, on

the regularised splitting funtions. As a onsequene, we annot alulate the impat of

higher-order orretions to the total rate within this formalism. Instead, a perturbative QCD

alulation for the total annihilation ross setion is suÆient and, as we will see, free IR

divergenes. This requires that the large logarithms whih are present in individual proesses

anel in the total e

+

e

�

annihilation ross setion.

Let us give �rst a heuristi argument why the total annihilation ross setion into hadrons

an be alulated using partons: The partoni proess ontains the time sale 1=

p

s, while

hadronisation ours on the time sale 1=�

QCD

. This means that the prodution of par-

tons proeeds independently of their latter hadronisation, if we onsider proesses with

s � �

2

QCD

. More preisely, we expet from hadronisation orretions of order �

2

QCD

=s

to the result of a perturbative QCD alulations using partons. We an make this argu-

ment a bit more quantitative: Let us denote the amplitude to reate a quark state by a

hadroni QCD urrent J(t) whih evolves then into a �nal-state of hadrons jhi shematially

by A

h

/

R

dt h0j J(t)U(t;1) jhi. The probability determining the total annihilation ross

setion is then jA

h

j

2

summed over all possible hadroni states,

�

ann

/

X

h

A

h

A

�

h

/

X

h

h0j J(t

0

)U(t

0

;1) jhi hhjU(t;1)J(t) j0i =

= h0j J(t

0

)U(t

0

;1)U(1; t)J(t) j0i = h0j J(t

0

)U(t

0

; t)J(t) j0i :

(17.49)

Thus unitarity,

P

h

jhi hhj = 1, leads to a anellation of the ompliated long-distane

physis, and only the short-distane sale t � t

0

� 1=

p

s enters the total e

+

e

�

annihilation

ross setion. As a result, suh quantities an be alulated within perturbative QCD.

After these preliminaries, let us move to the spei� proess e

+

e

�

! hadrons. We split

the annihilation ross setion into

�

hadrons

= �

q�q

+ �

q�qg

+ : : : (17.50)

aording to the partoni �nal state. Fatoring out expliitly the strong oupling, the pertur-

bative series up to �

s

is

�

q�q

=

1

4I

Z

d�

2

jA

q�q

j

2

=

1

4I

Z

d�

2

h

jA

(0)

q�q

j

2

+ 2�

s

<

�

A

(0)

q�q

A

(2)�

q�q

�

+ : : :

i

; (17.51a)

�

q�qg

=

1

4I

Z

d�

3

jA

q�qg

j

2

=

1

4I

Z

d�

3

h

�

s

jA

(1)

q�qg

j

2

+ : : :

i

: (17.51b)

We expet that the IR divergenes of the real gluon emission proess are anelled by those

of the interferene term between the tree-level proess and the virtual orretion. At order

O(�

s

), a �nite total annihilation ross setion requires

Z

d�

2

2<

�

A

(0)

q�q

A

(2)�

q�q

�

+

Z

d�

3

jA

(1)

q�qg

j

2

= �nite. (17.52)
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As we are used from the ase of UV divergenes, we have to apply also to IR divergenes a

regularisation sheme in order to make our mathematial manipulations well-de�ned. The

simplest sheme, introduing a �nite gluon mass, breaks gauge invariane. We an maintain

gauge invariane using again DR, now however in the limit d = 2! = 4+2", i.e. extrapolating

to more than four dimensions.

Before embarking onto alulations, let us disuss two features of this proess that an be

used to simplify the alulations. First, we an express j

�

Aj

2

= L

��

H

��

=Q

4

always as the

produt of a leptoni and hadroni tensor, L

��

and H

��

, if we are interested only in QCD

orretions. Moreover, QCD orretions a�et only the hadroni tensor H

��

. Then we an

write the ross setions as

� =

1

2Q

2

L

��

1

Q

4

Z

d�H

��

; (17.53)

where we used the ux fator 4I = 4p

ms

p

s = 2s and s = Q

2

. Seond, gauge invariane

implies Q

�

L

��

= � � � = Q

�

H

��

= 0, where Q

�

denotes the four-momentum of the photon or

Z boson in the s hannel. Hene the tensor struture of the leptoni and hadroni tensor has

to be of the form ��

��

+Q

�

Q

�

=Q

2

. This allows us to simplify the phase spae integration,

introduing

Z

d�H

��

(Q) =

1

d� 1

�

��

��

+

Q

�

Q

�

Q

2

�

H(Q

2

) (17.54)

with

H(Q

2

) = ��

��

Z

d�H

��

(Q) = �H

�

�

(Q

2

)� : (17.55)

The last step is valid, whenH

��

depends only onQ

2

, as it is the ase after averaging over spins.

Thus our task is redued to the alulation of the trae of the hadroni tensor. As additional

simpli�ation, we inlude only the photon diagrams whih give the dominant ontribution to

the total annihilation ross setion of an e

+

e

�

pair into hadrons, exept lose to the Z pole

when s ' m

2

Z

.

Tree-level proess We onsider �rst the tree-level proess e

+

e

�

! �qq, denoting the four-

momenta of the partiles by l

+

; l

�

; �q; q. The leptoni and hadroni tensor, L

��

and H

��

, are

given by

L

��

= e

2

[l

+

�

l

�

�

+ l

�

�

l

+

�

�Q

2

�

��

=2℄ (17.56)

and

H

��

= (e

q

e)

2

4N



[�q

�

q

�

+ q

�

�q

�

�Q

2

�

��

=2℄ ; (17.57)

where e

q

denotes the quark harge in units of the positron harge e. Evaluating L

�

�

=

e

2

[2(l

+

� l

�

)�Q

2

d=2℄ = e

2

Q

2

(1� d=2), we �nd as general expression for the ross setion

� =

e

2

4Q

4

d� 2

d� 1

H(Q

2

) : (17.58)

The spei� ingredient of the tree-level proess is the trae of the hadroni tensor. In the

limit of massless quarks, we obtain for its trae

H

�

�

= �2(e

q

e)

2

N



(2� d)Q

2

: (17.59)
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Figure 17.4.: Feynman diagrams for real gluon emission and vertex orretion.

Adding also the two-partile phase spae in DR, f. Eq. (17.82), with p

2

= s=4 = Q

2

=4 gives

for the tree-level ross setion

�

(0)

=

e

2

2Q

4

1� "

3� 2"

� 4(e

q

e)

2

N



Q

2

(1� ")�

1

4�

1

2

�

4�

Q

2

�

"

�(1� ")

�(2� 2")

=

4��

2

2Q

2

e

2

q

N



�

4��

2

Q

2

�

"

(1� ")

2

3� 2"

�(1� ")

�(2� 2")

:

(17.60)

Simple inspetion shows that this formula reprodues for " ! 0 the standard result (prob-

lem 18.??).

Real emission The hadroni urrent inluding the emission of an additional gluon with

momentum g and polarisation vetor "

(r)

�

as shown by the �rst two graphs in Fig. 17.4 is

given by

J

�

= "

(r)�

�

J

��

= �i�

2"

ee

q

g

s

T

a

ij

"

(r)�

�

�u(q)

�



�

q=+ g=

(q + g)

2



�

+ 

�

��q=� g=

(�q + g)

2



�

�

v(�q) :

The hadroni tensor is obtained ontrating the squared urrents with the polarisation vetor

of the gluon,

H

��

=

X

r

"

(r)�

�

"

(r)

�

X

J

��

J

���

= �J

��

J

��

�

: (17.61)

Here we ould evaluate the polarisation sum using

P

"

(r)�

�

"

(r)

�

= ��

��

, beause only o ne

external gluon is involved. Evaluating then the trae H

��

gives us

H

�

�

= C

F

N

C

(ee

q

g

s

)

2

�

S

qq

(2q � g)

2

+

S

�q�q

(2�q � g)

2

�

S

qq

+ S

�q�q

(2q � g)(2�q � g)

�

: (17.62)

In this expression, IR divergenes have shown up as poles for q � g ! 0 and �q � g ! 0. With

q �g = E

q

E

g

(1�os �

q

), where �

q

is the quark veloity, we an identify them as a ombination

of soft (E

g

! 0) and ollinear (�

q

! 0) singularities. Next we evaluate the spinor traes,

�nding

S

qq

= S

�q�q

= 32(1 � ")

2

[(q � g)(�q � g)℄ (17.63)

and

S

q�q

+ S

�qq

= �32(1 � ")[(q � q)Q

2

� 2"(q � g)(�q � g)℄ : (17.64)
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As we have already seen disussing the splitting funtions, the double pole from the propa-

gators will be onverted into a simple pole, anelling against the fator (q � g)(�q � g) in the

traes.

Now we introdue the momentum frations x

i

= 2p

i

� Q=Q

2

, whih for massless quarks

beome e.g. 1 � x

q

= 2�q � g=Q

2

. Combining then H

�

�

together with the three-partile phase

spae given in (17.83), we obtain

H

�

�

=

C

F

N

C

e

2

q

��

s

Q

2

�

�

4��

2
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2

�

"
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�

Z

1

0
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q

Z

1
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dx
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1

[(1� x

q
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)(x

q
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� 1)℄

"

�

�

(1� ")

�

1� x

q

1� x

�q

+

1� x

�q

1� x

q

�

+

2(x

q

+ x

�q

� 1)

(1� x

q

)(1� x

�q

)

� 2"

�

:

(17.65)

The nested integrals beome easier substituting x

q

= x and x

�q

= 1� vx. Solving them using

the de�nition (A.28) of Euler's Beta funtion, adding the 3-partile phase spae (17.83) and

expanding then the Gamma funtion around their poles, we end up with

� =

2C

F

N

C

e

2

q

��

s

Q

2

�

"

�

4��

2
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"
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�(2� 2")

�

3
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2

"

2

+

3

"

+

19

2

+O(")

�

= �
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C

F

�

s
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�
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2
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2

(1� ")

�(1� 3")
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"

2

+

3

"

+

19

2

+O(")

�

: (17.66)

Here, the 1="

2

term orresponds to a ombined soft and ollinear divergene, while the 1="

term orresponds to soft singularities.

Virtual orretions The QCD one-loop ontribution to e

+

e

�

! �qq onsists of self-energy

orretions to the quark lines and the vertex orretion. The interferene terms between these

virtual orretions and the tree-level diagram are of the same order as the real emission, f.

Eq. (17.51a), and should anel the IR divergenes found above. Sine we restrit ourselves

to massless quarks, the self-energy diagram ontains no sale and vanishes in DR, f. the

disussion of tadpoles in setion 12.3.2. Therefore we have to onsider only the vertex orre-

tion. Contrating the hadroni tensor of the interferene term between the vertex orretion

evaluated in R

�

gauge with � = 1 and the tree-level diagram gives

��

��

H

��

= 2i(eqg

s

�

2"

)

2

trfT

b

T

b

g

Z

d

d
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d

1

k

2

(k + q)

2

(k � �q)

2

� trfq=

�

(k= + q=)

�

(k= � �q=)

�

q=

�

g :

(17.67)

Combining the denominators using Feynman parameters results in

1

k

2

(k + q)

2

(k � �q)

2

=

Z

1

0

d�

Z

1��

0

d�

2

[�(k + q)

2

+ �(k � �q)
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+ (1� �� �)k
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3
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1
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d�

Z
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d�

2

[(k + �q � ��q)

2

+ ��Q

2

℄

3

: (17.68)
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Now the hange of variables k ! k��q+��q transforms the loop integral into standard form,

I(!; 3). Note that the loop integral in UV �nite, sine QCD orretions annot renormalise

the �qq vertex. Next we work out the trae in (17.67), and shift then variables, obtaining

trf� � � g = 8(1 � ")fQ

4

� 4[(k � q)(k � �q)� 2k � (q � �q)Q

2

+ "k

2

Q

2

g

= 8(1 � ")Q

2

f[1� �� � + (1� ")��℄Q

2

� (1� ")

2

(2� ")

�1

k

2

g :

(17.69)

Here, we have omitted all terms linear in k and replaed in the seond line k

�

k

�

by k

2

�

��

=d.

Combining then the trae and the loop integral, we obtain
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(17.70)

where we deouple the parameter integrals in I(") by the substitution � = (1� �)v,

I(") =

Z

1

0

d�

Z

1��

0

d�

1

(��)

"

�

1� �� � + (1� ")��

��

�

(1� ")

2

"

�

=

Z

1

0

d�

Z

1

0

dv

1� �

[�(1 � �)v℄

"

�

(1� �)(1 � v) + (1� ")�(1 � �)v

�(1 � �)v

�

(1� ")

2

"

�

=

�

2

(1� ")

�(2� 2")

�

1

"

2

+

1

2

+

1� "

2"

�

=

1

2

�

2

(1� ")

�(1� 2")

�

2

"

2

+

3

"

+

8

1� 2"

�

: (17.71)

Inserting the result in the formula for the ross setion gives

�
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: (17.72)

Reall that only the real part of this expression enters the total ross setion.

Total ross setion Combining the result for the real and virtual orretion, we arrive at

� = �
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(17.73)

A anellation of the poles requires thus that the prefator in the seond line equals one up

to O("

3

) terms. Using

�(1 + ") = 1� " +

�

�

2

12

+

1

2



2

�

"

2

+O("

4

) (17.74)

we obtain

�(1 + ")�(1 � 3")

�(1� 2")

= 1 +

1

2

(�")

2

+O("

3

) : (17.75)
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Combined with <f(�1)

"

g = <fexp(i�")g = 1� (�")

2

=2+O("

4

), we see that the O("

2

) terms

do anel as required in the ombined prefator. The total ross setion of e

+

e

�

annihilation

into hadrons at O(��

s

) is therefore free of IR divergenes and we an perform the limit "! 0,

obtaining

� = �

0

�

1 +

3

2

�

s

2�

C

F

+O(�

2

s

)

�

: (17.76)

Two obvious questions arise: First, what should we use as argument of �

s

? And seond,

whih onditions haraterise in general a quantity free of IR divergenes? The answer to the

�rst question follows from our general disussion of the RGE equation in setion 12.4: We

an absorb all sale dependene into the running oupling �

s

(�

2

) hoosing as sale �

2

= s.

As a bonus, we sum thereby the leading logarithmi orretions of all orders perturbation

theory.

IR safe observables The seond question is more omplex, and we sketh only a few general

results about so-alled IR safe observables. From an experimental point of view, physial

observables have to be measurable. However, any experimental devie has a �nite energy

and angular resolution, �E and �#, respetively. Any soft or ollinear splitting below these

resolution limits in pratise annot be measured and therefore the individual ross setions

of these unresolved proesses have to be summed up. Thus any observable like e.g. a n-jet

rate should be de�ned suh that it is invariant under the replaement p

i

! p

j

+p

k

whenever

p

j

or p

k

are small or ollinear. While the individual rates of unresolved proesses may have

IR divergenes, they should disappear if we use suÆiently inlusive quantities. This idea is

made preise in the Kinoshita-Lee-Nauenberg theorem whih states that the total rate

X

i;f2D

j hf jS jii j

2

(17.77)

in a general quantum �eld theory is IR �nite. Here, D � D(p

�

i

;�E;�#

i

) denotes the set

of states whih are degenerated for a given energy and angular resolution with the initial

and �nal states, respetively. In general, one has to sum thus also over all unresolved initial

states, inluding e.g. initial bremsstrahlung. An exeption is QED, where a summation over

unresolved �nal states is suÆient to obtain IR �nite quantities, beause no massless partiles

with non-zero eletri harged exist. This also the reason why it was suÆient to sum over

�nal-states in our example, where only the �nal state ontained strongly interating partiles.

17.A. Appendix: Phase spae integrals in DR

The two partile phase spae d�

2

was given in Eq. (9.120) for d = 4 dimensions. We rewrite

�rst this expression for general d,

d

2d�2
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2

= (2�)

d

Æ

(d)

(q � p

1
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2

)
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1
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1

(2�)

d�1
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d�1
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2

(2�)
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; (17.78)

and integrate then over d

d�1

p

2

,

Z

d

d�1

p

2

Æ

(d)

(q � p

1

� p

2

) = Æ(q �E

1

�E

2

) : (17.79)
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The remaining integrals beome

d
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1
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2
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1
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2

� � � d#

d�2

dE

1

; (17.80)

where the #

i

are the angles to d�2 oordinate axes. The spin-averaged jAj

2

does not depend

on the angles #

i

, and thus the integrals an be performed with the help of Eq. (A.29), giving

Z

d

d�1
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2

2E

1

= 2

d�3

�

(d�2)=2

�(d=2� 1)

�(d� 2)

dE

1

: (17.81)

Evaluating �nally the energy integral as in d = 3, we arrive at

Z

d
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2

=

1
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s
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�
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�

"

�(1� ")

�(2� 2")

: (17.82)

Following the same proedure, one obtains for the three-partile phase spae

Z

d�

3

=

Q

2

2(4�)

3

�

4�

Q

2

�

2"

1

�(2� 2")

Z

1

0

dx

Z

1

1�x

dy

1

[(1 � x)(1 � y)(1� z)℄

"

: (17.83)

Summary

Theories like QED or QCD with massless fermions ontain no dimensionful parameters and

are lassially sale and onformal invariant. The sale invariane of these theories is broken

by quantum orretions whih unavoidably introdue a mass sale. This quantum e�et is

responsible for the bulk of hadron masses.

In the parton piture, we replae a hadron whih is probed in a proess with momentum

transfer Q

2

by a olletions of quarks and gluons. For Q

2

� �

2

QCD

, we an treat them

as \free" partiles whih are interating independently. Measuring the parton distribution

funtions f

i

(x;Q

2

) at one sale Q

2

, perturbative QCD desribes via the DGLAP equation

their evolution to the new sale Q

02

. In the alulation of suÆiently exlusive quantities,

infrared singularities due to massless gluons and quarks anel.

Further reading

Two very useful referenes overing most aspets of perturbative QCD are [DKS09℄ and

[ESW03℄. Our presentation follows the one given in these referenes, where you an �nd

also a disussion of oherene e�ets and the resulting angular-ordered asade. E�etive

low-energy models for QCD as well as the trae anomaly are disussed by [DGH14℄.
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18. Gravity as a gauge theory

We introdue in this hapter the ation and the �eld equations of gravity, proeeding in

a way whih stresses the similarity of gravity and Yang-Mills theories: In partiular, we

determine the oupling between matter and gravity promoting the invariane of matter �elds

under global Lorentz transformations to a loal symmetry. As a bonus, this approah allows

us to desribe also the gravitational interations of fermions as well as to understand how

gravity selets the onnetion among the many mathematially possible ones on a Riemannian

manifold. We also derive the linearised Einstein equations whih an be used to desribe the

emission and propagation of weak gravitational waves.

18.1. Vielbein formalism and the spin onnetion

The equivalene priniple postulates that in a small enough region around the enter of a freely

falling oordinate system all physis is desribed by the laws of speial relativity. On larger

distanes, gravity manifests itself as urvature of spae-time. Thus physial laws involving

only quantities transforming as tensors on Minkowski spae are valid on a urved spae-time

performing the replaement

f�

�

; �

��

;d

4

xg ! fr

�

; g

��

;d

4

x

p

jgjg : (18.1)

Here, the ovariant derivative r

�

was de�ned using as onnetion the Christo�el symbols

(or Levi-Civita onnetion) from Eq. (6.43). We reall that the two requirements r

�

g

��

= 0

(\metri onnetion") and �

�

�

= �

�

�

(\torsionless onnetion") selet uniquely this onne-

tion. In the following, we want to understand if these onditions are a onsequene of Einstein

gravity or neessary additional onstraints. A useful framework to address these questions

is the vielbein formalism whih is also neessary to inlude fermions into the framework of

general relativity.

Vielbein formalism We apply the equivalene priniple as physial guide line to obtain the

physial laws inluding gravity: More preisely, we use that we an �nd at any point P a

loal inertial frame in whih the physial laws beome those known from Minkowski spae.

We demonstrate this �rst for the ase of a salar �eld �. The usual Lagrange density without

gravity,

L =

1

2

�

�

��

�

�� V (�) ; (18.2)

is still valid on a general manifold M(fx

�

g), if we use in eah point P loally free-falling

oordinates, �

a

(P ). In order to distinguish these two sets of oordinates, we label inertial

oordinates by Latin letters a; b; : : : while we keep Greek indies �; �; : : : for arbitrary oor-

dinates. We hoose the loally free-falling oordinates �

a

to be ortho-normal. Thus in these

oordinates the metri is given by ds

2

= �

ab

d�

a

d�

b

with � = diag(1;�1;�1;�1). Then the
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ation of a salar �eld inluding gravity is

S[�℄ =

Z

d

4

�

�

1

2

�

ab

�

a

��

b

�� V (�)

�

(18.3)

with �

a

= �=��

a

. This ation looks formally exatly as the one without gravity { however

we have to integrate over the manifoldM(fx

�

g) and all e�ets of gravity are hidden in the

dependene �

a

(x

�

).

We introdue now the vielbein (or for d = 4 tetrad) �elds e

a

�

by

d�

m

=
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m

�x

�

dx

�

� e

m

�

(x) dx

�

: (18.4)

Thus we an view the vielbein e

m

�

(x) both as the transformation matrix between arbitrary

oordinates x and inertial oordinates � or as a set of four vetors in T

�

x

M . In the absene

of gravity, we an �nd in the whole manifold oordinates suh that e

m

�

(x) = Æ

m

�

. The inverse

vielbein e

�

m

is de�ned analogously by

dx
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�
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m
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(x) d�
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: (18.5)

The name is justi�ed by

d�

m

= e

m

�

dx

�

= e

m

�

e

�

n

d�

n

(18.6)

and thus e

m

�

e

�

n

= Æ

m

n

. We an view the vielbein as a kind of square-root of the metri tensor,

sine

ds
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mn
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mn
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(18.7)

and hene

g

��

= �

mn

e

m

�

e

n

�

: (18.8)

Taking the determinant, we see that the volume element is

d

4

� =

p

jgjd

4

x = det(e

m

�

)d

4

x � Ed

4

x : (18.9)

We an onstrut mixed tensors, having both Latin and Greek indies. Then Latin indies

are raised and lowered by the at metri, while Greek indies are raised and lowered by the

urved metri. For instane, we an rewrite the energy-momentum tensor as T

��

= e

m

�

T

m�

=

e

m

�

e

n

�

T

mn

.

We have now all the ingredients needed to express the ation (18.3) in arbitrary oordinates

x

�

of the manifoldM. We �rst hange the derivatives,

L =

1

2

�

mn

e

m

�

e

n

�

�

�

��

�

�� V (�) =

1

2

g

��

�

�

��

�

�� V (�) (18.10)

and then the volume element in the ation,

S[�℄ =

Z

d

4

x

p

jgj

�

1

2

g

��

�

�

��

�

�� V (�)

�

: (18.11)

As it should, we reprodued the usual ation of a salar �eld inluding gravity. Note that the

sole e�et of gravitational interations is ontained in the metri tensor and its determinant,

while the onnetion plays no role sine r

�

� = �

�

�. Similarly, the onnetion drops out of

the Lagrangian of a Yang-Mills �eld, sine its �eld-strength tensor is antisymmetri.
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18. Gravity as a gauge theory

Fermions and the spin onnetion We now proeed to the spin-1/2 ase. In this ase,

the simple substitution rule �

�

! r

�

an not be used, beause the onnetions de�ned by

Eq. (6.26) an be applied only to objets with tensorial indies. Applying instead the vielbein

formalism, we reall �rst the Dira Lagrangian without gravity,

L =

�

 (i

�

�

�

�m) (18.12)

where f

�

; 

�

g = 2�

��

. Performing a Lorentz transformation, ~x

�

= �

�

�

x

�

, the Dira spinor

 transforms as

~

 (~x) = S(�) (x) = exp

�

�

i

4

!

��

�

��

�

 (x) (18.13)

with !

��

= �!

��

as the six parameters and �

��

=

i

2

[

�

; 

�

℄ as the six in�nitesimal generators

of these transformations.

Swithing on gravity, we replae x

�

! �

m

and 

�

! 

m

. General ovariane redues now to

the requirement that we have to allow in any loal inertial system independent Lorentz trans-

formations. In other words, we promote the invariane under global, spae-time independent

Lorentz transformations � to the invariane under loal Lorentz transformations �(x). This

requirement allows us to derive the orret ovariant derivative, in a manner ompletely anal-

ogous to the Yang-Mills ase: We have to ompensate the term introdued by the spae-time

dependene of S(�(�)) in

�

a

 !

~

�

a

~

 (

~

�) = �

b

a

�

b

[S(�) (�)℄ (18.14)

by introduing a \Latin" ovariant derivative,

r

a

= e

�

a

(�

�

+ i!

�

) ; (18.15)

and requiring the inhomogeneous transformation law

!

�

! e!

�

= S!

�

S

y

� iS�

�

S

y

(18.16)

for !. As a result, the ovariant derivative transforms as

r

a

!

e

r

a

= �

b

a

Sr

b

S

y

(18.17)

and the Dira Lagrangian is invariant under loal Lorentz transformations. The onnetion

!

�

is a matrix in spinor spae. Expanding it in the basis elements �

��

, we �nd as more

expliit expression for the ovariant derivative

r

a

= �

a

+

i

2

!

��

a

�

��

= e

�

a

�

�

�

+

i

2

!

��

�

�

��

�

= e

�

a

(�

�

+ !

��

�

J

��

) : (18.18)

In the last step we replaed the in�nitesimal generators �

��

spei� for the spinor represen-

tation by the general generators J

��

of Lorentz transformations hosen appropriate for the

representation the r

a

at on. In this form, the ovariant derivative an be applied to a �eld

with arbitrary spin. The Lie algebra of the Lorentz group implies that the onnetion !

��

a

is

antisymmetri in its Greek indies, if they are both up or down, !

��

a

= �!

��

a

.

The transformation law (18.16) of the spin onnetion !

a

under a Lorentz transformation S

is ompletely analogous to the transformation properties (10.16) of a Yang-Mills �eldA

�

under

a gauge transformation U . One should keep in mind however two important di�erenes: First,

a vetor lives in a tangent spae whih is naturally assoiated to a manifold: In partiular,
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18.1. Vielbein formalism and the spin onnetion

we an assoiate a vetor in T

P

M with a trajetory x

�

(�) through P . Therefore we have

the natural oordinate basis �

�

in T

P

M and an introdue in a seond step vielbein �elds.

In ontrast, matter �elds  (x) live in their group manifold whih is attahed arbitrarily at

eah point of the manifold, and the gauge �elds at as a onnetion telling us how we should

transport  (x) to

~

 (x

0

). Seond, we assoiate physial partiles with spin s to irreduible

representations of the Poinar�e group: Thus we identify utuations of the gauge �eld A

�

as

the quanta of the vetor �eld, while we assoiate in the ase of gravity not the utuations

of the onnetion but of the metri tensor g

��

with partiles.

Transition to the standard notation We now establish the onnetion between the vielbein

and the standard formalism, using that for tensor �elds the two formalisms have to agree.

Inserting into the de�nition of the ovariant derivative for the omponents A

a

of a vetor A,

r

�

A

a

= �

�

A

a

+ !

a

� b

A

b

; (18.19)

the deomposition A

a

= e

a

�

A

�

and requiring the validity of the Leibniz rule gives

r

�

A

a

= (r

�

e

a

�

)A

�

+ e

a

�

(r

�

A

�

) (18.20a)

= (r

�

e

a

�

)A

�

+ e

a

�

�

�

�

A

�

+�

�

��

A

�

�

: (18.20b)

Using

�

�

A

a

= �

�

(e

a

�

A

�

) = e

a

�

(�

�

A

�

) + (�

�

e

a

�

)A

�

(18.21)

to eliminate the seond term in (18.20b), we obtain

r

�

A

a

= (r

�

e

a

�

)A

�

+ �

�

A

a

� (�

�

e

a

�

)A

�

+ e

a

�

�

�

��

A

�

: (18.22)

Comparing this to Eq. (18.19) we an read o� how the ovariant derivative ats on an objet

with mixed indies,

r

�

e

a

�

= �

�

e

a

�

� �

�

��

e

a

�

+ !

a

� b

e

b

�

: (18.23)

More generally, ovariant indies are ontrated with the usual onnetion �

�

��

while vielbein

indies are ontrated with !

a

� b

. In a moment, we will show that the ovariant derivative of

the vielbein �eld is zero, r

�

e

a

�

= 0. Sometimes this property is alled \tetrade postulate",

but in fat it follows naturally from the de�nition of the vielbein �eld.

In order to derive an expliit formula for the spin onnetion !

a

� b

we ompare now the

ovariant derivative of a vetor in the two formalisms. First, we write in a oordinate basis

rA = (r

�

A

�

)dx

�


 �

�

= (�

�

A

�

+ �

�

��

A

�

)dx

�


 �

�

: (18.24)

Next we ompare this expression to the one using a mixed basis,

rA = (r

�

A

m

) dx

�


 e

m

= (�

�

A

m

+ !

m

� n

A

n

) dx

�


 e

m

(18.25a)

= [�

�

(e

m

�

A

�

) + !

m

� n

e

n

�

A

�

℄ dx

�


 (e

�

m

�

�

) : (18.25b)

Moving e

�

m

to the left and using the Leibniz rule as well as e

�

m

e

m

�

= Æ

�

�

, it follows

rA = e

�

m

[e

m

�

�

�

A

�

+A

�

�

�

e

m

�

+ !

m

� n

e

n

�

A

�

℄ dx

�


 �

�

(18.26a)

= [�

�

A

�

+ e

�

m

(�

�

e

m

�

)A

�

+ e

�

m

e

n

�

!

m

� n

A

�

℄ dx

�


 �

�

: (18.26b)
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18. Gravity as a gauge theory

Relabelling indies and omparing to Eq. (18.24), we �nd as relation between the two on-

netions

�

�

��

= e

�

m

�

�

e

m

�

+ e

�

m

e

n

�

!

m

� n

: (18.27)

Clearly, the onnetion �

�

��

is in general not symmetri, �

�

��

6= �

�

��

. Now we are also in

the position to show that the ovariant derivative of the vielbein �eld vanishes. Multiplying

Eq. (18.27) with two vielbein �elds, we arrive �rst at

!

m

� n

= e

m

�

e

�

n

�

�

��

� e

�

n

�

�

e

m

�

: (18.28)

Multiplying one again with a vielbein �eld, we obtain

e

n

�

!

m

� n

= e

n

�

(e

m

�

e

�

n

�

�

��

� e

�

n

�

�

e

m

�

) (18.29a)

= e

m

�

Æ

�

�

�

�

��

� Æ

�

�

�

�

e

m

�

= e

m

�

�

�

��

� �

�

e

m

�

: (18.29b)

Inserted into Eq. (18.23), the \tetrade postulate" r

�

e

a

�

= 0 follows.

18.2. Ation of gravity

Einstein-Hilbert ation The analogy between the Yang-Mills �eld-strength and the Riemann

tensor shown by Eq. (10.49) suggests as Lagrange density for the gravitational �eld

L = �

p

jgjR

����

R

����

: (18.30)

This Lagrange density has mass dimension 4 and would thus lead to a dimensionless grav-

itational oupling onstant and a renormalisable theory of gravity. However, suh a theory

would be in ontradition to Newton's law. Hilbert hose instead the urvature salar whih

has the required mass dimension d = 6,

L

EH

= �

p

jgjR : (18.31)

As we know, we an always add a onstant term to the Lagrangian, R ! R + 2�. Suh

a term would imply that lassially empty spae has a onstant vauum energy whih

gravitates. The Lagrangian is a funtion of the metri, its �rst and seond derivatives

1

,

L

EH

(g

��

; �

�

g

��

; �

�

�

�

g

��

). The resulting ation

S

EH

[g

��

℄ = �

Z




d

4

x

p

jgj fR+ 2�g (18.32)

is a funtional of the metri tensor g

��

, and a variation of the ation with respet to the metri

gives the �eld equations for the gravitational �eld. If we onsider gravity oupled to fermions,

we have to use the spin onnetion !

�

in the matter Lagrangian as well as expressing

p

jgj

and R through Latin quantities,

p

jgj ! E and R = R

��

g

��

! R

mn

�

mn

.

We derive the resulting �eld equations for the metri tensor g

��

diretly from the ation

priniple

ÆS

EH

= �Æ

Z




d

4

x

p

jgj(R+ 2�) = �Æ

Z




d

4

x

p

jgj (g

��

R

��

+ 2�) = 0 : (18.33)

1

Reall that the Lagrange equations are modi�ed in the ase of higher derivatives whih is one reason why

we diretly vary the ation in order to obtain the �eld equations.
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18.2. Ation of gravity

We allow for variations of the metri g

��

restrited by the ondition that the variation of g

��

and its �rst derivatives vanish on the boundary �
,

ÆS

EH

= �

Z




d

4

x

n

p

jgj g

��

ÆR

��

+

p

jgjR

��

Æg

��

+ (R+ 2�) Æ

p

jgj

o

: (18.34)

Our task is to rewrite the �rst and third term as variations of Æg

��

or to show that they are

equivalent to boundary terms. Let us start with the �rst term. Choosing inertial oordinates,

the Rii tensor at the onsidered point P beomes

R

��

= �

�

�

�

��

� �

�

�

�

��

: (18.35)

Hene

g

��

ÆR

��

= g

��

(�

�

Æ�

�

��

� �

�

Æ�

�

��

) = g

��

�

�

Æ�

�

��

� g

��

�

�

Æ�

�

��

; (18.36)

where we exhanged the indies � and � in the last term. Sine �

�

g

��

= 0 at P , we an

rewrite the expression as

g

��

ÆR

��

= �

�

(g

��

Æ�

�

��

� g

��

Æ�

�

��

) = �

�

X

�

: (18.37)

The quantity X

�

is a vetor, sine the di�erene of two onnetion oeÆients transforms

as a tensor. Replaing in Eq. (18.37) the partial derivative by a ovariant one promotes it

therefore in a valid tensor equation,

g

��

ÆR

��

= r

�

V

�

=

1

p

jgj

�

�

(

p

jgjV

�

) : (18.38)

Thus this term orresponds to a surfae term whih we assume to vanish. Next we rewrite

the third term using

Æ

p

jgj =

1

2

p

jgj

Æjgj =

1

2

p

jgj g

��

Æg

��

= �

1

2

p

jgj g

��

Æg

��

(18.39)

and obtain

ÆS

EH

= �

Z




d

4

x

p

jgj

�

R

��

�

1

2

g

��

R� � g

��

�

Æg

��

= 0 : (18.40)

Hene the metri ful�ls in vauum the equation

�

1

p

jgj

ÆS

EH

Æg

��

= R

��

�

1

2

Rg

��

� �g

��

� G

��

� �g

��

= 0 ; (18.41)

where we introdued the Einstein tensor G

��

. The onstant � is alled the osmologial

onstant.

We onsider now the ombined ation of gravity and matter, as the sum of the Einstein-

Hilbert Lagrangian L

EH

=2� and the Lagrangian L

m

inluding all relevant matter �elds,

L =

1

2�

L

EH

+L

m

= �

1

2�

p

jgj(R + 2�) +L

m

: (18.42)

We will determine the value of the oupling onstant � in the next setion, demanding that

we reprodue Newtonian dynamis in the weak-�eld limit. We have already argued that
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18. Gravity as a gauge theory

the soure of the gravitational �eld is the energy-momentum stress tensor whih lead to the

de�nition

2

p

jgj

ÆS

m

Æg

��

= T

��

: (18.43)

Einstein's �eld equation follows then as

G

��

� �g

��

= �T

��

: (18.44)

Two remarks are in order: First, the osmologial onstant � measures the urvature of an

empty lassial spae-time. Moving � to the RHS of the Einstein equations, we see that its

e�et is equivalent to the stress density T

��

= ��g

��

or a vauum energy density �

�

= ��

with EoS w = P

�

=�

�

= �1, see problem 19.??. Seond, we assumed that the boundary

term arising from g

��

ÆR

��

= r

�

V

�

vanishes, whih orrespond to a zero ux of V

�

through

�
. In general, this ux is zero only for a ompat manifold 
 (sine then �
 = 0) or if we

require that not only Æg

��

but also Æ�

�

��

vanishes on the boundary �
. The seond option

is naturally implemented in the Palatini ation priniple whih we onsider next. Using the

Einstein-Hilbert ation, one should add instead a boundary term whih anels the variation

of g

��

ÆR

��

= r

�

V

�

, for details see [Poi07℄.

Palatini ation We start from the Einstein-Hilbert Lagrangian (18.31), but onsider

it now as a funtion of the metri tensor, the onnetion and its �rst derivatives,

L

EH

(g

��

;�

�

��

; �

�

�

�

��

), while we allow an independent variation of the metri tensor and

the onnetion in the ation. We obtain the desired dependene of the Lagrangian expressing

the Rii tensor through the onnetion and its derivatives,

L

EH

= �

p

jgjg

��

R

��

=

p

jgjg

��

�

�

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

�

: (18.45)

For simpliity, we set also � = 0. Then the variation with respet to the metri,

Æ

g

S

EH

= �

Z




d

4

x Æ

n

p

jgj g

��

o

R

��

= 0 (18.46)

gives R

��

= 0. As we will show in (18.66), this ondition is equivalent with the usual Einstein

equations in vauum. For the variation with respet to the onnetion we use �rst the Palatini

equation,

Æ

�

S

EH

= �

Z




d

4

x

p

jgj g

��

ÆR

��

= �

Z




d

4

x

p

jgj g

��

�

r

�

(Æ�

�

��

)�r

�

(Æ�

�

��

)

�

: (18.47)

Applying then the Leibniz rule and relabelling some indies, we �nd

Æ

�

S

EH

=�

Z




d

4

x

p

jgjr

�

�

g

��

Æ�

�

��

� g

��

Æ�

�

��

�

�

Z




d

4

x

p

jgj

�

(r

�

g

��

)Æ�

�

��

� (r

�

g

��

)Æ�

�

��

�

:

(18.48)

We kept the seond line, beause we we do not know yet if the ovariant derivative of the

metri vanishes for an arbitrary onnetion. Next we perform a partial integration of the �rst
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18.3. Linearised gravity

two terms, onverting it into a surfae term whih we an drop. In the remaining part we

relabel indies so that we an fator out the variation of the onnetion,

Æ

�

S

EH

=

Z




d

4

x

p

jgj

�

Æ

�

�

r

�

g

��

�r

�

g

��

�

Æ�

�

��

: (18.49)

We use now that the onnetion is symmetri in the absene of fermion. Then also the

variation Æ�

�

��

is symmetri and the antisymmetri part in the square braket drops out.

Asking that Æ

�

S

EH

= 0 gives therefore

1

2

Æ

�

�

r

�

g

��

+

1

2

Æ

�

�

r

�

g

��

�r

�

g

��

= 0 (18.50)

or r

�

g

��

= r

�

g

��

= 0. Thus the Einstein-Hilbert ation implies the metri ompatibility of

the onnetion.

Performing the same exerise with the Einstein-Hilbert plus the matter ation onsidered

as funtional of the vielbein e

�

m

and the onnetion !

�

, one �nds the following: From the

variation Æ

!

S

EH

one obtains automatially a metri onnetion whih is however in general not

symmetri. The torsion is soured by the spin-density of fermions. The variation Æ

e

S

EH

gives

the usual Einstein equation. This result justi�es the usual hoie of a torsionless onnetion

whih is metri ompatible: Although e.g. a star onsists of a olletion of individual partiles

arrying spin s

i

, its total spin sums up to zero,

P

i

s

i

' 0, beause they are unorrelated.

Thus we an desribe marosopi matter in general relativity as a lassial spinless

2

point

partile (or a uid if its extension is important) leading to a symmetri onnetion.

18.3. Linearised gravity

We are looking for small perturbations h

��

around the Minkowski metri �

��

,

g

��

= �

��

+ h

��

; h

��

� 1 : (18.51)

These perturbations may be aused either by the propagation of gravitational waves or by

the gravitational potential of a star. In the �rst ase, experimental limits showed that one

should not hope for h larger than O(h) � 10

�21

. Keeping only terms linear in h is therefore

an exellent approximation. Choosing in the seond ase as appliation e.g. the spiral-in of a

binary system, deviations from the Newtonian limit an beome arbitrarily large. Hene one

needs a systemati \post-Newtonian" expansion or has to perform a full numerial analysis

to desribe properly suh ases.

Linearised Einstein equations in vauum From �

�

�

��

= 0 and the de�nition

�

�

��

=

1

2

g

��

(�

�

g

��

+ �

�

g

��

� �

�

g

��

) (18.52)

we �nd for the hange of the onnetion linear in h

Æ�

�

��

=

1

2

�

��

(�

�

h

��

+ �

�

h

��

� �

�

h

��

) =

1

2

(�

�

h

�

�

+ �

�

h

�

�

� �

�

h

��

) : (18.53)

2

The urious reader may wonder if orbital angular momentum leads to torsion: One way to see that the

answer is no is to realise that one annot de�ne an orbital angular momentum density whih transforms

properly as a tensor, f. Eq. (5.26f).
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18. Gravity as a gauge theory

Here we used � to raise indies whih is allowed in linear approximation. Remembering the

de�nition of the Riemann tensor,

R

�

���

= �

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

; (18.54)

we see that we an neglet the terms quadrati in the onnetion terms. Thus we �nd for the

hange

ÆR

�

���

= �

�

Æ�

�

��

� �

�

Æ�

�

��

=

1

2

�

�

�

�

�

h

�

�

+ �

�

�

�

h

�

�

� �

�

�

�

h

��

� (�

�

�

�

h

�

�

+ �

�

�

�

h

�

�

� �

�

�

�

h

��

)

	

=

1

2

�

�

�

�

�

h

�

�

+ �

�

�

�

h

��

� �

�

�

�

h

��

� �

�

�

�

h

�

�

	

: (18.55)

The hange in the Rii tensor follows by ontrating � and �,

ÆR

�

���

=

1

2

n

�

�

�

�

h

�

�

+ �

�

�

�

h

��

)� �

�

�

�

h

��

� �

�

�

�

h

�

�

o

: (18.56)

Next we introdue h � h

�

�

, � = �

�

�

�

, and relabel the indies,

ÆR

��

=

1

2

�

�

�

�

�

h

�

�

+ �

�

�

�

h

�

�

��h

��

� �

�

�

�

h

	

: (18.57)

We now rewrite all terms apart from �h

��

as derivatives of the vetor

�

�

= �

�

h

�

�

�

1

2

�

�

h ; (18.58)

obtaining

ÆR

��

=

1

2

f��h

��

+ �

�

�

�

+ �

�

�

�

g : (18.59)

Looking bak at the properties of h

��

under gauge transformations, Eq. (7.41), we see that we

an gauge away the seond and third term. Thus the linearised Einstein equation in vauum,

ÆR

��

= 0, beomes simply

�h

��

= 0 ; (18.60)

if the harmoni gauge

�

�

= �

�

h

�

�

�

1

2

�

�

h = 0 (18.61)

is hosen. Hene the familiar wave equation holds for all ten independent omponents of

h

��

, and the perturbations propagate with the speed of light. Inserting plane waves h

��

=

"

��

exp(�ikx) into the wave equation, one �nds immediately that k is a null vetor.

TT gauge We want to re-derive our old result for the polarisation tensor desribing the

physial states ontained in a gravitational perturbation. We onsider a plane wave h

��

=

"

��

exp(�ikx). After hoosing the harmoni gauge (18.61), we an still perform a gauge

transformation using four funtions �

�

satisfying ��

�

= 0. We an hoose them suh that

four omponents of h

��

vanish. In the TT gauge, we set (i = 1; 2; 3)

h

0i

= 0; h = 0 : (18.62)

302



18.3. Linearised gravity

The harmoni gauge ondition beomes �

�

= �

�

h

�

�

or

�

0

= �

�

h

�

0

= �

0

h

0

0

= �i!"

00

e

�ikx

= 0 ; (18.63a)

�

a

= �

�

h

�

a

= �

b

h

b

a

= ik

b

"

ab

e

ikx

= 0 : (18.63b)

Thus "

00

= 0 and the polarisation tensor is transverse, k

b

"

ab

= 0. If we hoose the plane wave

propagating in z diretion, k = ke

z

, the z raw and olumn of the polarisation tensor vanishes

too. Aounting for h = 0 and "

��

= "

��

, only two independent elements are left, and we

reover our old result,

"

��

=

0

B

B

�

0 0 0 0

0 "

11

"

12

0

0 "

12

�"

11

0

0 0 0 0

1

C

C

A

: (18.64)

In general, one an onstrut the polarisation tensor in TT gauge by setting �rst the non-

transverse part to zero and then subtrating the trae. The resulting two independent ele-

ments are (again for k = ke

z

) then "

11

= 1=2("

xx

� "

yy

) and "

12

.

Linearised Einstein equations with soures We rewrite �rst the Einstein equation in an

alternative form where the only geometrial term on the LHS is the Rii tensor. Beause of

R

�

�

�

1

2

Æ

�

�

(R+ 2�) = R� 2(R + 2�) = �R� 4� = �T

�

�

; (18.65)

we an perform with T � T

�

�

the replaement R = ��T � 4� in the Einstein equation and

obtain

R

��

= �(T

��

�

1

2

g

��

T )� g

��

� : (18.66)

This form of the Einstein equations is often useful, when it is easier to alulate T that R.

Note also that (18.66) informs us that an empty universe with � = 0 has a vanishing Rii

tensor R

��

= 0.

Now we move on to the determination of the linearised Einstein equations with soures.

We found 2ÆR

��

= ��h

��

. By ontration follows 2ÆR = ��h. Combining both terms gives

�

�

h

��

�

1

2

�

��

h

�

= �2(ÆR

��

�

1

2

�

��

ÆR) = �2�ÆT

��

: (18.67)

Sine we assumed an empty universe in zeroth order, ÆT

��

is the omplete ontribution to the

stress tensor. We omit therefore in the following the Æ in ÆT

��

. Next we introdue as useful

short-hand notation the \trae-reversed" amplitude as

�

h

��

� h

��

�

1

2

�

��

h : (18.68)

The harmoni gauge ondition beomes then

�

�

�

h

��

= 0 (18.69)

and the linearised Einstein equation in the harmoni gauge follow as

�

�

h

��

= �2�T

��

: (18.70)

Beause of

�

�

h

��

= h

��

and Eq. (18.66), we an rewrite this wave equation also as

�h

��

= �2�

�

T

��

(18.71)

with the trae-reversed stress tensor

�

T

��

� T

��

�

1

2

�

��

T .
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18. Gravity as a gauge theory

Newtonian limit The Newtonian limit orresponds to v= ! 0 and thus the only non-zero

element of the energy-momentum tensor beomes T

00

= �. We will show later that the metri

around a point mass an be written in the weak-�eld limit as

ds

2

= (1 + 2�)dt

2

� (1� 2�)

�

dx

2

+ dy

2

+ dz

2

�

(18.72)

with � as the Newtonian gravitational potential. Comparing this metri to Eq. (18.51), we

�nd as metri perturbations

h

00

= 2� h

ij

= 2Æ

ij

� h

0i

= 0 : (18.73)

In the stati limit �! �� and v = 0, and thus

��

�

h

00

�

1

2

�

00

h

�

= �4�� = �2�� : (18.74)

Hene the linearised Einstein equation has the same form as the Newtonian Poisson equation,

and the onstant � equals � = 8�G.

Detetion priniple of gravitational waves Consider the e�et of a gravitational wave on a

free test partile that is initially at rest, u

�

= (1; 0; 0; 0). Then the geodesi equation simpli�es

to _u

�

= �

�

00

. The four relevant Christo�el symbols are in the linearised approximation, f.

Eq. (18.53),

�

�

00

=

1

2

(�

0

h

�

0

+ �

0

h

�

0

� �

�

h

00

) : (18.75)

We are free to hoose the TT gauge in whih all omponent of h

��

appearing on the RHS

are zero. Hene the aeleration of the test partile is zero and its oordinate position is

una�eted by the gravitational wave: The TT gauge de�nes a \omoving" oordinate system.

The physial distane l between two test-partiles is given by integrating

dl

2

= g

ab

d�

a

d�

b

= (h

ab

� Æ

ab

)d�

a

d�

b

; (18.76)

where g

ab

is the spatial part of the metri and d� the spatial oordinate distane between

in�nitesimal separated test partiles. Hene the passage of a gravitational wave, h

��

/

"

��

os(!t), results in a periodi hange of the separation of freely moving test partiles.

Figure 18.1 shows that a gravitational wave exerts tidal fores, strething and squashing test

partiles in the transverse plane. The relative size of the hange, �L=L, is given by the

amplitude h of the gravitational wave. It is this tiny periodi hange, �L=L

<

�

10

�21

os(!t),

whih gravitational wave experiments aim to detet. There are two basi types of gravitational

wave experiments: In the �rst one, one uses that the tidal fores of a passing gravitational wave

exite lattie vibrations in a solid state. If the wave frequeny is resonant with a lattie mode,

the vibrations might be ampli�ed to detetable levels. In the seond type of experiment, the

free test partiles are replaed by mirrors. Between the mirrors, a laser beam is many times

reeted, inreasing thereby the e�etive length L and thus �L, before two beams at 90

Æ

are brought to interferene. As the most promising gravitational wave soure the inspiral of

binary systems omposed of neutron stars or blak holes have been suggested. In September

2015, the Advaned Laser Interferometer Gravitational-Wave Observatory (Advaned LIGO)

deteted for the �rst time suh a signal [A

+

16, CM16℄. Additionally, a stohasti bakground

of gravitational waves might be produed during ination and phase transitions in the early

universe.
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18.3. Linearised gravity

Figure 18.1.: The e�et of a right-handed polarised gravitational wave on a ring of trans-

verse test partiles as funtion of time; the dashed line shows the state without

gravitational wave.

Linearised ation of gravity We have derived the linearised wave equation desribing grav-

itational waves diretly from the Einstein equation. Now we want to obtain the linearised

ation of gravity. A straightforward but lengthy approah would be to expand the Einstein-

Hilbert ation to O(h

3

). Instead, we pro�t from our knowledge of the graviton propagator,

whih we derived in hapter 4 in Eq. (7.46),

D

��;��

F

(k) =
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2

(��
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��
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��
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+ �

��

�

��

)

k

2

+ i"

=
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(k)

k

2

+ i"

: (18.77)

The orresponding Lagrangian is as usually quadrati in the �elds,

1

2

h

��

P

��;��

�h

��

. Per-

forming partial integrations and the ontrations with the metri tensors gives us as the

orresponding ation

S = �

1

32�G

Z

d

4

x
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�
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�
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�
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�
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2

�

: (18.78)

We know that the propagator of a massless partiles with heliity h > 1=2 an be inverted only,

if either the gauge freedom is ompletely �xed or a gauge-�xing term is added. In ontrast

to the TT gauge, the harmoni gauge ontains still unphysial degrees of freedom. Thus the

expression (18.78) equals the quadrati Einstein-Hilbert Lagrangian in the harmoni gauge

plus a gauge-�xing term. The propagator derived in Eq. (7.46) orresponds to the R

�

-gauge

with � = 1, and thus the e�etive Lagrangian is

L

(2)

EH

+L
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1
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: (18.79)

Speialising Eq. (18.78) to the TT gauge, we obtain

S

EH

= �

1

32�G

Z

d

4

x

1

2

(�

�

h

ij

)

2

: (18.80)

We an express an arbitrary polarisation state as the sum over the polarisation tensors for

irular polarised waves,

h

��

=

X

a=+;�

h

(a)

"

(a)

��

: (18.81)
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18. Gravity as a gauge theory

Inserting this deomposition into (18.80) and using "

(a)

��

"

��(b)

= Æ

ab

, the ation beomes

S

TT

EH

= �

1

32�G

X

a

Z

d

4

x

1

2

�

�

�

h

(a)

�

2

: (18.82)

Thus the gravitational ation in the TT gauge onsists of two salar degrees of freedom, h

+

and

h

�

, whih determine the ontribution of left- and right-irular polarised waves. Apart from

the prefator, the ation is the same as the one of two salar �elds. This means that we an

short-ut many alulations involving gravitational waves by using simply the orresponding

results for salar �elds. We an understand this equivalene by realling that the part of the

ation ation quadrati in the �elds just enfores the relativisti energy-momentum relation

via a Klein-Gordon equation for eah �eld omponent. The remaining ontent of (18.78) is

just the rule how the unphysial omponents in h

��

have to be eliminated. In the TT gauge,

we have applied already this information, and thus the two salar wave equations for h

(�)

summarise the Einstein equations at O(h

2

).

Before summarising, we mention a reently found onnetion between gravity and gauge

theories. First we note that we an express the polarisation tensor "

��

of a graviton as the

tensor produt of two polarisation vetors "

�

of a gauge boson, "

(a)

��

= "

(a)

�

"

(a)

�

. Motivated

by this relation, one may wonder if one an onnet amplitudes ontaining gravitons to those

ontaining e.g. gluons. In general, this annot be true sine loop graphs of renormalisable

and non-renormalisable have very di�erent properties. However, one an onnet tree-level

amplitudes in gravity to the \square" of the orresponding amplitude in a non-abelian gauge

theory: For instane, the vertex V

�

1

�
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�

3

�

1

�

2
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3
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1
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) onneting three on-shell gravitons

an be expressed as
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) ; (18.83)

with V

�

1

�

2

�

3

= �

�

1

�

2

(p

1

� p

2

)

�

3
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�

2
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2

� p
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1
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�

3

�

1

(p

3

� p
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)

�

2

. But V

�

1

�

2

�

3

agrees with

the three-gluon vertex (10.82) after stripping o� its olour fator.

Summary

The vielbein formalism allows us not only to ouple fermions to gravity but lari�es also that

the metri ompatibility of the onnetion is a onsequene of Einstein's general relativity.

In ontrast, the onnetion is in general not symmetri, although deviations an be negleted

for marosopi soures of gravity. The linearised Einstein equations are often suÆient to

desribe the propagation of gravitational waves. In the TT gauge, the Einstein-Hilbert ation

is proportional to the ation of a massless salar �eld.

Further reading

[Car03℄ presents a lear disussion of the vielbein formalism and Cartan's struture equations.

The Einstein-Hilbert ation inluding boundary term is disussed by [Poi07℄. For an intro-

dution to gravitational waves see e.g. [HEL06℄. The onnetion of tree-level amplitudes in

gauge and gravity theories is disussed by [Wei16℄.
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19. Cosmologial models for an homogeneous,

isotropi universe

The most important observational property of our Universe is its homogeneity and isotropy

on suÆiently large sales: Only this feature allows us to dedue from observations performed

at a single point generi properties of the Universe. While the homogeneity and isotropy of

the Universe was merely a postulate|dubbed osmologial priniple| at the beginning of

the 20th entury, observations of the osmi mirowave bakground (CMB) have shown that

the early Universe was isotropi at the level of 10

�4

around us. Note that a spae isotropi

around at least two points is also homogeneous, while a homogeneous spae is not neessarily

isotropi. Baring suggestions that we live at a unique plae, the early Universe was therefore

also homogeneous on large sales. The homogeneity of the Universe implies moreover that

beyond a suÆiently large sale no new types of gravitationally bound strutures appear:

In partiular, the sequene of hierarhial strutures ! star lusters ! galaxies ! galaxy

lusters ! superluster of galaxies stops and superlusters with sizes of order 100Mp are

the largest bound systems found in the Universe. For omparison, the size of the Universe

visible at the present epoh is of order 3000Mp, i.e. a fator 30 larger. In this hapter, we

will disuss the evolution of perfetly homogeneous and isotropi osmologial models. The

question how the inhomogeneities measured in the CMB were generated and how they have

evolved into the very inhomogeneous present Universe will be addressed in hapter 23.

19.1. FLRW metri

Weyl's postulate In 1923, Hermann Weyl suggested the existene of a privileged lass of

observers in the universe, namely those following the \average" motion of galaxies. He postu-

lated that these observers follow time-like geodesis that never interset. They may however

diverge from a point in the (�nite or in�nite) past or onverge towards suh a point in the

future. Weyl's postulate implies that we an �nd oordinates suh that galaxies|and the

observers residing in them|are at rest. These oordinates are alled omoving oordinates

and an be onstruted as follows: One hooses �rst a spae-like hypersurfae. Through eah

point P in this hypersurfae passes a unique worldline of a omoving observer. We hoose

the oordinate time suh that it agrees with the proper-time of all observers, g

00

= 1, and

the spatial oordinate vetors suh that they are onstant and lie in the tangent spae T

P

at

this point. Then u

�

= Æ

�

0

and for n

�

2 T

P

it follows n

�

= (0; n

i

) and

0 = u

�

n

�

= g

��

u

�

n

�

= g

0b

n

b

: (19.1)

Sine n

�

is arbitrary, the elements g

0b

of the metri tensor have to vanish, g

0b

= 0. Hene as

a onsequene of Weyl's postulate we may hoose the metri as

ds

2

= dt

2

� dl

2

= dt

2

� g

ij

dx

i

dx

j

: (19.2)
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19. Cosmologial models for an homogeneous, isotropi universe

The osmologial priniple onstrains further the form of dl

2

: Homogeneity requires that

the g

ij

an depend on time only via a ommon fator S(t), while isotropy requires that only

the salars x � x � r

2

, x � dx and dx � dx enter dl

2

. Hene the spatial part of the metri has

the form

dl

2

= C(r)(x � dx)

2

+D(r)dx � dx (19.3a)

= C(r)r

2

dr

2

+D(r)[dr

2

+ r

2

d#

2

+ r

2

sin

2

#d�

2

℄ : (19.3b)

We an eliminate the funtion D(r) by the resaling r

2

! Dr

2

. Then the line-element

beomes

dl

2

= S(t)

�

B(r)dr

2

+ r

2

d


�

(19.4)

with d
 = d#

2

+ sin

2

#d�

2

. While the dynamial funtion S(t) has to be determined from

Einstein equations for a given matter ontent of the Universe, we an onstrain the funtion

B(r) further using the osmologial priniple.

Maximally symmetri spaes This are spaes with onstant urvature. Hene the Riemann

tensor of suh spaes an depend only on the metri tensor and a onstant K speifying the

urvature. The only form that respets the (anti-)symmetries of the Riemann tensor is

R

��Æ

= K(g

�

g

�Æ

� g

�Æ

g

�

) : (19.5)

Then we obtain for the Rii tensor in three spatial dimensions

R

bd

= g

a

R

abd

= Kg

a

(g

a

g

bd

� g

ad

g

b

) = K(3g

bd

� g

bd

) = 2Kg

bd

: (19.6)

A �nal ontration gives as urvature R of a three-dimensional maximally symmetri spae

R = g

ab

R

ab

= 2KÆ

a

a

= 6K : (19.7)

A omparison of Eq. (19.6) with the Rii tensor for the metri (19.4) will �x the still unknown

funtion B(r). We proeed in the standard way: We alulate the Christo�el symbols with

the help of the geodesi equation (or alternatively diretly from Eq. (6.43)) and use then the

de�nition of the Rii tensor.

Example 19.1: Find the Christo�el symbols and the Rii tensor for the metri (19.4).

We solve the Lagrange equations for a test partile moving in (19.4),

L = B(r) _r
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) ;

where we negleted the overall fator S(t). Comparing the Lagrange equations

�r �

B

0

2B

_r

2

� (

_

#

2

+ sin

2

#

_

�

2

)

r

B

= 0 ;

�

�+

2

r

_r

_

�+ 2 ot#

_

#

_

� = 0 ;

�

#+

2 _r

_

#

r

� os# sin#

_

�

2

= 0

with the geodesi equation �x

�

+�

�

��

_x

�

_x

�

= 0, we an read o� the non-vanishing Christo�el symbols

as

�

r

rr

= �B

0

=(2B) ; �

r

��

= �r sin

2

#=B and �

r

##

= �r=B

�

�

r�

= �

#

r#

= 1=r ; �

�

�#

= ot# and �

#

��

= � os# sin# :

Sine the metri is diagonal, the non-diagonal elements of the Rii tensor are zero too. We alulate

with

R

ab

= R



ab

= �



�



ab

� �

b

�



a

+ �



ab

�

d

d

� �

d

b

�



ad
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19.1. FLRW metri

for instane the rr omponent as

R

rr

= 0� 0 + �



rr

�

d

d

� �

d

r

�



rd

= �

r

rr

(�

�

r�

+ �

#

r#

) = �

B

0

rB

: (19.8)

Similarly, we �nd R

##

= 1 +

r

2B

2

dB

dr

�

1

B

and R

��

= sin

2

#R

##

.

Inserting our result for the spatial Rii tensor into Eq. (19.6), we obtain

R

rr

=

1

rB

dB

dr

= 2Kg

rr

= 2KB (19.9a)

R

##

= 1 +

r

2B

2

dB

dr

�

1

B

= 2Kg

##

= 2Kr

2

; (19.9b)

while the �� equation ontains no additional information. Integration of Eq. (19.9a) gives

B =

1

A�Kr

2

(19.10)

with A as integration onstant. Inserting then the result into Eq. (19.9b) �xes the onstant

as A = 1. Thus we have determined the line-element of a maximally symmetri 3-spae with

urvature K as

dl

2

=

dr

2

1�Kr

2

+ r

2

(sin

2

#d�

2

+ d#

2

) : (19.11)

Going over to the full four-dimensional line-element, we resale for K 6= 0 the r oordinate

by r ! jKj

1=2

r. Then we absorb the fator 1=jKj in front of dl

2

by de�ning the sale fator

a(t) as

a(t) =

�

S(t)=jKj

1=2

; K 6= 0

S(t); K = 0 :

(19.12)

As result we obtain the Friedmann-Lemâ�tre-Robertson-Walker (FLRW) metri for an homo-

geneous, isotropi universe,

ds

2

= dt

2

� a

2

(t)

�

dr

2

1� kr

2

+ r

2

(sin

2

#d�

2

+ d#

2

)

�

: (19.13)

The onstant k distinguishes the ases where the three-dimensional spae has negative (k =

�1), positive urvature (k = 1) or is at (k = 0). Finally, we give two alternatives forms

of the FLRW metri that are often more useful. In the �rst one, we introdue a new radial

variable by r = sin� for k = 1. Then dr = os�d� = (1 � r

2

)

1=2

d� and the line-element

follows as

ds

2

= dt

2

� a

2

(t)

�

d�

2

+ S

2

(�)(sin

2

#d�

2

+ d#

2

)

�

(19.14)

with S(�) = sin� = r. De�ning

r = S(�) =

8

>

<

>

:

sin� for k = 1 ;

� for k = 0 ;

sinh� for k = �1 ;

(19.15)

the metri (19.14) is valid for all three values of k.
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19. Cosmologial models for an homogeneous, isotropi universe

In the seond alternative, we replae the omoving time t by the onformal time d� = dt=a,

ds

2

= a

2

(�)

�

d�

2

�

dr

2

1� kr

2

� r

2

(sin

2

#d�

2

� d#

2

)

�

(19.16a)

= a

2

(�)

�

d�

2

� d�

2

� S

2

(�)(sin

2

#d�

2

+ d#

2

)

�

: (19.16b)

Then the metri has for k = 0 the same form as the one of a uniformly expanding Minkowski

spae. The desription of light propagation beomes therefore partiularly simple using the

oordinates (19.16b): Sine ds

2

= 0, a radial light-ray satis�es d� = �d� and light-rays are

straight lines at �45 degrees in the � � � plane.

Geometry of the Friedmann-Lemâ�tre-Robertson-Walker metri Let us onsider a sphere

of �xed radius at �xed time, dr = dt = 0. The line-element ds

2

simpli�es then to

a

2

(t)r

2

(sin

2

#d�

2

+ d#

2

), whih is the usual line-element of a sphere S

2

with radius ra(t).

The area of a sphere is A = 4�(ra(t))

2

= 4�[S(�)a(t)℄

2

and the irumferene of a ir-

le is L = 2�ra(t). Hene these quantities agree for a = 1 with the ones in an Eulidean

spae. By ontrast, the radial distane between two points (r; #; �) and (r + dr; #; �) is

dl = a(t)dr=

p

1� kr

2

. Thus the radius of a sphere entered at r = 0 is

l = a(t)

Z

r

0

dr

0

p

1� kr

0 2

= a(t)�

8

<

:

arsin(r) for k = 1 ;

r for k = 0 ;

arsinh (r) for k = �1 :

(19.17)

Using � as oordinate, the same result follows immediately,

l = a(t)

Z

�(r)

0

d� = a(t)� : (19.18)

Hene for k = 0, i.e. a at spae, one obtains the usual result L=l = 2�, while for k = 1

(spherial geometry) it is L=l = 2�r= arsin(r) < 2� and for k = �1 (hyperboli geometry)

L=l = 2�r=arsinh (r) > 2�. For k = 0 and k = �1, l is unbounded, while for k = +1 there

exists a maximal distane l

max

(t). Hene the �rst two ase orrespond to open spaes with

an in�nite volume, while the latter is a losed spae with �nite volume.

Hubble's law Lemâ�tre, Hubble and other astronomers found empirially that the spetral

lines of \distant" galaxies are redshifted, z = ��=�

0

> 1, proportional to their distane d,

z = H

0

d : (19.19)

If this redshift is interpreted as Doppler e�et, z = ��=�

0

= v

r

, then the reession veloity

of galaxies follows as

v = H

0

d : (19.20)

The restrition \distant galaxies" means more preisely that the peuliar motion of galaxies

aused by the gravitational attration of nearby galaxy lusters should be small ompared to

the Hubble ow, H

0

d� v

pe

� few�100 km/s. Note that the interpretation of v as reession

veloity is problemati. The validity of suh an interpretation is ertainly limited to v � 1.

The parameter H

0

is alled Hubble onstant and has the value H

0

' (67:7� 0:8) km/s/Mp.

310



19.1. FLRW metri

We will see soon that the Hubble law Eq. (19.20) is an approximation valid for z � 1. In

general, the Hubble onstant is not onstant but depends on time, H = H(t), and we will

all it therefore Hubble parameter for t 6= t

0

.

We an derive Hubble's law as onsequene of the homogeneity of spae: Consider Hubble's

law as a vetor equation with us at the enter of the oordinate system,

v = Hd : (19.21)

What sees a di�erent observer at position d

0

? She has the veloity v

0

= Hd

0

relative to us.

We are assuming that veloities are small and thus

v

00

� v � v

0

= H(d� d

0

) = Hd

00

; (19.22)

where v

00

and d

00

denote the position relative to the new observer. Hene a linear relation

between v and d as Hubble law is the only relation ompatible with homogeneity and thus

the \osmologial priniple" for v � 1.

Lemâ�tre's redshift formula A non-stati universe posses no time-like Killing vetor �eld

and thus we expet that the energy of a partile is a�eted by the expansion of spae. In

order to derive this hange, we onsider a massive partile moving along a geodesi x(�) with

four-veloity u

�

. An observer with four-veloity U

�

will measure as energy E of the massive

partile E = mu

�

U

�

. Along the trajetory x(�), this energy E hanges as

d

d�

E = u

�

r

�

E = mu

�

r

�

�

u

�

U

�

�

= mu

�

u

�

r

�

U

�

; (19.23)

where we used the geodesi equation u

�

r

�

u

�

= 0 in the last step. Evaluating the derivative

using the Christo�el symbols for the FLRW metri and for omoving observers with U

�

=

(1;0) gives (f. problem 20.??)

r

�

U

�

=

_a

a

(g

��

� U

�

U

�

) : (19.24)

Inserting the derivative, we �nd with u

�

u

�

= 1

d

d�

E = m

_a

a

�

1�E

2

=m

2

�

= �

_a

a

�

E

2

�m

2

m

�

; (19.25)

or

�

da

a

=m

dt

d�

dE

E

2

�m

2

=

EdE

E

2

�m

2

=

1

2

dE(E

2

�m

2

)

E

2

�m

2

=

dp

p

: (19.26)

Thus the momentum of a partile is inverse proportionally to the sale fator of the universe,

p / 1=a. An intuitive explanation of this result is that the expansion of the universe strethes

all length sales of unbound systems, inluding the wave-length of free partiles. As a onse-

quene, the kineti energy of non-relativisti partiles goes quadratially to zero, and hene

peuliar veloities relative to the Hubble ow are strongly damped by the expansion of the

universe.

We an derive now Hubble's law by a Taylor expansion of the sale fator a(t),

a(t) = a(t

0

) + (t� t

0

) _a(t

0

) +

1

2

(t� t

0

)

2

�a(t

0

) + : : : (19.27a)

= a(t

0

)

�

1 + (t� t

0

)H

0

�

1

2

(t� t

0

)

2

q

0

H

2

0

+ : : :

�

; (19.27b)
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19. Cosmologial models for an homogeneous, isotropi universe

where we introdued the Hubble onstant

H

0

�

_a(t

0

)

a(t

0

)

and q

0

� �

�a(t

0

)a(t

0

)

_a

2

(t

0

)

; (19.28)

the so alled deeleration parameter: If the expansion is slowing down, �a < 0 and q

0

> 0.

Hubble's law follows as an approximation for small redshift: For not too large time-di�erenes,

we an use the expansion Eq. (19.27a) and write

1� z '

1

1 + z

=

a(t)

a

0

' 1 + (t� t

0

)H

0

: (19.29)

Hene Hubble's law, z = (t

0

�t)H

0

= d=H

0

, is valid as long as z ' H

0

(t

0

�t)� 1. Deviations

from its linear form arises for z

>

�

1 and an be used to determine q

0

.

Proper distane In an expanding universe, the distane to an objet depends on the ex-

pansion history, i.e. the behaviour of the sale fator a(t) between the time of emission t of

the observed light signal and its reeption at t

0

. From the metri (19.14) we an de�ne the

(radial) oordinate distane

� =

Z

t

0

t

dt

a(t)

(19.30)

as well as the proper distane d = g

��

� = a(t)�. The proper distane d orresponds to

the physial distane between two points on a hypersurfae t = onst: However, it is only

for a stati metri a diretly measurable quantity and osmologists use therefore other, op-

erationally de�ned measures for the distane. The two most important examples are the

luminosity and the angular diameter distanes.

Luminosity distane The luminosity distane d

L

is de�ned suh that the inverse-square law

between the luminosity L of a soure at the distane d and the reeived energy ux F is valid,

d

L

=

�

L

4�F

�

1=2

: (19.31)

Assume now that a (isotropially emitting) soure with luminosity L(t) and omoving oor-

dinate � is observed at t

0

by an observer at O. The ut at O through the forward light one

emitted at t

e

by the soure de�nes a sphere S

2

with proper area

A = 4�a

2

(t

0

)S

2

(�) : (19.32)

Additionally, we have to take into aount that the frequeny of a single photon is redshifted,

�

0

= �

e

=(1 + z), and that the arrival rate of photons is redued by the same fator due to

time-dilation. Hene the reeived ux is

F(t

0

) =

1

(1 + z)

2

L(t

e

)

4�a

2

0

S

2

(�)

(19.33)

and the luminosity distane in a FLRW universe follows as

d

L

= (1 + z) a

0

S(�) : (19.34)

Note that d

L

depends via � on the expansion history of the universe between t

e

and t

0

.
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19.2. Friedmann equations

Angular diameter distane Instead of basing a distane measurement on standard andles,

one may use standard rods with known proper length l whose angular diameter �# an be

observed. Then we de�ne the angular diameter distane as

d

A

=

l

�#

: (19.35)

From the angular part of the FLRW metri it follows that l = a(t

e

)S(�)�# and thus

d

A

= a(t

e

)S(�) = a(t

0

)

a(t

e

)

a(t

0

)

S(�) =

a

0

S(�)

1 + z

: (19.36)

At small distanes, z � 1, the angular diameter and the luminosity distane agree by on-

strution, while for large redshift the di�erene inreases as (1 + z)

2

.

Observable are not the oordinates � or r, but the redshift z of a galaxy. Di�erentiating

1 + z = a

0

=a(t), we obtain

dz = �

a

0

a

2

da = �

a

0

a

2

da

dt

dt = �(1 + z)Hdt : (19.37)

Denoting by t

0

the present age of the Universe, we an �nd its age t at redshift z for a given

H(z) as

t

0

� t =

Z

t

0

t

dt =

Z

0

z

dz

H(z)(1 + z)

: (19.38)

Inserting the relation (19.37) into Eq. (19.30), we �nd the oordinate � of a galaxy at redshift

z as

� =

Z

t

0

t

dt

a(t)

=

1

a

0

Z

z

0

dz

H(z)

: (19.39)

For small redshift z � 1, we an use the expansion (19.27b) to approximate

� =

Z

t

0

t

dt

a

0

[1� (t� t

0

)H

0

+ : : :℄

�1

(19.40a)

�

1

a

0

[(t� t

0

) +

1

2

(t� t

0

)

2

H

0

+ : : :℄ =

1

a

0

H

0

[z �

1

2

(1 + q

0

)z

2

+ : : :℄ (19.40b)

In pratise, one observes only the luminosity within a ertain frequeny range instead of the

total (or bolometri) luminosity. A orretion for this e�et requires the knowledge of the

intrinsi soure spetrum.

19.2. Friedmann equations

We ould determine the metri of a homogeneous and isotropi universe by purely geometrial

onsiderations exept for the value of k 2 f�1; 0;+1g and the unknown funtion a(t): Sine

the sale fator is a dynamial quantity, it has to be determined by the Einstein equations.

In order to write down these equations, we have to �x a model for the stress tensor T

��

of

the universe. A surprisingly generi ansatz for the matter ontent of the Universe whih is

onsistent with Weyl's postulate is an ideal uid: Although an ideal uid is haraterised by

only one free parameter|the equation of state (EoS) w = P=� �xing the ratio of its pressure

313



19. Cosmologial models for an homogeneous, isotropi universe

P and its energy density �|it an desribe

1

both marophysial systems (a uid of galaxies)

and elementary partiles (e.g. a gas of photon or a uid of old dark matter partiles). The

various omponents of an ideal uid evolve independently and thus the total stress tensor is

simply the sum of the individual ontributions.

In problem 5.?? you derived as stress tensor of an ideal uid in Minkowski spae

T

��

= (�+ P )u

�

u

�

� P�

��

: (19.41)

Clearly, the homogeneity and isotropy of the FLRW metri imply that the stress tensor has

the same symmetries and thus � and P an be only funtions of time. Replaing �

��

by g

��

and hoosing the omoving oordinates of Eq. (19.13) gives

g

00

= 1 ; g

11

= �

a

2

1� kr

2

; g

22

= �a

2

r

2

sin

2

# and g

33

= �a

2

r

2

: (19.42)

Sine the FLRW metri is diagonal, the elements of the inverse metri are simply given by

g

��

= 1=g

��

. Thus the stress tensor follows for a omoving observer as

T

00

= �g

00

and T

ij

= PÆ

ij

: (19.43)

Next we have to determine the still missing Christo�el symbols �

�

��

, see problem 20.??. The

result is

�

i

0i

=

_a

a

and �

0

ij

= �

_a

a

Æ

ij

(19.44)

from whih the non-zero omponents of the Rii tensor follow as

R

00

= �3

�a

a

g

00

and R

ij

=

a�a+ 2_a

2

+ 2k

a

2

Æ

ij

: (19.45)

The last ingredient needed for the Einstein equations is the urvature salar,

R = g

��

R

��

= �6

a�a+ _a

2

+ k

a

2

: (19.46)

All the quantities appearing in the gravitational �eld equation are proportional to the metri

tensor and thus the symmetries of the FLRW metri lead to only two independent equation

of motions. The time-time omponent of the Einstein equation gives

3

_a

2

+ k

a

2

= ��+� ; (19.47)

while the spae-spae part results in

2a�a+ _a

2

+ 2k

a

2

= ��P +� : (19.48)

Using � = 8�G, we obtain from Eq. (19.47) the Friedmann equation,

H

2

�

�

_a

a

�

2

=

8�

3

G��

k

a

2

+

�

3

; (19.49)

1

Although deviations from this idealisation are small and happen only in spei� phases during the evolution

of the Universe, they are ruial to explain the observed amount of reli partiles as baryons and dark

matter: This topi will be introdued in the next hapter.
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19.2. Friedmann equations

while the \aeleration equation" follows from (19.48) after eliminating �a with (19.47) as

�a

a

=

�

3

�

4�G

3

(�+ 3P ) : (19.50)

This equation determines the (de-) aeleration of the Universe as funtion of its matter and

energy ontent. \Normal" matter is haraterised by � > 0 and P � 0. Thus a stati solution

is impossible for a universe with � = 0. Suh a universe is deelerating and sine today _a > 0,

�a was always negative and there was a \big bang".

We de�ne the ritial density �

r

as the density for whih the spatial geometry of the

universe is at. From k = 0, it follows

�

r

=

3H

2

0

8�G

(19.51)

and thus �

r

is uniquely �xed by the value of H

0

. One \hides" this dependene by introduing

h,

H

0

= 100h km=(sMp) :

Then one an express the ritial density as funtion of h,

�

r

= 2:77 � 10

11

h

2

M

�

=Mp

3

= 1:88 � 10

�29

h

2

g=m

3

= 1:05 � 10

�5

h

2

GeV=m

3

:

Thus a at universe with h = 1 requires an energy density of � 10 protons per ubi meter.

We de�ne the energy fration 


i

of the di�erent players in osmology as their energy density

relative to the ritial density, 


i

= �=�

r

. We will often inlude the osmologial onstant �

as another ontribution to the energy density � via

8�

3

G�

�

=

�

3

: (19.52)

Thereby one reognises also that the osmologial onstant ats as a onstant energy density

with magnitude

�

�

=

�

8�G

or 


�

=

�

3H

2

0

: (19.53)

We an understand better the onsequenes of the osmologial onstant by replaing � by

(8�G)�

�

in the aeleration equation. Comparing then the e�et of normal matter and of the

� term on the aeleration,

�a

a

=

8�G

3

�

�

�

4�G

3

(�+ 3P ) : (19.54)

we reognise that � is equivalent to matter with an EoS w

�

= P=� = �1, as we showed already

in problem 19.??. Using �

�

instead of � orrespond on the level of the Einstein equations to a

reshu�ing of the osmologial onstant from the geometry to the matter side, �T

��

+g

��

�!

�

~

T

��

. Thus the observed value of the osmologial onstant �

obs

inludes additionally to �

�

both the lassial ontribution V (�

0

) 6= 0 of all salar potentials whose minima are not at

zero and the (renormalised) quantum vauum utuations of all matter �elds. The borderline

between an aelerating and deelerating universe is given by � = �3P or w = �1=3. The

ondition � < �3P violates the so-alled strong energy ondition for \normal" matter in

equilibrium. An aelerating universe requires therefore a positive osmologial onstant or a
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19. Cosmologial models for an homogeneous, isotropi universe

dominating form of matter that is not in equilibrium. As a phenomenologial generalisation

of the osmologial onstant, one alls any form of matter dark energy whih leads in the

present epoh to an EoS parameter w � �1.

Relativisti speies today are photons and possibly one of the three SM neutrinos. Their

energy ontribution is muh smaller than the one of non-relativisti matter (stars, gas and

old dark matter). Thus the pressure term in the aeleration equation an be negleted at

the present epoh. Measuring �, _a=a and �a=a �xes therefore the geometry of the Universe:

For a long time, osmology was desribed therefore as the quest for two numbers, H

0

and q

0

.

Thermodynamis The �rst law of thermodynamis beomes with dS = 0 for a ideal uid

simply dU = TdS � PdV = �PdV . Considering a �xed omoving volume,

d(�a

3

) = �Pd(a

3

) ; (19.55)

and dividing by dt,

a _�+ 3(�+ P ) _a = 0 ; (19.56)

we obtain

_� = �3(�+ P )H : (19.57)

This result ould be also derived from r

�

T

��

= 0, f. problem ??. Sine r

�

T

��

= 0 is

built-in in the Einstein equations, the three equations (19.49), (19.50), and (19.57) are not

independent.

Sale-dependene of di�erent energy forms The dependene of di�erent energy forms as

funtion of the sale fator a an derived from energy onservation, dU = �PdV , if an EoS

P = P (�) = w� is spei�ed. For w = onst:, it follows

d(�a

3

) = �3Pa

2

da (19.58)

or eliminating P

d�

da

a

3

+ 3�a

2

= �3w�a

2

: (19.59)

Separating the variables,

� 3(1 + w)

da

a

=

d�

�

; (19.60)

we an integrate and obtain

� / a

�3(1+w)

=

8

<

:

a

�3

for matter (w = 0) ;

a

�4

for radiation (w = 1=3) ;

onst. for � (w = �1) :

(19.61)

The obtained saling an be understood from heuristi arguments: The kineti energy of

non-relativisti matter is negligible, kT � m. Thus � = nm � nT = P and non-relativisti

matter is pressure-less, w = 0. The mass m is onstant and n / 1=a

3

, hene � is just diluted

by the expansion of the universe, � / 1=a

3

. Radiation is not only diluted but the energy of

a single partile is additionally redshifted, E / 1=a. Thus the energy density of radiation

sales as / 1=a

4

. Alternatively, one an use that � / T

4

and T / hEi / 1=a. Finally,

the osmologial onstant � ats by de�nition as an energy density �

�

= �=(8�G) that is
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19.3. Evolution of simple osmologial models

onstant in time, independent from a possible expansion or ontration of the universe. Note

also that osmologists all relativisti partiles radiation, while they inlude into matter only

non-relativisti partiles.

Let us rewrite the Friedmann equation for the present epoh as

k

a

2

0

= H

2

0

�

8�G

3H

2

0

�

0

+

�

3H

2

0

� 1

�

= H

2

0

(


tot;0

� 1) : (19.62)

We express the urvature term for arbitrary times through 


tot;0

and the redshift z as

k

a

2

=

k

a

2

0

(1 + z)

2

= H

2

0

(


tot;0

� 1)(1 + z)

2

: (19.63)

Note that the urvature term (


tot;0

� 1)(1 + z)

2

dereases slower than radiation or matter.

Observations indiate that the universe is lose to at, and thus the urvature term an be

safely negleted in the early universe. This behaviour poses also the question why the Universe

is (nearly) at, sine for generi initial onditions one would expet j


tot;0

� 1j=


tot

� 1.

Dividing the Friedmann equation (19.49) by H

2

0

= 8�G�

r

=3, we obtain

H

2

(z)

H

2

0

=

X

i




i

(z)� (


tot;0

� 1)(1 + z)

2

(19.64a)

= 


rad;0

(1 + z)

4

+


m;0

(1 + z)

3

+


�

� (


tot;0

� 1)(1 + z)

2

: (19.64b)

This expression allows us to alulate the age of the universe (19.38), distanes (19.34), et. for

a given osmologial model, i.e. speifying the energy frations 


i;0

and the Hubble parameter

H

0

at the present epoh.

19.3. Evolution of simple osmologial models

Cosmologial models with one energy omponent We onsider a at universe, k = 0, with

one dominating energy omponent with EoS w = P=� = onst:. With � = �

r

(a=a

0

)

�3(1+w)

,

the Friedmann equation beomes

_a

2

=

8�

3

G�a

2

= H

2

0

a

3+3w

0

a

�(1+3w)

; (19.65)

where we inserted the de�nition of �

r

= 3H

2

0

=(8�G). Separating variables we obtain

a

�(3+3w)=2

0

Z

a

0

0

da a

(1+3w)=2

= H

0

Z

t

0

0

dt = t

0

H

0

(19.66)

and hene the age of the Universe follows as

t

0

H

0

=

2

3 + 3w

=

8

<

:

2=3 for matter (w = 0) ;

1=2 for radiation (w = 1=3) ;

!1 for � (w = �1) :

(19.67)

While a Universe with only a osmologial onstant � has no \beginning", models with

w > �1 needed a �nite time to expand from the initial singularity a(t = 0) = 0 to the

urrent size a

0

. Sine for t! 0 the temperature and density formally diverge, one alls these
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19. Cosmologial models for an homogeneous, isotropi universe

ases often (hot) big bang models. We should expet that lassial gravity breaks down when

� �M

4

Pl

. As long as a / t

�

with � < 1, most time elapsed during the last frations of t

0

H

0

.

Hene our result for the age of the universe does not depend on unknown physis lose to the

big bang as long as w > �1=3.

If we integrate Eq. (19.66) to the arbitrary time t, we obtain as time-dependene of the

sale fator

a(t) / t

2=(3+3w)

=

8

<

:

t

2=3

for matter (w = 0) ;

t

1=2

for radiation (w = 1=3) ;

exp(t) for � (w = �1) :

(19.68)

The speial ase with an exponential growing sale fator for w = �1 is alled de Sitter

spae-time.

Age problem of the universe The age of a matter-dominated universe expanded around




0

= 1 is given by (problem 20.??)

t

0

=

2

3H

0

�

1�

1

5

(


0

� 1) + : : :

�

: (19.69)

Globular luster ages require t

0

� 13 Gyr. Using 


0

= 1 leads to h � 0:50. Thus a at

universe with t

0

= 13Gyr without osmologial onstant requires a value of H

0

whih is too

small ompared with observations. Choosing 


m

= 0:3 inreases the age by just 14%, f. also

with the left panel of Fig. 19.1.

We derive the age t

0

of a at Universe with 


m

+


�

= 1 in the next setion as

3t

0

H

0

2

=

1

p




�

ln

1 +

p




�

p

1� 


�

: (19.70)

Requiring H

0

� 65 km/s/Mp and t

0

� 13 Gyr means that the funtion on the RHS should

be larger than ' 1:3 or 


�

� 0:55. Thus the lower limit t

0

� 13 Gyr on the age of the

Universe together with a lower limit on the Hubble onstant is suÆient to dedue a non-zero

value of the osmologial onstant.

The �CDM model We onsider as approximation to the late Universe a at model ontain-

ing as its only two omponents pressure-less matter and a osmologial onstant, 


m

+


�

= 1.

Thus the urvature term in the Friedmann equation and the pressure term in the deeleration

equation play no role and we an hope to solve these equations for a(t). Multiplying the

deeleration equation (19.50) by two and adding it to the Friedmann equation (19.49), we

eliminate �

m

,

2

�a

a

+

�

_a

a

�

2

= � : (19.71)

Next we rewrite �rst the LHS and then the RHS as total time derivatives: With

d

dt

(a _a

2

) = _a

3

+ 2a _a�a = _aa

2

"

�

_a

a

�

2

+ 2

�a

a

#

; (19.72)

we obtain

d

dt

(a _a

2

) = _aa

2

� =

1

3

d

dt

(a

3

)� : (19.73)

318



19.3. Evolution of simple osmologial models

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1

Ωm+ΩΛ=1

open

t 0H
0

Ωm

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.5  1  1.5  2

ΩΛ=0.9

ΩΛ=0.1

q
t/t0

Figure 19.1.: Left: The produt t

0

H

0

for an open universe ontaining only matter (dotted

line) and for a at osmologial model with 


�

+


m

= 1 (solid line). Right: The

deeleration parameter q as funtion of t=t

0

for the �CDM model and various

values for 


�

(0.1, 0.3, 0.5, 0.7 and 0.9 from the top to the bottom).

Integrating is now trivial,

a _a

2

=

�

3

a

3

+ C : (19.74)

The integration onstant an be determined most easily setting a(t

0

) = 1 and omparing the

Friedmann equation (19.49) with (19.74) for t = t

0

as C = 8�G�

m;0

=3. Now we introdue the

new variable x = a

3=2

. Then

da

dt

=

dx

dt

da

dx

=

dx

dt

2x

�1=3

3

; (19.75)

and we obtain as new di�erential equation

_x

2

� �x

2

=4 + C=3 = 0 : (19.76)

Inserting the solution x(t) = A sinh(

p

�t=2) of the homogeneous equation �xes the onstant

A as A =

p

3C=�. We an express A also by the urrent values of 


i

as A = 


m

=


�

=

(1� 


�

)=


�

. Hene the time-dependene of the sale fator is

a(t) = A

1=3

sinh

2=3

(

p

3�t=2) : (19.77)

The time-sale of the expansion is set by t

�

= 2=

p

3�. The present age t

0

of the universe

follows by setting a(t

0

) = 1 as

t

0

= t

�

artanh (

p




�

) : (19.78)

The deeleration parameter q = ��a=aH

2

is an important quantity for observational tests of

the �CDM model. We alulate �rst the Hubble parameter

H(t) =

_a

a

=

2

3t

�

oth(t=t

�

) (19.79)
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19. Cosmologial models for an homogeneous, isotropi universe

and �nd then

q(t) =

1

2

[1� 3 tanh

2

(t=t

�

)℄ : (19.80)

The limiting behaviour of q orresponds with q = 1=2 for t ! 0 and q = �1 for t ! 1 as

expeted to the one of a at 


m

= 1 and a 


�

= 1 universe. More interesting is the transition

region and, as shown in the right panel of Fig. 19.1, the transition from a deelerating to an

aelerating universe happens for 


�

= 0:7 at t � 0:55t

0

. This an be easily onverted to

redshift, z

�

= a(t

0

)=a(t

�

)� 1 � 0:7, that is diretly measured in supernova observations. The

fat that the aeleration has set in reently, i.e. that z

�

is of order one, has been oined the

oinidene problem.

Remark 19.1: Topologial defets as an energy omponent:

We have argued that topologial defets are produed during osmologial phase transition via the

Kibble mehanism. In order to understand the impat of topologial defets on the evolution of the

universe, one has to determine their EoS. The simplest ase are magneti monopoles whih are reated

with negligible veloities. Hene their energy density behave as � � 1=a

3

, and their abundane 


inreases during the radiation dominated phase. As a result, they tend to dominate the energy density

of the universe, leading to its early ollapse, f. with exerise 20.??. Next we onsider how the energy

density of a network of domain walls evolves in an expanding universe. If we model them for simpliity

as a set of stati in�nitely extended domain walls parallel to the yz plane, then the expansion of the

universe along the y and z diretions does not hange the number density of domain walls. Therefore,

the energy density of a network of domain walls evolves as � / 1=a. Simulations of dynamial networks

of domain walls on�rm approximately this behaviour. Interestingly, the equation of state of domain

walls is thus negative, w = �2=3, leading to an aelerated expansion of the Universe. However, even

a single wall inside the Hubble radius ontaining e.g. the eletroweak vauum would overlose the

universe. Thus broken disrete symmetries are in general in onit with osmologial observations.

The remaining option, a network of osmi strings, is viable if the string sale is below �

<

�

(10

�4

M

Pl

)

2

.

19.4. Horizons

An important onsequene of the �nite speed of light and the expansion of the universe is

the possibility that regions of spae-time may be inaessible for a given observer, either at

the present time, or perhaps for all time. The borderline between the aessible and the

inaessible parts of the universe is termed a horizon.

Partile horizon We de�ne the partile horizon d

p

of a omoving observer O as the surfae

of the region in the past ausally onneted to O. Beause of the homogeneity of the FLRW

metri, it is suÆient to onsider an observer at � = 0. The ausally onneted region is

limited by light-rays, and thus bounded by

�

p

(t

�

) = �(t) � �(t

�

) =

Z

t

t

�

dt

a(t)

=

Z

a(t)

0

da

a _a

: (19.81)

Here, the lower integration limit t

�

is zero for models starting with a big bang. and t

�

! �1

otherwise. If the integral diverges, then the observer O an reeive light-signals from an

arbitrary spatial point in the past for suÆiently early t

�

. If however the integral onverges,
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�

x0

�

r

�

0

P

Figure 19.2.: Causal struture of a spae-time with big bang: Partile horizons at the time �

r

are shown in grey together with the event horizon of point P (blak one).

then �

p

(t

�

) de�nes a partile horizon. The physial size of the horizon is given by d

p

(t) =

a(t)�

p

(t

�

). If the model has a big bang origin, a(0) = 0, then also z ! 1 for t

�

! 0 and

thus the partile horizon orresponds to a surfae of in�nite redshift.

The seond form of the integral shows that a �nite partile horizon exists if �a < 0, i.e. if

the model was deelerating for t ! t

�

. We an show this expliitly, if one form of matter

dominates: Then a(t) = a

0

(t=t

0

)

�

, and thus

�

p

(t

0

) =

1

a

0

Z

t

0

dt

�

t

t

0

�

��

=

t

0

a

0

(1� �)

(19.82)

for � < 1. The physial size of the horizon follows as d

p

(t

0

) = t

0

=(1 � �). A partile horizon

exists if � = 2=[3(1 +w)℄ > 1 or w > �1=3 and q > 0, i.e. for an deelerated expansion of the

universe.

Di�erentiating the de�nition (19.81) gives d�

p

=dt = 1=a(t), and thus the partile horizon

grows in an expanding universe: As time goes by, new objets beome visible

2

after they ross

the horizon and their redshift dereases from z =1. Note that in a universe with w > �1=3,

these objets were never before in ausal ontat with the observer O: In suh models, the

observed homogeneity and isotropy of the Universe on large sales is atually a very puzzling

fat alled the horizon problem. The best observational probe of anisotropies are the photons

of the osmi mirowave bakground (CMB) whih sattered at redshift z ' 1300 the last

time. Their intensity is the one of a blak-body, with the same temperature in all diretions

exept for utuations ÆT=T � 10

�5

.

Hubble sale The Hubble sale (whih is often alled the Hubble horizon) is de�ned by

d

H

(t) = H

�1

(t). Sine H

�1

is of the same order as the urvature salar R, the Hubble

sale is a useful measure on whih sales spae-time urvature an be negleted and a simpler

Newtonian analysis using an inertial oordinate system is possible. Moreover, the Hubble

sale equals approximately the partile horizon for deelerating osmologial models, with

H

�1

= (3 + 3w)=2 t. It is therefore often used as a substitute for the partile horizon. Note

however that the di�erene between the two sales beome very important for w ! �1.

2

Sine photons an interat, the boundary of the visible Universe is given more preisely by the \surfae of

last sattering", whih is however omparable, see problem 20.??.
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19. Cosmologial models for an homogeneous, isotropi universe

Event horizon Although the partile horizon grows in an expanding universe, there may

be galaxies whih may be never be seen by an observer. This is the ase if the integral in

Eq. (19.81) onverges for t! t

max

. We de�ne the event horizon by

�

p

(t

�

) =

Z

t

max

t

�

dt

a(t)

=

Z

a(t)

0

da

a _a

; (19.83)

where t

max

is either in�nite or orresponds to the big runh, a(t

max

) = 0, i.e. the end of

the universe in a future singularity. The existene of an event horizon in the limit t

max

!

1 suggests that spae expands faster than the speed of light, whih is often termed as

\superluminal expansion". Note that this notion is misleading, sine the de�nition of the

relative veloity of two observers O and O

0

relies on the existene of an (approximate) inertial

system onneting the two. For distanes

>

�

1=H, when the \relative veloity" beomes

superluminal, suh a onnetion is not possible and thus their relative veloity is not de�ned.

In summary, the partile horizon is the maximal distane from whih we an reeive signals,

while the event horizon de�nes the maximal distane to whih we an send signals. The

horizon problem of a radiation or matter dominated universe is illustrated shematially in

Fig. 19.2: Partile horizons, i.e. ausally onneted regions, at the time of reombination �

r

are shown in red. The event horizon (blak one) of the observer at the point P is muh larger

at the time of reombination and ontains therefore many apparently ausally disonneted

pathes.

Summary

A homogeneous and isotropi universe is desribed by a FLRW metri. This family of spae-

times is ompletely determined by the sale fator a(t) and the parameter k distinguishing

between hyperboli, at, or spherial 3-spaes. The time evolution of these models is spei�ed,

if at a given time t the Hubble parameter H(t), the abundanes 


i

of all relevant matter forms

and their equation of state w

i

= P

i

=�

i

is known. Observational data are well desribed by

the �CDM model with 


�

' 0:7, 


m

' 0:3 and H

0

' 70km/s/Mp.

Further reading

For a disussion of important observations in osmology and their interpretation see

e.g. [CL02℄. The properties of simple osmologial models are disussed in more detail

by [HEL06℄.
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20. Thermal relis

At large redshifts, we an treat the di�erent ontributions to the total energy density of the

Universe as nearly homogeneous uids whose momenta are inreasing as p / 1=a for a ! 0.

This energy inrease has three main e�ets: Firstly, bound states like atoms, nulei and

hadrons are dissolved when the temperature reahes their binding energy, T

>

�

E

b

. Seondly,

partiles with massm

X

an be produed in reations like  !

�

XX, when T

>

�

2m

X

. Finally,

most sattering rates � = n�v inrease faster than the expansion rate of the universe for t! 0,

sine the number density n sales as n / T

3

for relativisti partiles, while the expansion rate

goes as H / �

1=2

rad

/ T

2

. Therefore, reations that have beome \frozen in" today may have

been important in the early Universe. As a result, the early Universe onsisted of a plasma

ontaining partiles with m

X

<

�

T in a state of thermal equilibrium|exept those partiles

that are very weakly interating as e.g. axions.

In the previous hapter, we have assumed that the evolution of the Universe proeeds

adiabatially. While this is an exellent approximation during most of its evolution, devia-

tions are ruial for the explanation of the present Universe: Without suh deviations, the

abundane of all partiles with masses smaller than the present temperature of the CMB,

m� T

CMB

' 2�10

�4

eV would be exponentially suppressed|or a non-zero hemial poten-

tial should ensure their survival. In partiular, the abundane of baryons, of light elements

from helium up to lithium, and likely of dark matter are onneted to deviations from thermal

equilibrium. Their present abundane an be alulated knowing their reation rates and the

expansion history of the universe, and we will develop the required formalism in this hapter.

20.1. Boltzmann equation

The evolution of the phase spae distribution funtion of a thermal reli in the expanding

universe an be modelled by a Boltzmann equation. As �rst step in its derivation, we reall

Liouville's theorem and the resulting ollisionless Boltzmann equation in Minkowski spae,

before we generalise this equation to a spae-time desribed by a FLRW metri.

Liouville's theorem We onsider �rst the evolution of a lassial many-partile system in 6n-

dimensional phase spae !

j

� (q

j

; p

j

) with j = 1; : : : ; 3n. The phase spae density f(q

j

; p

j

; t)

determines the probability to �nd the system in the state ! = (q

j

; p

j

) at time t. Conservation

of the partile number leads to a onservation law for f ,

�f

�t

+

�

�!

i

(f _!

i

) = 0 : (20.1)

We �rst use Hamilton's equations (1.22) to replae _! with !,

�

�!

i

(f _!

i

) =

�

�q

i

�

f _q

i

�

+

�

�p

i

(f _p

i

) =

�

�q

i

�

f

�H

�p

i

�

�

�

�p

i

�

f

�H

�q

i

�

; (20.2)
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and then that the mixed seond derivatives of H ommute, �q

i

�p

i

= �p

i

�q

i

,

�

�!

i

(f _!

i

) =

�f

�q

i

�H

�p

i

�

�f

�p

i

�H

�q

i

= ff;Hg = _q

i

�f

�q

i

+ _p

i

�f

�p

i

: (20.3)

Inserting these results into the onservation law (20.1), Liouville's theorem follows

df

dt

=

�f

�t

+ ff;Hg =

�f

�t

+

�f

�q

i

_q

i

+

�f

�p

i

_p

i

= 0 : (20.4)

Thus the phase spae density f(q

j

; p

j

; t) of a Hamiltonian system stays onstant along a

trajetory in phase spae.

Boltzmann equation in Minkowski spae Partiles in a thermal plasma an exhange energy

via elasti ollisions, and an be reated and destroyed in inelasti ollisions. We an split the

time-evolution of suh a system into the free movement of partiles along spae-time geodesis

interrupted by ollisions, if these satterings are aused by short-range interations. Without

satterings, the 6n dimensional phase-spae funtion is separable, i.e. it is the n-dimensional

produt of single-partile distribution funtions. Therefore it is suÆient to desribe the time-

evolution of a ollisionless many-partile system in the simpler six-dimensional phase spae

! � (q;p). In a seond step, we will aount for interations by adding a ollision term.

Now the six-dimensional phase spae density f(q;p; t) determines the density dN =

f(x;p)d

3

xd

3

p of partiles in the state ! = (q;p) at time t. We an view also this sys-

tem as a uid with _! as the uid veloity and f as its density. If the number of partiles is

not hanged by interations, then again a onservation law for f is valid,

�f

�t

+

�

�w

i

(f _w

i

) =

�f

�t

+

�f

�q

i

_q

i

+

�f

�p

i

_p

i

= 0 : (20.5)

This is the ollisionless Boltzmann equation in Minkowski spae.

Boltzmann equation for a FLRW metri Next we apply the Boltzmann equation to the

ase of a universe desribed by a FLRW metri. Partiles move along geodesis whih we

parametrise by the parameter �. Then the ollisionless Boltzmann equation states that the

phase spae density f(x;p; t) stays onstant along all trajetories, df=d� = 0. In order

to evaluate the total derivative df=dt = 0, we have to �x the dependene �(t). Using the

hoie d� = dt=E as aÆne parameter (suh that dx

�

=d� = p

�

) and assuming an isotropi

and uniform distribution of matter in spae, f(x;p; t) = f(p; t), we �nd the ollisionless

Boltzmann equation for a FLRW metri as

df

d�

=

�

dt

d�

�

�t

+

dp

d�

�

�p

�

f(p; t) = E

�

�

�t

�Hp

�

�p

�

f(p; t) = 0 : (20.6)

In the seond step we used also the redshift formula for a free partile,

dp

d�

=

dp

dt

dt

d�

= �HpE : (20.7)

Adding the e�et of ollisions, the total time derivative of the phase spae density f beomes

non-zero,

df

d�

= E

�

�

�t

�Hp

�

�p

�

f(p; t) = C(p; t) ; (20.8)
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20.1. Boltzmann equation

and is determined by the ollision term C(p; t).

Most often, we are not interested in the momentum dependene of f(p; t) but only in the

total density n(t) of the reli partiles. Dividing by the energy E and taking the �rst moment

of the Boltzmann equation, we arrive at

g

Z

d

3

p

(2�)

3

�

�

�t

�Hp

�

�p

�

f(p; t) = g

Z

d

3

p

(2�)

3

1

E

p

C(p; t) : (20.9)

The �rst term on the LHS is the time derivative of the number density n of reli partiles, as

a omparison to the general de�nition in Eq. (14.49) shows. In the seond term, we use the

isotropy of the partile distribution and perform a partial integration. The boundary term

p

3

f(p; t)j

1

0

vanishes

1

, and thus we obtain

�

�t

n+ 3Hn = g

Z

d

3

p

(2�)

3

1

E

p

C(p) : (20.10)

We an express the LHS as the hange of the omoving number density a

3

n,

d(a

3

n)

dt

= a

3

g

Z

d

3

p

(2�)

3

1

E

p

C(p) � a

3

dn

ol

dt

; (20.11)

and thus the RHS is the net hange a

3

_n

ol

of the omoving partile density due to interations.

Let us determine _n

ol

for the ase that the reli partile interats via deays and inverse

deays, 1 $ 1

0

2

0

� � � n

0

, with other partiles in the thermal plasma. Reall �rst Eq. (9.117),

that gives the number of deays 1! 1

0

2

0

� � �n

0

per time of a given partile 1 with momentum

p

1

at temperature T = 0. This rate should be multiplied with f

1

(p) to get the number of

deays per time of all reli partiles of type 1 with momentum p

1

. Moreover, in a thermal

bath, we have to aount for the Pauli bloking of fermions and the stimulated emission of

bosons by adding the fators 1 � f

i

0

(p

i

0

) to the �nal state phase spae. The inverse reation

1

0

2

0

� � �n

0

! 1 is proportional to the number of plasma partiles and ontains a fator 1�f

1

(p)

in the �nal phase-spae. Combining everything, we have
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(20.12)

with P

f

=

P

i

0

p

�

i

0

, f

i

� f(p

i

), while j

g

A

fi

j

2

=

P

s

1

;:::;s

n

0

jA

fi

j

2

denotes the squared Feynman

amplitude summed over both �nal and initial internal degrees of freedom. If neessary, sym-

metry fators S = 1=n! should be added for n idential partiles in the initial or �nal state.

As �nal step, we have to integrate the di�erential rate _n

ol

1

(p

1

) over d

3

p

1

=(2�)

3

to obtain the

total ollision rate _n

ol

1

per physial volume, �nding as Boltzmann equation
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:

(20.13)

1

A �nite energy density requires that f(p) dereases faster than 1=p

4

for large p.
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It is instrutive to speialise this equation to the simplest ase of a 1 $ 2 + 3 pro-

esses. Then the deay widths sale as �

1!2+3

/ g

�1

1

P

s

1

;s

2

;s

3

jA

1!2+3

j

2

and �

2+3!3

/

g

�1

2

g

�1

3

P

s

1

;s

2

;s

3

jA

2+3!1

j

2

, respetively. Thus we an rewrite the Boltzmann equation as

1

a

3

d(a

3

n

ol

1

)

dt

= �n

1

h�

1!2+3

i+ n

2

n

3

h�

2+3!1

i ; (20.14)

where the fators g

i

entered the densities n

i

and h�i are the rates thermally averaged over

the gamma fators m

i

=E

i

. Going over from a deay 1 $ 1

0

2

0

� � �n

0

to a sattering proess

12 � � � n$ 1

0

2

0

� � �m

0

, we should add to Eq. (20.13) the orresponding phase spae fators

Z

d

3

p

2

2E
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(2�)

3

f

2

(p

2

) and

Z

d

3

p

2

2E

i

(2�)

3

(1� f

2

(p

2

))

to the �rst and seond term in the square braket of Eq. (20.13), respetively.

In most ases of interest, the ollision rate an be simpli�ed drastially: First, we an set

jA

fi

j

2

' jA

if

j

2

, beause CP violation is generially small

2

. At tree-level, this relation holds

exatly. Seond, kineti deoupling happens typially muh later than hemial deoupling:

Consider e.g. a heavy reli partile X sattering with neutrinos as part of the thermal bath.

Then, elasti ollisionsX� ! X� may keep the distribution funtion of X still lose to the one

in thermal equilibrium, although inelasti ollisions like ��� !

�

XX beame ine�etive below

T � m

X

. As a result, deviations of the reli density from a thermal equilibrium distribution

in the time between hemial and kineti deoupling an be simply parametrised by a time-

dependent hemial potential �(t). Thirdly, we an assume that the densities are small

enough suh that the distribution funtions an be approximated by Maxwell-Boltzmann

distributions,

n(t) = e

�(t)�(t)

n

eq

(t) = e

�(t)�(t)

g

Z

d

3

p

2E(2�)

3

exp (��(t)E) : (20.15)

Sine this orresponds to the lassial limit, we an also neglet the fators for Pauli bloking

and stimulated emission, setting 1 � f

i

' 1. Finally, we often (but not always) assume that

in the early universe any asymmetry in the number of partiles and antipartiles is zero. If

�(0) = ��(0) = 0, then �(t) = ��(t) also at later times.

We employ now the �rst three approximations, but keep �

i

6= 0. Speialising also to the

ase of 12! 34 satterings, the seond line in (20.13) beomes
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: (20.18)

Here we used also energy onservation, E

1

+E

2

= E

3

+E

4

, before we eliminated in the �nal

step the hemial potentials in favour of the number densities, using n

i

= e

��

i

n

eq

i

. Now we

de�ne the thermally averaged ross setion h�vi as

h�vi �

1

n

eq

1

n

eq

2

4
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: (20.19)

2

We postpone the e�et of CP violation to hapter 21.

326



20.2. Thermal relis as dark matter

Here the veloity v in h�vi is the relative or M�ller veloity, v � v

M�l

. Its sole purpose is to

anel the orresponding fator v

M�l

in the ux fator I ontained in the T = 0 ross setion

�, ompare with Eq. (9.149). As a result, the integration on the RHS is over Lorentz invariant

fators that do ontain no expliit fator v

M�l

. Employing the de�nition (20.19) for h�vi, we

arrive at a rather ompat expression for the Boltzmann equation,

1
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: (20.20)

Note that we managed to redue the integro-di�erential equation (20.8) to an ordinary dif-

ferential equation. This equation together with the initial ondition n

1

' n

eq

for T ! 1

determines n

1

(t) for a given thermal ross setion h�vi.

Important appliations of this equation are the freeze-out of the baryon asymmetry and the

dark matter abundane, the formation of light elements in big bang nuleosynthesis (BBN),

and the reombination of eletrons and protons into hydrogen. While the struture of the

Boltzmann equation is the same for all theses proesses, the energy sales involved vary from

few eV to sales possibly as high as 10

16

GeV. Correspondingly, the mirophysis required

as input to desribe reombination onsists of atomi physis, while BBN depends on weak

interations between nuleons and neutrinos as well as on nulear physis. By ontrast, the

freeze-out of DM is a problem involving mainly partile physis. Therefore we will pik out

this problem for a disussion of the freeze-out mehanism whih is at work in all the four

proesses. After that, we will only sketh the main points of BBN. We postpone baryogenesis

to the next hapter.

20.2. Thermal relis as dark matter

A wealth of observational data suggests that a viable dark matter (DM) andidate has to

be non-baryoni and should be non-relativisti, at least from the time of matter-radiation

equilibrium on [Lis16℄. As none of the partiles in the SM has the required properties, DM

has to belong to a new setor of partiles beyond the SM. The various partiles X proposed

as DM andidates an be divided in two main sub-ategories: Thermal relis were at least

one during the history of the Universe in hemial equilibrium with the thermal plasma,

while non-thermal relis have either suÆiently small interations or a high enough mass m

X

to be never produed eÆiently by proesses like e

�

e

+

! XX. We onsider in the following

thermal relis, while we ome bak to the topi of non-thermal prodution of relis later on.

20.2.1. Abundane of thermal relis

We assume that the thermal reliX and their annihilation produts are symmetri, i.e. that no

asymmetry in the number density of partiles and antipartiles exist. Moreover, we assume

that the annihilation produts are in thermal equilibrium. Then the Boltzmann equation

simpli�es to,

1

a

3

d(a

3

n

X

)

dt

= �h�

ann

vi

�

n

2

X

� (n

eq

X

)

2

�

: (20.21)

In the alulation of h�

ann

vi a sum over all relevant �nal states should be inluded. Knowing

h�

ann

vi as funtion of temperature, this equation an be numerially integrated using as
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initial ondition n

X

' n

eq

X

for a large enough initial temperature T . In order to obtain

simple numerial estimates and gaining some insight whih physial parameters determine

the �nal abundane, we will develop instead the more intuitive Gamov riterion: It states

that a reation beomes ine�etive, when its rate � drops below the expansion rate H of

the universe. Note that H de�nes also the typial time-sale for hanges in the temperature

T : Thus � � H /

_

T=T implies that the partile an not follow any longer an equilibrium

distribution. For the important ase of a power-law expansion, the ondition � � H means

that the time 1=� between a reation beomes larger than the age t / 1=H(t) of the universe.

In the ase of annihilations, we have to determine therefore the \freeze-out" time t

f

de�ned by

�

A

(t

f

) = H(t

f

) with �

A

= n

eq

h�

ann

vi as the annihilation rate. At later times, the omoving

density of the reli partile is then onstant.

Freeze-out of thermal reli partiles Without interations, the number density n

X

of a

partile speies X is only diluted by the expansion of spae, n

X

/ a

�3

. It is onvenient to

aount for this trivial expansion e�et by dividing n

X

through the entropy density

3

s, i.e.

to use the dimensionless quantity Y = n

X

=s. The equilibrium abundane Y

eq

expressed as

funtion of x = T=m

X

is given for vanishing hemial potential �

X

= 0 by
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(20.22)

with " = 3=4 (" = 1) for fermions (bosons). If the partile X is in hemial equilibrium, its

abundane is determined for T � m by its ontribution to the total number of degrees of

freedom of the plasma, while Y

eq

is exponentially suppressed for T � m.

In an expanding universe, one may expet that the reation rate � for proesses like e

+

e

�

$

�

XX drops below the expansion rate H mainly for two reasons: First, ross setions may

derease with energy as, e.g., weak proesses � / s / T

2

for s

<

�

m

2

W

. Seond, the density

n

X

dereases at least as n

X

/ T

3

. When a reation rate drops below the expansion rate, it

beomes ine�etive, or \freezes out." Around this freeze-out time x

f

, the true abundane Y

starts to deviate from the equilibrium abundane Y

eq

and beomes onstant, Y (x) ' Y

eq

(x

f

)

for x

>

�

x

f

. This behaviour is illustrated in Fig. 20.1.

Next we rewrite the evolution equation for n

X

(t) using the dimensionless variables Y and

x. We assume that the freeze-out ours during the radiation-dominated epoh. Thus �

rad

/

1=a

4

, H = 1=(2t) and the urvature term k=R

2

an be negleted. Then the Friedmann

equation simpli�es to H

2

= (8�=3)G� with � = g
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=30T

4

, or

1

2t

= H = 1:66
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: (20.23)

Here we introdued also the Plank mass M

Pl

= 1=

p

G

N

' 1:2 � 10

19

GeV. Changing then

from n

X

= sY to Y , we eliminate the 3Hn

X

term obtaining

dY

dx

= �

sx

H

h�

ann

vi

�

Y

2

� Y

2

eq

�

: (20.24)

Finally we reast the Boltzmann equation in a form that makes our intuitive Gamov riterion

3

Some formulas from equilibrium statistis are olleted in the Appendix 14.A.
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Figure 20.1.: Illustration of the freeze-out proess: For x

>

�

x

f

, the abundane Y beomes

onstant, T ! Y

1
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vi, the �nal abundane Y
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dereases.
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with �

A

= n

eq

h�

ann

vi: The relative hange of Y is ontrolled by the fator �

A

=H times the

deviation from equilibrium. The evolution of Y = n

X

=s is shown shematially in Fig. 20.1:

As the universe expands and ools down, n

X

dereases at least as a

�3

. Therefore, the an-

nihilation rate quenhes and is not longer suÆiently large to keep the partile in hemial

equilibrium. As a result, the abundane freezes-out, i.e. the ratio n

X

=s stays onstant. For

the disussion of approximate solutions to this equation, it is onvenient to distinguish a-

ording to the freeze-out temperature hot dark matter (HDM) with x

f

� 3, old dark matter

(CDM) with x

f

� 3 and the intermediate ase of warm dark matter with x

f

� 3.

Abundane of hot dark matter For x

f

� 3, freeze-out ours when the partile is still

relativisti and Y

eq

is not hanging with time. Thus the asymptoti value of the abundane,

Y (x!1) � Y

1

, is given by the equilibrium value at freeze-out,

Y

1

= Y

eq

(x

f

) = 0:278
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; (20.26)

and the only temperature-dependene is ontained in g

�S

. The number density today is then
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= 2970Y
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= 825

g
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; (20.27)

where we used for the present entropy density s

0

' 2891=m

3

derived in problem 15.??.

Although a HDM partile was relativisti at freeze-out, it is today non-relativisti if its mass

ism� 3K ' 0:2meV. In this ase its energy density is simply �

0

= ms

0

Y

1

and its abundane


h

2

= �

0

=�

r

is given by


h

2

= 7:8 � 10

�2

m

eV

g

eff

g

�S

: (20.28)
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Hene the abundane of HDM partiles with mass m

>

�

10 eV exeeds the observed total

abundane of matter, 


m

h

2

' 0:1.

Abundane of old dark matter For CDM with x

f

� 3, freeze-out ours when the partiles

are already non-relativisti and Y

eq

is exponentially hanging with time. Thus the main

problem is to �nd x

f

, for late times we use Y

1

� Y (x

f

), i.e. the equilibrium value at freeze-out.

We parametrise the temperature-dependene of the annihilation ross setion as h�

ann

vi =

�

0

(T=m)

n

= �

0

=x

n

whih orresponds to an expansion in v

2n

M�l

. For simpliity, we onsider

only the ase of s-wave annihilation for CDM, n = 0. Then the Gamov riterion beomes

with H = 1:66

p

g

�

T

2

=M

Pl

and �

A

= n

eq

h�

ann

vi

g

�

mT

f

2�

�

3=2

exp(�m=T

f

)�

0

= 1:66

p

g

�

T

2

f

M

Pl

(20.29)

or

x

�1=2

f

exp(x

f

) = 0:038

g

p

g

�

M

Pl

m�

0

� C : (20.30)

To obtain an approximate solution, we neglet �rst in

lnC = �

1

2

lnx

f

+ x

f

(20.31)

the slowly varying term lnx

f

. Inserting next x

f

� lnC into Eq. (20.31) to improve the

approximation gives then

x

f

= lnC +

1

2

ln(lnC) : (20.32)

For a DM partile with thermal annihilation ross setion �

0

= 3�10

�26

m

3

=s the freeze-out

temperature hanges slowly from x

f

' 23 for m = 10GeV to x

f

' 28 for m = 1TeV. The reli

abundane for CDM follows from n(x

f

) = 1:66

p

g

�

T

2

f

=(�

0

M

Pl

) and n

0

= n(x

f

)[R(x

f

)=R

0

℄

3

=

n(x

f

)[g

�;f

=g

�;0

℄[T

0

=T (x

f

)℄

3

as

�

0

= mn

0

� 10

x

f

T

3

0

p

g

�;f

�

0

M

Pl

(20.33)

or




CDM

h

2

=

mn

0

�

r

�

1� 10

�28

m

3

=s

�

0

x

f

: (20.34)

Thus the abundane of a CDM partile is inverse proportionally to its annihilation ross

setion, sine a more strongly interating partile stays longer in equilibrium. Note that the

expliit dependene on the freeze-out temperature T

f

in the fators n(x

f

) and [a(x

f

)=a

0

℄

3

anelled, leading only to an impliit dependene of the abundane via g

�;f

on T

f

. Moreover,

the abundane depends only logarithmially on the mass m via Eq. (20.32).

The observed value 


CDM

h

2

' 0:1 implies �

0

' 3�10

�26

m

3

=s = 1�10

�36

m

2

. Suh ross

setions are typial for a weakly interating massive partiles, and thus suh CDM partiles

are alled WIMPs. The numerial oinidene of the annihilation ross setion of a thermal

reli with a typial weak interation ross setion in the SM has been alled by a�ionados

of this senario WIMP mirale.
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20.2. Thermal relis as dark matter

Unitarity limit form

X

We saw that the abundane of a CDM partile sales approximately

inversely with its annihilation ross setion. Therefore the observed abundane of DM implies

a lower bound on h�vi. We show in this setion that the unitarity of the S-matrix implies

h�vi / 1=m

2

X

and derive thereby an upper bound on its mass m

X

.

We repeat the steps from Eq. (??) to (??) whih lead to the unitary bound on partial

waves amplitudes, but take into aount that the �nal states di�ers from the initial one,

p

ms

6= p

0

ms

. Comparing

�

tot

=

16�

s

p

0

ms

p

ms

1

X

l=0

(2l + 1)jT

l

j

2

�

1

X

l=0

�

l

; (20.35)

to the result using the optial theorem (??) gives then the unitarity onstraint

2p

0

ms

p

s

jT

l

j � 1 : (20.36)

Inserting this onstraint for T

l

bounds the ontribution of the l.th partial wave to the total

ross setion �

l

as

�

l

=

4�

p

2

ms

(2l + 1) : (20.37)

For the non-relativisti sattering of two partiles with mass m

X

, we an use p

ms

'

v

M�l

m

X

=2, giving as unitarity limit

�

l

v

M�l

� (2l + 1)

16�

v

M�l

m

2

X

: (20.38)

A bound stronger by a fator four applies to the annihilation ross setion, �

ann

= �

tot

� �

el

.

In the ase of partiles with spin, we have to divide this result by the number of spin degrees

of freedom of the initial partiles [GK90, Hui01℄. For a CDM partile, only the l = 0 and

l = 1 partial waves give a sizeable ontribution to the total annihilation ross setion. Using

then 


X

h

2

� 


CDM

h

2

= 0:11 and v

2

M�l

= x

f

=6 and x

f

� 30 we obtain an upper limit of

m

X

<

�

20TeV for any stable partile that was one in thermal equilibrium.

20.2.2. Annihilation ross setion in the nonrelativisti limit

Sine WIMPs freeze-out typially at x

f

� 20, it is useful to onsider the WIMP annihilation

ross setion in the nonrelativisti limit x� 1. This is even more true for annihilations today

in the Milky Way where WIMPs have veloities of order v � 220 km=s � 10

�3

. An expansion

in x / v

2

orresponds to a partial wave expansion. Therefore we an either projet out from

the general Feynman amplitude the ontribution to the �rst partial waves l = 0; 1; : : :, or we

an perform an expansion in v

2

of the thermally averaged ross setion. Suh an expansion

ontains even powers of the M�ller veloity,

h�

ann

vi = �

(s)

ann

+ �

(l)

ann

hvi

2

+ �

(p)

ann

hvi

4

+ : : : ; (20.39)

assuming that the Feynman amplitude is not singular in the limit v ! 0. The ourrene

of singularities signals that the initial state an form a bound state: For instane, at low

energies, the proess e

+

e

�

! n should be not desribed as the annihilation of a free eletron

and a positron but as the annihilation of its bound-state positronium. More generally, the
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20. Thermal relis

small relative veloities of CDM partiles, � = v � 1, means that fators g

2

=� or ln(g

2

=�) an

lead to a break-down of perturbation theory. This e�et was �rst studied by Sommerfeld for

Coulomb interations, and the resulting boost of reation rates is therefore alled Sommerfeld

enhanement.

The enhanement of the annihilation ross setion an be alulated non-relativistially

and is, negleting bound-state e�ets, haraterised by two parameters: The mass ratio " =

M=m

X

of the exhange and the DM partile determines, if the annihilation proeeds in the

Coulomb ("� 1) or in the Yukawa ("� 1) regime, while the ratio x = g

2

eff

=� of the squared

e�etive oupling onstant and the veloity determines, if fators g

2

eff

=� or ln(g

2

eff

=�) lead to

a break-down of perturbation theory. Here, the e�etive oupling onstant g

eff

inludes all

prefators in front of the Yukawa potential, as e.g. mixing matrix elements. In the Coulomb

ase, the Sommerfeld fator R as ratio of the perturbative and non-perturbative annihilation

ross setion is given by

R =

�

np

�

pert

�

�

1� exp(��)

(20.40)

with � = �g

2

eff

=(2�) [LL81℄.

Projetion operators and the nonrelativisti limit We give now an example how one an

obtain the nonrelativisti expansion of a Feynman amplitude by projeting out the the partial

waves l = 0; 1; : : :. In many models, the DM partile is a Majorana fermion whih leads to

some partiular features whih the example will also illustrate.

We use spinors in the Dira representation (8.51) to desribe a Majorana fermion pair

at rest. The adjoint anti-partile spinors are �v(m;�) =

p

2m(0; 0; 0;�1) and �v(m;+) =

p

2m(0; 0; 1; 0). Sine we have a pair of indistinguishable fermions in the initial state, we

have to antisymmetrise the initial state. We ompute the antisymmetrised two-partile state

u(m; s

1

)�v(m; s

2

) � u(m; s

2

)�v(m; s

1

) for di�erent spin on�gurations: If the two spins are

parallel, then the result is zero,

u(m;�)�v(m;�)� u(m;�)�v(m;�) = u(m;+)�v(m;+)� u(m;+)�v(m;+) = 0 : (20.41)

For anti-parallel spins, we obtain

u(m;+)�v(m;�)� u(m;�)�v(m;+) = 2m

�

0 1

0 0

�

�  

1

(20.42)

and

u(m;�)�v(m;+)� u(m;+)�v(m;�) = �2m

�

0 1

0 0

�

�  

2

: (20.43)

The two states  

1

and  

2

are linearly dependent and we an ombine them into

� =

1

p

2

( 

1

�  

2

) = 2

p

2m

�

0 1

0 0

�

: (20.44)

Next we want to rewrite the expression for � whih is valid in the rest-frame of the two

Majorana fermions into a Lorentz invariant way. We express �rst

�

0 1

0 0

�

by gamma matries,

� = 2

p

2m

1

2

(1 + 

0

)

5

=

p

2(m+ P==2)

5

: (20.45)
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20.2. Thermal relis as dark matter

In the seond step we introdued the total momentum P = (p

1

+p

2

) = (2m;0) of the fermion

pair and replaed m

0

by P==2.

Let us now illustrate the usefulness of this method with a onrete example. We onsider

the annihilation of two Majorana fermions � with mass m

�

into a fermion pair f

�

f with mass

m

f

via the exhange of a salar

~

f

L

with mass M . Their interation is given by

L = g

L

��P

L

f

~

f

L

+ h:: = g

L

��P

L

f

~

f

L

+ g

L

�

fP

R

�

~

f

L

: (20.46)

For simpliity, we onsider the limit that the mass M of the exhanged salar is muh larger

than the DM mass, M � m

�

. Then the interation beomes an e�etive four-fermion inter-

ation, and the Feynman amplitude simpli�es to

A =

g

2

L

M

2

�v

�

f

(p

4

)P

R

[u

�

(m

�

; s

1

)�v

�

(m

�

; s

2

)� u

�

(m

�

; s

2

)�v

�

(m

�

; s

1

)℄P

L

u

f

(p

3

) (20.47a)

=

p

2g

2

L

M

2

�v

�

f

(p

4

)P

R

(m

�

+ P==2)

5

P

L

u

f

(p

3

) : (20.47b)

The m

�

term vanishes beause of P

L

P

R

= 0. Using P = p

3

+ p

4

and the Dira equation, we

obtain p

3

+ p

4

= �2m

f

and thus

A = �

p

2m

f

g

2

L

M

2

�v

�

f

(p

4

)

5

P

L

u

f

(p

3

) : (20.48)

Thus the amplitude is proportional to m

f

and the annihilation into light fermions is strongly

suppressed. Additionally to getting this insight with little e�ort, the remaining amplitude is

easier to evaluate and no expansion in v

M�l

has to be performed.

Let us now try to understand why the amplitude is proportional to m

f

: The initial wave-

funtion j�i = jL; Si of the idential fermion pair has to be antisymmetri. For zero relative

veloity, the orbital angular momentum L is zero and thus jLi is symmetri. Therefore the spin

wave-funtion jSi has to be anti-symmetri, jSi = j"; #i or jSi = j#; "i. Thus the total spin is

zero, and the pair of Majorana fermions is in a

1

S

0

state. Consequently, � =

p

2(m+P==2)

5

ats a projetion operator whih inserted between two arbitrary spinors extrats the

1

S

0

state

or the s-wave ontribution to the annihilation amplitude. If the produed fermion pair were

massless, the �nal state would be either f

L

�

f

R

or f

R

�

f

L

: For instane, the Majorana fermion

pair ould annihilate into a left-handed eletron and a right-handed positron. The eletron-

positron pair is produed bak-to-bak and therefore its total spin is S = 1. Sine the Dira

mass term onnets left- and right-hiral �elds, the hirality ip required to reate a S = 0

state leads to an amplitude proportional to m

f

. Thus for massless fermions, the annihilation

ross setion has to vanish for v

M�l

! 0. Alternatively, we an allow for a non-zero relative

veloity and onsider that the orbital angular momentum is one. Thus jLi is anti-symmetri,

and from the two states

3

P

0

and

3

P

1

only the latter is allowed. Now it is possible to produe

the fermion pair without a heliity ip, but the amplitude will be proportional to v

M�l

.

20.2.3. Detetion of WIMPs

Searhes for WIMPs rely on the assumption that they interat with SM partiles. Suh

searhes an be divided into three main ategories: Indiret detetion uses the annihilation

proess X + X ! SM + SM into SM partiles, while diret detetion relies on the elasti

sattering X + SM ! X + SM of WIMPs on SM partiles. Finally, one an searh at

aelerators for the prodution SM + SM ! X +X of WIMPs by olliding normal matter.
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20. Thermal relis

Cosmology onnets the measured CDM abundane with the required annihilation ross

setion of a thermal reli as h�

ann

vi ' 3 � 10

�26

m

3

/s. Moreover, we know that the three

proesses used in the di�erent searh ategories are related by rossing symmetry. This leads

to the question how well we an onstrain the possible signal strength to be expeted in the

WIMP senario in these three hannels. Let us onsider �rst indiret detetion where one

an use the annihilation of WIMPs in the enter of the Sun, the halo of the Milky Way or

other galaxies. In all ases, typial WIMP veloities are muh smaller than the ones during

freeze-out. For instane, we an use as typial WIMP veloity relevant for the annihilation

of DM in the Milky Way the rotation veloity of the Sun around the enter of the Galaxy,

v � 220 km=s � 10

�3

. As a result, the thermal annihilation ross setion today is|in

the absene of non-perturbative e�ets|only bounded from above by the one in the early

universe: If annihilations are dominated by the p-wave ontribution, the thermal ross setion

h�

ann

vi relevant for indiret searhes ould be six orders of magnitude smaller than in the

early universe. On the other hand, the annihilation ross setion at small veloities may be

enhaned via the Sommerfeld e�et ompared to the osmologial one.

The onnetion is even less tight in the ase of diret and aelerator searhes: In these

searhes we test mainly the ouplings of the WIMP to the �rst generation of quarks and

leptons, while the annihilation ross setion sums up all relevant hannels. In many models,

the main �nal states of WIMP annihilations are heavy fermions, gauge and higgs bosons. As

a result, the elasti ross setion on nuleons or the prodution via proton-proton sattering

ould be suppressed. Moreover, WIMPs are produed at aelerators as ultrarelativisti

partiles, probing again a di�erent kinematial regime than annihilations in the early universe.

Diret detetion A diret detetion experiment aims to measure the nulear reoil, when

a WIMP satters on a nuleus in a detetor. Let us assume that the WIMP interats via

the exhange of a gauge or Higgs boson with the nuleus. The momentum transfer in suh a

reation is small, q

2

<

�

100 keV

2

, f. problem 21.??. Therefore, the exhanged virtual partiles

do not resolve the quark and gluon ontent of a nuleon, but interat with the whole nuleon

4

:

Instead of the ouplings to quarks, we have therefore to know the e�etive oupling of a gauge

or Higgs boson to a nuleon. The small moment transfer implies also that one an integrate out

the intermediate virtual partiles, onstruting an e�etive Lagrangian for the interations

between the DM partile and quarks and gluons. Within a given DM model, this step is

lengthy but straight-forward and gives an e�etive Lagrangian ontaining higher-dimensional

operators.

Let us illustrate this proedure with an example. We assume that the WIMP is a fermion

and write down its interations with light quarks and gluons. For our purposes, it is suÆient

to onsider as an example the ontribution of salar operators to the e�etive Lagrangian,

L

eff

= C

q

S

�

XXm

q

qq + C

g

S

�

s

�

�

XXF

a

��

F

a��

: (20.49)

All the information about the physis integrated out is ontained in the oeÆients C

N

S

. We

obtain the matrix elements of these e�etive operators between nuleon states following the

same strategy as in setion 17.1 disussing the trae anomaly: We use Eq. (17.18) at leading

4

Sine the moment transfer is omparable to the nulear size, they interat (partly) oherently with the whole

nuleus. Thus in an additional step, nulear physis e�ets have to be inorporated.
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20.3. Big bang nuleosynthesis

order in �

s

,

T

�

�

= �

9

8

�

s

�

F

a

��

F

a��

+

X

q=u;d;s

m

q

�qq ; (20.50)

together with the mass frations f

(N)

q

alulated in lattie QCD. Evaluating then T

�

�

between

nuleon states jNi and using hN jT

�

�

jNi = m

N

, we obtain

hN j

�

s

�

F

a

��

F

a��

jNi = �

8

9

m

N

f

(N)

G

(20.51)

with f

(N)

G

� 1�

P

q=u;d;s

f

(N)

q

. This determines the e�etive operators at the sale q

2

' m

N

and allows one to alulate sattering rates for given oeÆients C

N

S

. The e�etive Lagrangian

(20.49) is however de�ned at the sale orresponding to the mass sale of the virtual partiles

integrated out. Thus as a �nal step, one has to derive the RGE of these e�etive operators

and to evolve the oeÆients C

N

S

down to the sale m

N

.

Indiret detetion The average density of DM in the Galaxy is inreased by a fator � 10

5

ompared to the extragalati spae. Therefore the annihilation rate of DM an beome

again appreiable inside the Milky Way, and in partiular in regions where DM is strongly

aumulated. The seondaries of DM annihilations will be the stable partile of the standard

model, i.e. photons, neutrinos, eletrons and protons. The hallenge for the indiret detetion

onsists to disentangle these annihilation produts from the bakground of high-energy parti-

les produed by astrophysial soures. Two hannels provide a rather unique signature: DM

annihilations into two photons, or a photon and Z, lead to line features whih annot mim-

iked by a astrophysial bakground. Sine a WIMP is by assumption neutral, this proess

an proeed however only via loop graphs and it thus suppressed by a fator (�=�)

2

.

Another unique signature are high-energy neutrinos produed by WIMPs that aumulate

e.g. in the Sun. Here, the diretional signal together with the fat that neutrinos produed

by astrophysial proesses have energies

<

�

GeV provides the distintive signature. In all

other ases, a detailed knowledge of the spetral shape of anti-matter uxes, both for the

bakground produed e.g. in pp ollisions and in DM annihilations is required. This requires

the knowledge of strong interations at small virtualities and relies on the use of Monte Carlo

methods, as desribed in setion 17.2.

20.3. Big bang nuleosynthesis

Big bang nuleosynthesis (BBN) is ontrolled mainly by two parameters: The mass di�erene

between protons and neutrons, � � m

n

�m

p

' 1:29MeV, and the freeze-out temperature

T

f

of reations onverting protons into neutrons and vie versa. Sine the binding energy per

nuleon has a large peak for

4

He, essentially all free neutrons are bound into helium. Heavier

elements (exept

7

Li) are produed later by stellar fusion, where the densities are suÆiently

high that e.g. the triple � proess 3

4

He !

12

C an bridge the gap of missing tightly bound

nulei between

4

He and

12

C.
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Equilibrium distributions In the non-relativisti limit T � m, the number density of a

nulear speies with mass number A and harge Z is given by

n

A

= g

A

�

m

A

T

2�

�

3=2

exp[�(�

A

�m

A

)℄ : (20.52)

In hemial equilibrium, �

A

= Z�

p

+ (A � Z)�

n

and we an eliminate �

A

by inserting the

equivalent expression of (20.52) for protons and neutrons,

e

��

A

= exp[�(Z�

p

+(A�Z)�

n

)℄ =

n

Z

p

n

A�Z

n

2

A

�

2�

m

N

T

�

3A=2

exp[�(Zm

p

+(A�Z)m

n

)℄ : (20.53)

Here and in the following we an set in the prefators m

p

' m

n

' m

N

and m

A

' Am

N

,

keeping the exat masses only in the exponentials. Inserting this expression for exp(��

A

)

together with the de�nition of the binding energy of a nuleus, B

A

= Zm

p

+(A�Z)m

n

�m

A

,

we obtain

n

A

= g

A

�

2�

m

N

T

�

3(A�1)=2

A

3=2

2

A

n

Z

p

n

A�Z

n

exp(�B

A

) : (20.54)

The mass fration X

A

ontributed by a nulear speies is

X

A

=

An

A

n

B

with n

B

= n

p

+ n

n

+

X

i

A

i

n

A

i

and

X

i

X

i

= 1 : (20.55)

Next we introdue the baryon-photon ratio � = n

B

=n



as variable. With n

Z

p

n

A�Z

n

=n

N

=

X

Z

p

X

A�Z

n

n

A�1

N

and � / T

3

and thus n

A�1

B

/ �

A�1

T

3(A�1)

, we have

X

A

/

�

T

m

N

�

3(A�1)=2

�

A�1

X

Z

p

X

A�Z

n

exp(�B

A

) : (20.56)

The fat that � ' 6 � 10

�10

� 1, i.e. that the number of photons per baryon is extremely

large, means that nulei with A > 1 are muh less abundant and that nuleosynthesis takes

plae later than naively expeted.

Let us onsider the partiular ase of deuterium in Eq. (20.56),

X

D

X

p

X

n

=

24�(3)

p

�

�

T

m

N

�

3=2

� exp(�B

D

) (20.57)

with B

D

= 2:23 MeV. The start of nuleosynthesis ould be de�ned approximately by the

ondition X

D

=(X

p

X

n

) = 1, or T

NS

' 0:07MeV aording to the left panel in Fig. 20.2.

The right panel of the same �gure shows the results, if the equations (20.56) together with

P

i

X

i

= 1 are solved for the lightest and stablest nulei: In thermal equilibrium, essentially

all free neutrons will bind to

4

He at temperatures T

<

�

0:2MeV. The formation of heavier

elements is strongly suppressed beause of their muh smaller binding energy per nuleon.

Moreover, the Coulomb barrier will prevent the prodution of nulei with Z � 1.
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20.3. Big bang nuleosynthesis

10-15

10-10

10-5

1

105

1010

1015

1020

 0.1  1  10  100

X
D

/(
X

p 
X

n)

T/MeV

10-25

10-20

10-15

10-10

10-5

1

0.2 0.5 1

X
A

T/MeV

N

D

3He

4He

12C

Figure 20.2.: Relative equilibrium abundane X

D

=(X

p

X

n

) of deuterium as funtion of tem-

perature T (left) and equilibrium mass frations of nuleons, D,

3

He,

2

He and

12

C (right).

Neutron abundane If we do not aim at the alulation of the (small) abundane of elements

other than

4

He, we have to solve only the Boltzmann equation for the neutron abundane.

Nuleons are inter-onverted by weak proesses as n $ p + e

�

+ �

e

. For an estimate of the

freeze-out temperature of weak interations, we an use the Gamov riteria: The ross setion

of proesses like n$ p+ e

�

+ �

e

or e

+

e

�

$ ��� is � � G

2

F

E

2

. If we approximate the energy

of all partile speies by their temperature T , their veloity by  and their density by n � T

3

,

then the interation rate of weak proesses is

� � hv�n

�

i � G

2

F

T

5

: (20.58)

In the radiation-dominated epoh, �(T

fr

) = H(T

fr

) gives as freeze-out temperature T

fr

of

weak proesses

T

fr

�

�

1:66

p

g

�

G

2

F

M

Pl

�

1=3

� 1MeV (20.59)

with g

�

= 10:75. Thus weak interation freeze out before nuleosynthesis starts. Beause

of T

fr

� 1 MeV, we an treat nuleons in the non-relativisti limit. Then their relative

equilibrium abundane is given by the Boltzmann fator exp (��=T ) for T

>

�

T

fr

. Hene at

freeze-out, the ratio of their equilibrium distributions is given by

n

eq

n

n

eq

p

= exp

�

�

�

T

fr

�

: (20.60)

We onsider in Eq. (20.13) the reation n + e

�

$ p + �

e

, using for the leptons equilibrium

distributions,

1

a

3

d(a

3

n

n

)

dt

= n

eq

l

h�vi

�

n

p

n

eq

n

n

eq

p

� n

n

�

: (20.61)

Next we replae the ratio n

eq

n

=n

eq

p

by the Boltzmann fator exp(���). Moreover, the loss term

n

eq

l

n

n

h�vi equals the neutron-proton sattering rate �

np

. Changing also from the variable n

n

to the neutron mass fration X

n

, we arrive at

dX

n

dx

= �

np

h

(1�X

n

)e

���

�X

n

i

: (20.62)
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20. Thermal relis

Introduing again the dimensionless x = �=T as evolution variable, we obtain

dX

n

dx

=

x�

np

H(1)

�

e

�x

�X

n

(1 + e

�x

)

�

(20.63)

with H(1) ' 1:13/s. The neutron-proton onversion rate an be onneted to the neutron

lifetime �

n

' 886:7s as (problem 21.??),

�

np

=

255

�

n

x

5

(12 + 6x+ x

2

) : (20.64)

Now Eq. (20.63) an be integrated and the result shows that X

n

freezes-out below 0.5MeV,

approahing the asymptoti value X

n

' 0:15.

Up-to now we have treated the neutron as stable. We an inlude into our simple piture

the e�et of neutron deays by adding the fator exp(�t=�

n

) to the neutron abundane X

n

. If

we use that nuleosynthesis starts at T

NS

' 0:07MeV, t

NS

' 270 s, then exp(�t=�

n

) ' 0:74.

As result, the mass fration of neutrons whih an be fused into helium is X

n

= 0:11 and thus

the helium fration X

4

= 2X

n

= 0:22. Numerial alulations that inlude the full nulear

reation network lead to X

4

= 0:24, and thus our simple estimate is only 10% away from

the true value. A �t to these numerial results shows that the helium abundane depends

logarithmially on �

b

,

X

4

= 0:226 + 0:013 ln(�

b

=10

�10

) : (20.65)

Thus the helium abundane alone an be used to determine the baryon-photon ratio as �

b

'

few � 10

�10

. A omparison of the predited with the observed abundane of deuterium and

lithium allows then for a onsisteny hek of the BBN piture. An independent determination

of 


b

using CMB observations leads to �

b

' 6:2 � 10

�10

. The suess of BBN an be used

to limit e.g. the injetion of high-energy through partile deays whih ould destroy light

elements.

Summary

Boltzmann equations are an important tool to desribe proesses as diverse as the evolution

of the DM density, BBN nuleosynthesis or reombination. The Gamov riterion states that

proesses freeze out when their rate beomes smaller than the Hubble rate. The mass of

any thermal reli is bounded by

<

�

20TeV. The abundane of a CDM partile with h�vi '

3�10

�26

m

3

/s orresponds to the observed one, 


CDM

= 0:2. BBN explains suessfully the

abundane of light elements like D and

4

He, and �xes thereby also �

b

.

Further reading

A lassi presentation of the freeze-out mehanism is given in [KT94℄. A more detailed

analytial treatment of BBN is presented by [Muk05℄ and [GR11b℄, who also disuss reombi-

nation. Dropping the assumption of uniformity, Boltzmann type equations an be also used

to desribe the evolution of perturbations, a topi whih is treated in detail e.g. by [Dod03℄.
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21. Baryogenesis

We have seen that BBN determines the baryon-photon ratio as � = n

B

=n



' 6 � 10

�10

. In

problem 21.??, we alulated the baryon abundane in the usual freeze-out formalism for zero

hemial potential. Sine the �pp annihilation ross setion is large, nuleons freeze-out very

late (x

f

� 44) when their density is already strongly suppressed. As a result, the baryon-

photon ratio in a baryon symmetri world would be � ' 7�10

�20

, i.e. muh smaller than the

observed value. This implies that at temperatures above the freeze-out a tiny surplus of one

quark per 10

10

quarks and antiquarks existed. Therefore the proper de�nition of the baryon-

photon ratio is � = (n

b

� n

�

b

)=n



and the hallenge is to explain the origin of the asymmetry

between baryons and antibaryons. Astronomers do not observe the photons from the proesses

e

+

e

�

! 2 and �pp! X that would our at the boundaries of matter-antimatter domains.

Using these observational limits, one an onlude that the whole observable universe onsists

of matter. Moreover, an inationary period in the early universe eliminates any pre-existing

baryon asymmetry, foring us to explain the observed baryon asymmetry dynamially. We

will see that suh explanations require neessarily physis beyond the SM.

21.1. Sakharov onditions and the SM

Sakharov onditions for baryogenesis Sakharov developed in 1967 the �rst model whih

ontained the three ingredients neessary for the dynamially generation of a non-zero baryon

number. These so-alled Sakharov onditions for baryogenesis are

1. violation of baryon number B,

2. violation of the disrete symmetries C and CP, and

3. departure from thermal equilibrium.

The �rst ondition, the non-onservation of baryon number B, is obviously neessary, if the

universe should evolve from a state with n

B

= 0 to n

B

> 0. We an understand the seond

ondition from the transformation properties of the baryon number operator B under C and

CP: Beause of CBC

�1

= �B and CPB(CP)

�1

= �B, the (thermal) expetation value of B

has to vanish, if C and CP are symmetries of the model onsidered. More expliitly, we an

express the expetation value of B in this ase with A = fC;CPg as

hBi = Z

�1

Tr

h

e

��H

B

i

= Z

�1

Tr

h

AA

�1

e

��H

B

i

(21.1a)

= Z

�1

Tr

h

e

��H

A

�1

BA

i

= �Z

�1

Tr

h

e

��H

B

i

= �hBi ; (21.1b)

where we used [H;A℄ = 0 going from the �rst to seond line. Thus hBi = 0, if [H;C℄ = 0 or

[H;CP℄ = 0. By the same token, we an show that a departure from thermal equilibrium is

required: Sine any unitary Lorentz invariant quantum �eld theory is invariant under CPT,

we have [H;CPT℄ = 0 but also CPTB(CPT)

�1

= �B. We an avoid the onlusion hBi = 0

only, if Eq. (21.1a), or in other words thermal equilibrium, does not hold.
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21. Baryogenesis

CP violation Another onsequene of CPT invariane is that CP violation is equivalent

to T violation. The latter is an anti-unitary operator, T

�1

iT = �i, and therefore omplex

parameters in the Lagrangian lead to T and thus CP violation. The only omplex parameters

ontained in the SM are the phases of the fermion mixing matries. In order to see that

suh phases result indeed in CP violation, we express the harged urrent interation for the

example of leptons by mass eigenstates,

L

CC

=

g

p

2

��

L;i



�

U

ij

e

L;j

W

+

�

+ h:: (21.2)

=

g

p

2

�

��

L;i



�

U

ij

e

L;j

W

+

�

+ �e

L;j



�

U

�

ji

�

L;i

W

�

�

�

: (21.3)

We hoose the rest-frame of the W -boson so that W

�

0

= 0. A CP transformation transforms

the urrent ��

L;i

e

L;j

into �e

L;j

�

L;i

and the W

+

i

into a W

�

i

. It exhanges also the left- and

right-irular polarisations of the W and transforms all arguments x

�

= (t;x) of the �elds

into x

�

= (t;�x). The latter two e�ets are harmless, sine we integrate over x

�

and sum

over the two polarisations of the W in the ation. Thus the ombined e�et of CP on the

�rst term in (21.3) is given by

g

p

2

��

L;i



�

U

ij

e

L;j

W

+

�

!

g

p

2

�e

L;j



�

U

ji

�

L;i

W

�

�

: (21.4)

The CP transformed term is idential to the Hermitian onjugated of the original term, if the

mixing matrix is real, U = U

�

. In this ase, a CP transformation simply exhanges the �rst

and the seond term in (21.3). If however the mixing matrix is omplex, the CP transformed

Lagrangian di�ers from the original one, and CP is violated.

In general, the omplex parameters required for CP violation an arise in two ways: First,

interations may ontain physial phases, as in the ase of the CKM and the MNSP matries in

the SM. Seond, vauum expetation values may ontain physial phases. This option alled

spontaneous CP violation requires at least two Higgs doublets, as we disussed in remark 17.1.

Enlarging the Higgs setor is therefore an eÆient way to add more CP violation to the SM.

Sphaleron transitions andB�L violation Reall from setion 16.2 the e�et of an instanton

transition on the divergene of the axial urrent,

�

�

j

�

A

= �

�

(j

�

R

� j

�

L

) =

g

2

16�

2

tr(F

��

~

F

��

) : (21.5)

Strong interations ouple equally to left- and right-hiral fermions, and therefore the sole

e�et of an instanton transition is a hirality ip of the fermion. In ontrast, an eletroweak

instanton ouples only to left-hiral fermions,

X

i

�

�

j

�

L;i

= �n

g

g

2

16�

2

tr(W

��

~

W

��

) = �� ; (21.6)

where n

g

ounts the number of generations, i stands for all omponents of the left-hiral

SU(2) doublets, L = (�

l

; l) with l = fe; � �g and the orresponding nine quark doublets. Now

an instanton transition hanges the fermion number of the left-hiral �elds. More preisely,

a transition whih hanges the winding number by one unit, �� = 1, hanges the fermion

number in eah doublet by one unit and thus the total fermion number by twelve. Sine eah

340



21.1. Sakharov onditions and the SM
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Figure 21.1.: Instanton versus sphaleron transition between di�erent # vaua.

quark arries baryon number 1=3, the hanges in the lepton avour and baryon number are

onneted by

�L

e

= �L

�

= �L

�

=

1

3

�L =

1

3

�B (21.7)

or �L = �B = n

g

= 3 for �� = 1. Thus we see that the ombination B � L is onserved in

the SM even in the presene of instanton transitions, while both the baryon and the lepton

number are broken. Adding onservation of eletri harge and olour, the states onneted

by an instanton are �xed. In partiular, a transition with �� = 1 reates the state

j0i !

�

�

u

L

u

L

d

L

e

�

L

+ 

L



L

s

L

�

�

L

+ t

L

t

L

b

L

�

�

L

�

;

where the three quarks of eah generations form a olour singlet. Sine mass terms and Higgs

interations mix left- and right-hiral �elds, the resulting hange in the number of left-hiral

fermions is transferred to the right-hiral fermions.

The di�erential probability p per time and volume of a tunnelling proess onneting two

vaua separated by one winding follows from (16.57) as

p = �m

�4

W

exp(�S) = �m

�4

W

exp

�

�

8�

2

g

2

�

�

10

�160

m

4

W

; (21.8)

where the prefator � is a dimensionless funtion of order one. Thus at zero temperature,

the e�ets of eletroweak instantons are ompletely negligible. In the early Universe however,

we should take into aount not only quantum but also thermal utuations. We inlude

the latter replaing the tunnelling fator exp(�S) by the Boltzmann fator exp(�E=T ). The

lassial �eld on�guration

1

onneting the top of the barrier with the vauum whih has

the smallest free energy is alled sphaleron, f. Fig. 21.1. Its energy in the broken phase

is E

sp

� m

W

(T )=�

W

, where m

W

(T ) is the temperature dependent mass of the W . Thus

the probability that a thermal utuation rosses the barrier is / exp(�2E

sp

(T )=T ). At

temperatures T

>

�

m

W

, thermal utuations are larger than the barrier height between the

vaua and the baryon number violating proesses should proeed unsuppressed. At these

temperatures, the SM is in the unbroken phase and the only relevant length sale is the

analogue of the Debye mass m

D

for a gauge boson, m

D

� �

W

T . Thus we expet that the

sphaleron rate

2

is given in the high-temperature limit by

p � �(�

W

T )

4

: (21.9)

1

The potential energy is a funtional of the �eld on�gurations, V

eff

[W

�

; �℄, and thus the �gure represents

a ut through an in�nite dimensional �eld spae; the maximum is in fat a saddle point.

2

Our dimensional argument does not aount for an additional fator �

W

arising in perturbative alulations

due to IR dynamis, but is nevertheless with � � 0:1 a good approximation for the sphaleron rate determined

in lattie alulation.
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21. Baryogenesis

Comparing the rate per partile, � � ��

4

W

T , with the Hubble rate, wee see that the B + L

violating sphaleron transition are (with � � 0:1) up to T

sp

� 10

12

GeV in equilibrium. As the

universe ools down, sphaleron proesses go out of equilibrium around T � 100GeV, when

the rate beomes Boltzmann suppressed.

Conneting B and B-L In thermal equilibrium, a linear ombination of B + aL has to

vanish. The exat value of a an be determined using that the universe is neutral, i.e. that

the onserved harges should be zero. Before the eletroweak phase transition, all the three

gauge fores are of long-range. The orresponding harges have to be therefore zero (or better

negligibly small), in order not to outweigh the gravitational fores. The only other onserved

harge is B�L. It is suÆient to onsider the hyperharge Y and B�L. Setting � � �

B�L

,

a partile of type i has the hemial potential

�

i

= �(B

i

� L

i

) + �

Y

Y

i

=2 = ��

�

i

: (21.10)

Using the quantum number assignments of table ??, it follows e.g.

�

h

+ = �

h

0
=

1

2

�

Y

and �

u

L

= �

d

L

=

�

3

+

�

Y

6

(21.11)

with analogous relations for the other members of the �rst fermion generation. Sine the

asymmetry is small, �

i

� T , we an use Eq. (??) obtaining

�n

i

� n

i

� n

�

i

= Æ

X

i

g

i

�

i

q

i

T

2

3

(21.12)

with Æ = 2 for bosons and Æ = 1 for fermions. The ondition that the hyperharge of the

plasma vanishes beomes

X

i

�n

i

Y

i

= n

g

�

5

3

�

Y

+

4

3

�

�

+

1

2

n

h

�

Y

= 0 ; (21.13)

where we summed over n

g

fermion generations and n

h

Higgs doublets. Now we an solve for

�, eliminate then this variable in the relations for �n

i

, arriving at

n

B

=

1

3

(�n

u

L

+�n

u

R

+�n

d

L

+�n

d

R

) = ��

Y

�

1

2

n

g

+

1

4

n

h

�

T

3

3

; (21.14)

n

L

= �n

�

L

+�n

e

L

+�n

e

R

= �

Y

�

7

8

n

g

+

9

16

n

h

�

T

3

3

: (21.15)

Subtration gives an expression for n

B�L

. Eliminating T

3

with the help of (21.14), we �nd

�nally

n

B

=

24 + 4n

h

66 + 13n

h

n

B�L

= an

B�L

(21.16)

with a = 28=79 in the SM. Beause the B + L violating sphaleron transitions are in thermal

equilibrium above T � 100GeV, we have to modify therefore the �rst Sakharov ondition:

Any asymmetry proportional to B+L will relax to zero, while the part proportional to B�L

will lead a �nal baryon asymmetry. In partiular, a non-zero baryon number arises too, if we

generate at T � 100GeV an asymmetry only in the lepton number.
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21.2. Baryogenesis in out-of equilibrium deays

Toy model Let us onsider a simple model, where we ouple a heavy salar X via Yukawa

interations to four SM fermions f

i

,

L

X

= g

12

X

X

�

f

2

f

1

+ g

34

X

X

�

f

4

f

3

+ h:: (21.17)

To be onrete, we hoose the salar as a heavy leptoquark X with eletri harge q(X) =

�4=3 and the two deay modes as

X ! �u�u; r (21.18)

X ! e

�

d; 1� r ; (21.19)

where r is the orresponding branhing ratio. The baryon number of the �rst deay mode

is B = �2=3, while the one of the seond mode is B = 1=3. Therefore we an not assign

a baryon number to X and thus baryon number is violated. Next we require that in these

deays C is violated. Then the harge onjugated deay modes have di�erent branhing ratios

�r 6= r,

�

X ! uu; �r (21.20)

�

X ! e

+

�

d; 1� �r : (21.21)

The resulting hange �B of the baryon number B per deay of a X;

�

X pair is thus

�B = �

2

3

r +

1

3

(1� r) +

2

3

�r �

1

3

(1� �r) = �r � r ; (21.22)

i.e. proportional to the amount of C violation. If we onsider these proesses at tree-level,

then the deay widths are �(X !

�

f

2

f

1

) = jg

12

X

j

2

I

X

and �(

�

X !

�

f

2

f

1

) = jg

12�

X

j

2

I

�

X

where

I

X

= I

�

X

is a real kinematial fator determined by the masses, I = I(m

X

;m

i

;m

j

). Thus

at tree-level, CP violating e�ets are absent, r = �r, the seond Sakharov ondition is not

satis�ed, and thus no net baryon number is generated.

This example shows that for suessful baryogenesis two additional requirements have to

be satis�ed: First, the kinematial terms I should be omplex. The required imaginary part

an be generated in a loop graph, if one of the virtual partiles an beome on-shell. This

an happen, if the mass of the deaying partile is to be larger than the sum of the fermion

masses in the loop. Seond, at least two heavy partiles have to interfere, suh that the deay

widths ontain the omplex ombination g

X

g

�

Y

instead of the real jg

X

j

2

. Adding therefore

L

Y

= g

12

Y

Y

�

f

2

f

1

+ g

34

Y

Y

�

f

4

f

3

+ h::

to the Lagrangian produes at the one-loop a potentially baryon number violating term,

�B / Im(g

12�

Y

g

12

X

g

34�

Y

g

34

X

)Im(I

XY

) : (21.23)

21.2. Baryogenesis in out-of equilibrium deays

Sakharov's third ondition for baryogenesis, a departure from thermal equilibrium, an be

satis�ed during phase transitions or when a partile speies is out of hemial equilibrium.

In this setion, we examine the oneptionally simpler seond possibility, onsidering out-of

equilibrium deays of unstable heavy partile X whih violate baryon number.
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21. Baryogenesis

Boltzmann equation for deays As �rst step, we simplify the Boltzmann equation for deays

X ! bb and its inverse reation. Here, the unstable heavy X and Y partiles may be out of

hemial equilibrium, while the light deay produts b are in equilibrium. In a GUT senario

for baryogenesis, we might identify the X partiles with the lepto quark-like gauge bosons

with eletri harge q = 4=3. Finally, we assume M

Y

�M

X

suh that the heavier Y partile

ontributes only as virtual state in the loop orretion. Then the deays X ! bb orresponds

to the annihilation term � and the inverse deays bb ! X to the prodution term  in the

Boltzmann equation. Using detailed balane to relate deays and inverse deays, we �nd

dn

X

dt

+ 3Hn

X

= ��

D

(n

X

� n

X;eq

) : (21.24)

Let us assume that the relevant deays of the X partile are to two bb partiles and to

two

�

b

�

b antipartiles, with B = +1=2 and B = �1=2, respetively. We denote the squared

Feynman amplitudes as

jA(X ! bb)j

2

= jA(

�

b

�

b! X)j

2

=

1

2

(1 + ")jA

0

j

2

; (21.25)

jA(X !

�

b

�

b)j

2

= jA(bb! X)j

2

=

1

2

(1� ")jA

0

j

2

: (21.26)

Then the asymmetry per deay of one X partile is given by

"

X

=

X

f

B

f

�(X ! f)� �(

�

X !

�

f)

�

tot

=

1

2

(1 + ")jA

0

j

2

�

1

2

(1� ")jA

0

j

2

1

2

(1 + ")jA

0

j

2

+

1

2

(1� ")jA

0

j

2

� " : (21.27)

We derive in the same way the Boltzmann equations for the number density of the b and

�

b

partiles. However, we have to inlude additionally to the deays 2! 2 sattering proesses

that may wash-out the reated baryon asymmetry

3

. Subtrating the two Boltzmann equations

and dividing by two, we obtain as equation for the baryon number density n

B

= n

b

� n

�

b

,

dn

B

dt

+ 3Hn

B

= "�

D

(n

X

� n

X;eq

)� �

D

n

B

n

X;eq

n



� 2n

B

n

n

h�vi : (21.28)

The only term whih an be positive and an thus drive the baryon asymmetry, "�

D

(n

X

�

n

X;eq

), shows learly the three Sakharov onditions: It is zero in ase of thermal equilibrium,

n

X

= n

X;eq

, or if C, CP, or B are not violated, i.e. if " = 0. The seond term aounts for the

inverse deays of the X boson, where we used detailed balane to relate deays and inverse

deays. Finally, the third part inludes 2! 2 baryon number violating sattering proesses.

Here, a subtle point arises: The imaginary part of this proesses orresponds to the produt

of an inverse deay and a deay, whih we have already taken into aount. Thus we should

inlude only the real, o�-shell part of the sattering proess.

Next we hange to dimensionless variables, introduing x = m

X

=T and Y

i

= n

i

=s. We

de�ne as measure for the departure from equilibrium

K �

�

D

(x)

2H(x)

�

�

�

�

x=1

=

�M

Pl

3:3g

1=2

�

m

X

: (21.29)

3

The existene of suh proesses is implied by unitarity, f. for an example Fig. 21.2
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Inserting all this, the new Boltzmann equations an be written as

dY

X

dx

= �Kx

D

�

Y

X

� Y

eq

X

�

(21.30a)

dY

B

dx

= "Kx

D

�

Y

X

� Y

eq

X

�

�Kx

B

Y

B

(21.30b)

with 

D

= �

D

(x)=�

D

(1) and 

B

= g

�

Y

eq

X



D

+ 2n



h�vi=�

D

(1). The baryon asymmetry Y

B

is

driven by the departure from equilibrium, � = Y

X

� Y

eq

X

and damped by inverse deays and

2! 2 satterings. Changing to � as variable, we an rewrite Eq. (21.30) as

d�

dx

= �

dY

eq

X

dx

�Kx

D

� ; (21.31a)

dY

B

dx

= "Kx

D

��Kx

B

Y

B

: (21.31b)

Integrating these �rst-order equations results in

�(x) = �(x

0

) exp

�

�

Z

x

x

0

dz zK

D

(z)

�

�

Z

x

x

0

dzX

0

eq

(z) exp

�

Z

x

z

dz

0

z

0

K

D

(z

0

)

�

(21.32)

and

Y

B

(x) = Y

B

(x

0

) exp

�

�

Z

x

x

0

dz zK

B

(z)

�

+ "K

Z

x

x

0

dz

D

(z)�(z) exp

�

�

Z

x

z

dz

0

z

0

K

B

(z

0

)

�

:

(21.33)

The most interesting limiting ase isK � 1, when the out-of-equilibrium ondition is satis�ed.

Then the exponentials are of order one, and the abundanes beome with 

D

(x) ' 1 for x� 1

Y

X

(x) ' Y

X

(0) exp

�

�Kx

2

=2

�

; (21.34a)

Y

B

(x) = "[X

X

(0) �X(z)℄ ' "X(0) : (21.34b)

Thus the X partiles deay around x � K

�1=2

, resulting in a baryon asymmetry "=g

�

.

GUT baryogenesis Sine GUT theories unify quarks and lepton, they ontain also gauge

bosons X

�

and Y

�

similar to the lepto-quark disussed in our toy model. In the simplest

GUT theory, SU(5), B � L is onserved and thus any non-zero B will be washed out by

sphaleron proesses. In GUT theories based on larger groups as e.g. SO(10), B�L is broken

and baryogenesis based on out-of equilibrium deays is in priniple possible. However, the

neessary temperatures, T

>

�

M

GUT

� 10

16

GeV, are larger than the maximal temperature

the universe is reheated after ination. A possible solution to this problem is skethed in

setion 23.3.

Leptogenesis This is an attrative model for baryogenesis whih onnets the smallness of

neutrino masses with the reation of the baryon asymmetry. In a �rst step, L violating deays

of heavy right-handed neutrinos generate L 6= 0. Latter, sphaleron proesses that onserve

only B � L onvert the lepton asymmetry into a baryon asymmetry.
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21. Baryogenesis

In the seesaw model, we extend the SM by three right-hiral neutrinos N

R�

with � =

fe; �; �g. Their interations are desribed by

L =M

�

�

N



R�

N

R�

+ (y

��

�

l

L�

�N

R�

+ h::) : (21.35)

Sine we inlude Majorana masses, lepton number is violated in the deays of the right-hiral

neutrinos,

N

R�

! l

L�

+

�

� and N

R�

! l



L�

+� : (21.36)

If there is enough CP violation and the out-of-equilibrium ondition is satis�ed, these deays

an result in a L asymmetry. We hek �rst the latter ondition, omparing the deay width

� � jy

�1

j

2

M

1

=(16�) of the lightest right-hiral neutrino N

R1

with mass M

1

to the Hubble

rate H(T ) at T = M

1

. This results in the bound M

1

>

�

10

14

GeV for a Yukawa oupling of

O(y) = 0:1. Numerial alulations show that the deoupling an happen later, what relaxes

the bound to M

1

>

�

10

12

GeV.

As soures for CP violation, we have to onsider the interferene terms of the tree-level

deays (21.36) with one loop orretions. We have to require N

j

6= N

1

as virtual partile,

while the presene of the light partiles l and � ensures that an imaginary part is reated.

Additionally to the vertex orretion, these requirements are also satis�ed by the self-energy

insertion, f. the top of Fig. 21.2. Cutting the loops as indiated leads automatially to

sattering proesses whih violate lepton number by two units, �L = 2. These sattering

proesses will wash out the generated L asymmetry, if they are in equilibrium. They are

desribed by the e�etive interation

L =

1

M

ll�� ; (21.37)

whih generates after eletroweak symmetry breaking Majorana masses m

�

= v

2

=M for the

three light neutrinos via the seesaw mehanism. For dimensional reasons, the rate �(�L = 2)

of these proesses is proportional to

�(�L = 2) �

T

3

M

2

�

T

3

P

i

m

2

i

v

4

: (21.38)

These proesses are not e�etive, if their rate is smaller than the Hubble rate in the range

T

ew

< T < M

1

. This implies a limit on the masses of the light neutrinos,

X

i=e;�;�

m

2

i

<

�

(0:2 eV )

2

; (21.39)

whih is omparable to the upper limit from neutrinoless double beta deay and from os-

mology.

21.3. Baryogenesis in phase transitions

The most eonomial model for baryogenesis is the attempt to use only the SM: It ontains C,

CP as well as B violation and hene the �rst two of the three Sakharov onditions are satis�ed.

Although eletroweak interations rates are fast ompared to the Hubble rate at T � m

W

and we an thus not use out-of-equilibrium deays, a deviation from thermal equilibrium

may our during the eletroweak phase transition. In pratise, however, the amount of CP

346



21.3. Baryogenesis in phase transitions
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H̄2
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ℓ

Figure 21.2.: Top: Feynman diagrams for the tree-level deay and the one loop orretions

whih soure CP violation. Bottom: Sattering proesses with �L = 2; from

[Ra16℄

violation in the CKM matrix is too small and the phase transition is only a smooth ross-over.

It is still tempting to ask, if eletroweak baryogenesis is possible for a slightly modi�ed SM,

adding e.g. a seond Higgs doublet, sine suh models are testable at the LHC.

Reall that in a �rst-order transition, the two minima at the ritial temperature T



are

separated by a potential barrier. While the universe ools below T



, it will be trapped for

some time in the false minimum. As a result of tunnelling through the potential barrier,

nuleation of bubbles ontaining the true vauum starts. Initially, their surfae tension is

too large and the bubbles will ollapse. When the temperature lowers further, the volume

energy gain overweights the surfae tension and the bubbles start to grow. As the bubbles

expand, the expetation value h�i of the Higgs �eld hanges from h�i = 0 to h�i = v(T ) when

the bubble passes the onsidered point. It is this hange of the order parameter v(T ) whih

provides the neessary departure from equilibrium.

Baryogenesis in a phase transitions is a ompliated dynamial proess and we give only

a sketh of the basi physis involved. Let us estimate �rst the relative size of the relevant

sales:

� The sphaleron rate hanges from �

sp

� ��

4

W

T � 10

�6

T outside the bubble to �

sp

�

exp(�E

sp

=T ) � exp(�m

W

(T )=�

W

T ) in the broken phase ontained in the expanding

bubble. Requiring that the generated baryon number is not washed out in the broken

phase, requires m

W

(T )=T = gv(T )=2T � 1, or in other words a large jump in the order

parameter v(T ) of the phase transition.

� The time sale for kineti equilibration is given by strong or eletroweak Coulomb

satterings with rate lose to the plasma temperature, �

th

� 0:1T .

� The time sale for the hange of the Higgs vev when the bubble passes depends on the

bubble speed v

b

and the width of the bubble wall Æ. Typially, one �nds �

v

�

_

�=� �

v

b

=Æ � (0:01 � 0:1)T .

Hene the rate of baryon number violating proesses is always out of equilibrium near the

wall, �

sp

� �

v

. Depending on the relative size of �

th

and �

v

one distinguishes two regimes:
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� The adiabati thik wall regime, �

th

� �

v

, where the plasma is in quasi-stati equilib-

rium with time-dependent hemial potentials.

� The non-adiabati thin wall regime, �

th

� �

v

. Here, the individual CP violating

transmission and reetion of partiles at the bubble wall has to be alulated. These

proesses di�er for L and R hiral fermions, beause CP is violated: Therefore there

is an exess of f

l

+

�

f

R

ompared to f

R

+

�

f

L

in front of the bubble wall. Sphaleron

interation are e�etive only in the unbroken phase outside the bubble. Other proesses

exhange L to R. Sine sphalerons reat only with f

L

, the rate for

e

�

L

�

�

L

�

�

L

! u

L

u

L

d

L

+ 

L



L

s

L

+ t

L

t

L

b

L

;

is slower than for

e

+

R

�

+

R

�

+

R

! �u

R

�u

R

�

d

R

+ �

R

�

R

�s

R

+

�

t

R

�

t

R

�

b

R

;

beause there are more

�

f

R

than f

L

. The hange of the baryon number in the two

reations is opposite, and thus a di�erene in their rates results in the reation of a

baryon asymmetry. Sine the wall is moving, part of the reated baryons will end up

inside the broken phase where wash-out proesses are not ative. It is this part whih

survives and reates the �nal baryon asymmetry.

Adiabati thik wall regime Let us onsider now in a bit more detail the opposite regime.

We use as a toy model the Yukawa interations between one fermion doublet Q

L

, a singlet

q

R

and two Higgs doublets. Their vev's are spae-time dependent and ontain one physial

phase whih we an hoose as �

1

= v

1

e

iÆ

and �

2

= v

2

e

�iÆ

. The Yukawa interations ontain

terms of the type

L

Y

= �y

f

v

1

e

iÆ

�

d

L

d

R

+ h.. (21.40)

Both v

1

and Æ vary aross the bubble wall. Sine the bubble is expanding, v

1

and Æ and thus

also the Lagrangian are time dependent. We an eliminate the time-dependene of L

Y

aused

by Æ(t) performing the time dependent rotation d

R

! e

�iÆ(t)

d

R

. This indues an additional

term in the kineti energy of right-hiral quarks,

i

�

d

R

�=d

R

! i

�

d

R

�=d

R

+

_

Æ

�

d

R



0

d

R

: (21.41)

As a result, the Hamiltonian hanges as

H ! H �

_

Æ

Z

d

3

x

�

d

R



0

d

R

= H �

_

ÆN

R

: (21.42)

Eletroweak proesses whih interhange left- and right-hiral quarks are fast ompared to

_

Æ.

In ontrast, the sphaleron rate is slower than

_

Æ and we neglet in a �rst step this rate. In

this approximation, the baryon number B = N

R

+N

L

is zero and we have to add to (21.42)

a hemial potential,

H ! H �

_

#N

R

� �

B

(N

R

+N

L

) : (21.43)

The resulting e�etive hemial potentials for right- and left-hiral quarks di�er, and using

again (??), we obtain

�n

B

= n

B;R

+ n

B;L

=

h

(�

B

+

_

Æ) + 2�

B

i

T

2

6

; (21.44)
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where the fator 2 aounts for the two omponents of the fermion doublet. Setting �n

B

= 0,

we �nd

�

B

= �

1

3

_

Æ : (21.45)

Next we inlude the e�et of the non-zero sphaleron rate. Using �B = 1 and �F = �

B

�B =

�

B

as hange of the free energy F and the baryon number B per sphaleron proess, we �nd

applying detailed balane

dn

B

dt

= �

�F �B

T

�

sp

= �

�

B

T

�

sp

=

1

3

_

Æ

T

�

sp

: (21.46)

In the last step, we used also that the hange of �

B

is mainly driven by

_

Æ, while �

sp

is slow.

Integrating this relation, we obtain the baryon number density generated by a passing bubble

wall,

n

B

=

1

3T

Z

dt

_

Æ�

sp

: (21.47)

For an order of magnitude estimate, we an use that the sphaleron rate drops from �

sp

�

��

4

W

T � 10

�6

T to zero. Then we �nd for the ratio of baryon and entropy density

n

B

s

�

45��

4

W

T�#

6�

2

g

�

� 10

�8

�# : (21.48)

This simple estimate shows that suessful eletroweak baryogenesis is possible, if the SM is

extended suh that there is suÆient CP violation and the phase transition is strong enough.

While the �rst ondition is relatively easy too satisfy, the seond one requires additional

partiles whih generially should be disovered at the LHC.

Summary

The dynamial generation of a baryon asymmetry is only possible, if the Sakharov onditions

(violation of B, of C and CP, and departure from thermal equilibrium) are satis�ed. The SM

ontains neither a suÆiently strong soure of CP violation, nor leads to a departure from

thermal equilibrium in the early Universe. Thus baryogenesis requires neessarily physis

beyond the SM. Eletroweak baryogenesis has the virtue of being testable at aelerators,

while leptogenesis is supported by the observation that the light neutrino masses required to

avoid wash-out of the baryon asymmetry fall in the experimentally allowed range.

Further reading

A more detailed disussion of baryogenesis whih inludes also the A�ek-Dine mehanism

an be found in [GR11b℄. The onnetion between leptogensis and neutrino masses is reviewed

in [BDBP05℄. Baryogenesis is an appliation where loop orretions involving thermal �elds

are essential. This requires to go beyond the Boltzmann equation, sine its derivation is based

on the distribution funtion in lassial phase spae; for some approahes in this diretion

see [ABDM11℄.
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22. Quantum �elds in urved spae-time

Our treatment of quantum �eld theory has been restrited up to now to inertial observers

and detetors in Minkowski spae. This ombination is very peuliar for two reasons: First,

all Minkowski spae is overed by a time-like Killing vetor �eld. Seond, no event horizons

exist for inertial observers in this spae-time. The existene of a unique time-like Killing

vetor �eld �

t

whih has as eigenfuntions the modes e

�i!t

implies that all inertial observers

an agree how to split positive and negative frequeny modes. This splitting selets in turn

the standard Minkowski vauum j0i

M

. As a result, the vauum states de�ned by di�erent

inertial observers agree, and no inertial detetor will register partiles in the vauum state

j0i

M

. In this hapter we will onsider more general situations. A ase of speial interest

is the expanding universe desribed by the FLRW metri, where no time-like Killing vetor

�eld exists. Intuitively, we expet that a time-dependent gravitational �eld, in analogy to an

eletri �eld, an reate partiles. Our analysis on�rms this expetation, but also teahes

us that the onept of a \partile" beomes dubious in a non-stationary metri. Even more

astonishingly, we will �nd that partile reation an our also in the ase of a stati spae-

time, if an event horizon exists. Suh a horizon obstruts the onstrution of an unique

time-like Killing vetor �eld and orresponds to a surfae of in�nite redshift. As a result, a

thermal spetrum of partiles is reated lose to the horizon.

22.1. Conformal invariane and salar �elds

Conformally at spae-times The problem of quantising �eld theories in urved spae-

times simpli�es onsiderably, if we apply the following two restritions: First, we onsider

only onformally at spae-times, i.e. those spae-times whih are onneted by a onformal

transformation to Minkowski spae,

g

��

(x) = 


2

(x)�

��

(x) = e

2!(x)

�

��

(x) : (22.1)

Note that onformal transformations g

��

(x) ! ~g

��

(x) = 


2

(x)g

��

(x) of the metri are not

equivalent to onformal transformations of the oordinates, x ! ~x = e

!(x)

x, whih we on-

sidered in hapter 17.1. In the latter ase, the argument of the metri tensor in the LHS

and the RHS in (22.1) would di�er, see also problem 23.??. Reall also that a oordinate

transformation x ! ~x(x) only relabels the spae-time points, but does not a�et physis,

sine we require that any ation S is invariant under general oordinate transformations.

By ontrast, a onformal transformation of the metri shrinks and strethes the Riemannian

manifold fM; g

��

g into another manifold f

~

M; ~g

��

g.

Conformal transformations hange distanes, but keep angles invariant. Thus the ausal

struture of two onformally related spae-times is idential. In partiular, light-rays prop-

agate also in onformally at spae-times along straight lines at �45 degrees to the time

axis. Important examples for onformally at spae-times are the at FLRW metri and all

two-dimensional spae-times.

350



22.1. Conformal invariane and salar �elds

Remark 22.1: Geometri quantities derived for the metri g

��

(x) are onneted to those of a

onformally transformed metri ~g

��

(x) = 


2

(x)g

��

(x) = e

2!(x)

g

��

(x) as

~

�

�

��

= �

�

��

+


�1

h

Æ

�

�

�

�


+ Æ

�

�

�

�


� g

��

g

��

�

�




i

; (22.2a)

~

R

��

= R

��

� g

��

�! � (d� 2)r

�

r

�

! + (d� 2)r

�

!r

�

! � (d� 2)g

��

r

�

!r

�

! ; (22.2b)

~

R = 


�2

[R � 2(d� 1)�! � (d� 1)(d� 2)r

�

!r

�

!℄ ; (22.2)

as one an hek by diret (but tedious) omputation.

Conformal invariane Another simpli�ation ours if we onsider �eld theories whih are

onformally invariant in Minkowski spae. Reall that suh theories ontain no dimensions-

full parameter and satisfy T

�

�

= 0. In a urved spae-time, we all suh a theory onformally

or Weyl invariant

1

. The ation

S[�; g

��

℄ =

Z

d

d

x

p

jgjL (�; �

�

�; g

��

) (22.3)

of suh a theory is invariant under a onformal transformation of the metri,

S[�; g

��

℄ = S[

~

�; ~g

��

℄ =

Z

d

d

x

p

~gL (

~

�; �

�

~

�; ~g

��

) ; (22.4)

if we resale the �eld aording to its anonial dimension, i.e. �(x)!

~

�(x) = 


(2�d)=2

(x)�(x)

for a boson. Therefore the equations of motion for the �eld

~

� using the metri ~g

��

are the

same as those for the �eld � using the metri g

��

. This allows us to relate the quantisation of

a Weyl invariant theory in a onformally at spae to the known problem of quantising the

�eld in Minkowski spae.

Conformal invariane of a salar �eld We have experiened that most alulations in

Minkowski spae for a salar �eld are onsiderably less involved than for �elds with non-

zero spin. This holds true also in urved spae-times, exept for one aspet: While massless

Dira and Yang-Mills �elds are lassially onformal invariant, this is not the ase for a salar

�eld minimally oupled to gravity: As disussed in setion 17.1 the trae T

�

�

of the stress

tensor for a massless salar �eld is given by

T

�

�

= �

�

1�

d

2

�

��

2

(22.5)

and vanishes only in d = 2, when the �eld � is dimensionless.

However, we have the freedom to improve the ation or the the stress tensor by appropriate

terms whih do not a�et the equations of motion or the generators of the Poinar�e algebra,

respetively. We pursue the seond approah way in problem 21.??. Here we ask if we

an make the salar ation Weyl invariant, while retaining the usual equation of motions in

Minkowski spae.

The latter onstraint is taken into aount, if we modify only the oupling of the salar

�eld to gravity, i.e. if we abandon the substitution rule f�

�

; �

��

;d

4

xg ! fr

�

; g

��

;d

4

x

p

jgjg.

1

H. Weyl suggested �rst 1918 the ombined sale transformation ~g

��

(x) = e

2!(x)

g

��

(x) and

~

A

�

(x) =

e

!(x)

A

�

(x) in an attempt to unify the gravitational and eletromagneti �eld.
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22. Quantum �elds in urved spae-time

While this rule is implied by the strong equivalene priniple, there are two reasons to expet

deviations: First, we know already that even within Einstein gravity non-zero torsion an

exist. In this ase, it is not possible to eliminate loally all e�ets of gravity by introduing a

loal inertial system. Seond, we expet that quantum orretions will add all renormalisable

oupling terms between the salar and the gravitational �eld, even if we set them to zero

at tree-level. Thus we should ask ourselves whih additional renormalisable oupling terms

between the salar and the gravitational �eld exist. Sine [R℄ = m

2

and thus also [R

��

℄ =

[R

����

℄ = m

2

, the only dimensionless additional interation term is a linear oupling of the

urvature salar R to �

2

. Suh a oupling R�

2

=2 ats as a urvature dependent, additional

mass term for the salar �eld. Now we ask how the ation

2

S =

Z

d

d

x

p

jgj

�

1

2

g

��

�

�

��

�

��

1

2

(m

2

� �R)�

2

�

; (22.6)

where � parametrises the oupling to the urvature salar, transforms under a onformal

transformation of the metri,

g

��

(x)! ~g

��

(x) = 


2

(x)g

��

(x) : (22.7)

From our disussion of sale transformations in Minkowski spae, we know that a bosoni

�eld in d spae-time dimensions sales as

�(x)!

~

�(x) = 


(2�d)=2

(x)�(x) = 


D

(x)�(x) : (22.8)

This leads for d > 2 learly to a non-trivial transformation of the kineti term whih has

to be ompensated by the non-trivial transformation of the salar urvature term. The

transformation (22.7) implies

g

��

! ~g

��

= 


�2

g

��

and

p

jgj !

p

~g = 


d

p

jgj : (22.9)

As a result, the ation S

0

obtained setting � = 0 hanges as

S

0

!

~

S

0

=

1

2

Z

d

d

x

p

jgj 


d

h




�2

g

��

r

�

(


D

�)r

�

(


D

�)�m

2




2D

�

2

i

(22.10)

or

~

S

0

=

1

2

Z

d

d

x

p

jgj

h

g

��

r

�

�r

�

�+ 2


d�2+D

g

��

r

�

�(r

�




D

)� (22.11a)

+ 


d�2

�

2

g

��

(r

�




D

)(r

�




D

)�m

2




2D

�

2

i

=

1

2

Z

d

d

x

p

jgj

h

g

��

�

�

��

�

��D(�!)�

2

+D

2

(r!)

2

�

2

�m

2




2D

�

2

i

: (22.11b)

Taking into aount the transformation rule (22.2) for the salar urvature R,

p

jgj R�

2

!

p

jgj [R� 2(d� 1)�! � (d� 1)(d � 2)r

�

!r

�

!℄�

2

; (22.12)

we �nd that the salar ation is invariant hoosing m = 0 and

� = �

d

�

d� 2

4(d� 1)

: (22.13)

A salar �eld with � = �

d

is alled onformally oupled to gravity, while the hoie � = 0 is

alled minimally oupled to gravity. Note that for d = 2, i.e. when � is dimensionless and

does not sale under onformal transformations, minimal and onformal oupling agree.

2

Sine g

��

and g

��

transform inversely, we have to distinguish between �

�

� and �

�

�. Convention is to use

only g

��

and to write all �elds and derivatives with lower indies.
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22.1. Conformal invariane and salar �elds

Salar �eld equation in a FLRW bakground Next we derive the equation of motion

for a salar �eld with arbitrary � in an expanding universe desribed by the at FLRW

metri. Choosing as oordinates ft;xg, we have g

��

= diag(1;�a

2

;�a

2

;�a

2

), g

��

=

diag(1;�a

�2

;�a

�2

;�a

�2

), and

p

jgj = a

3

. Varying the ation

S =

Z

d

4

x a

3

�

1

2

_

�

2

�

1

2a

2

(r�)

2

� V (�)

�

(22.14)

gives

ÆS =

Z

d

4

x a

3

�

_

�Æ

_

��

1

a

2

(r�) � Æ(r�)� V

;�

Æ�

�

(22.15a)

=

Z

d

4

x

�

�

d

dt

(a

3

_

�) + ar

2

�� a

3

V

;�

�

Æ� (22.15b)

=

Z

d

4

x a

3

�

�

�

�� 3H

_

�+

1

a

2

r

2

�� V

;�

�

Æ� ; (22.15)

setting V

;�

� dV=d�. Thus the Klein-Gordon equation for a salar �eld with the potential

V (�) = (m

2

+ �R)�

2

=2 in a at FLRW bakground is

�

�+ 3H

_

��

1

a

2

r

2

�+ (m

2

+ �R)� = 0 : (22.16)

The term 3H

_

� ats in an expanding universe as a frition term for the osillating � �eld.

Moreover, the gradient of � is also suppressed for inreasing a; this term an be therefore

often negleted.

Next we want to rewrite this equation as the one for an harmoni osillator with a time-

dependent osillation frequeny. We introdue �rst the onformal time d� = dt=a.

Remark 22.2: For a power-law like behaviour of the sale fator, a(t) / t

p

, the onformal time

� evolves as � =

R

dt t

�p

/ t

1�p

and thus a(�) / �

p

1�p

. In partiular, � sales as a(�) / � in the

radiation dominated (p = 1=2) and as a(�) / �

2

in the matter dominated epoh (p = 2=3). For a de

Sitter phase, a(t) / e

Ht

, we obtain

� =

Z

dt e

�Ht

= �H

�1

e

�Ht

+ �

0

= �(aH)

�1

+ �

0

:

Setting �

0

= 0 results in a(�) = �1=(H�). Ination is de�ned as the phase in the early universe with

an aelerated expansion, �a > 0. Using the onvention �

0

= 0, ination ends at � = 0, followed by the

standard big bang evolution for � > 0.

Then we hange the derivatives of the �eld,

_

� =

d�

dt

=

d�

d�

d�

dt

=

1

a

�

0

; and

�

� =

1

a

d

d�

�

1

a

�

0

�

=

1

a

2

�

00

�

a

0

a

3

�

0

; (22.17)

and express also the Hubble parameter as funtion of �,

H =

_a

a

=

a

0

a

2

�

H

a

: (22.18)
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Inserting these expressions into Eq. (22.16) and multiplying with a

2

gives

�

00

+ 2H �

0

�r

2

�+ a

2

V;

�

= 0 : (22.19)

Performing then a Fourier transformation, �(�;x) =

P

k

�

k

(�)e

ikx

; we obtain

�

00

k

+ 2H�

0

k

+ [k

2

+ (m

2

+ �R)a

2

℄�

k

= 0 : (22.20)

Note that k is the omoving wave-number. Sine the proper distane varies as x / a, the

physial momentum is p = k=a.

Finally, we an eliminate the frition term 2H�

0

k

by introduing the auxiliary �eld �

k

(�) =

a(�)�

k

(�). Then we obtain a harmoni osillator equation for �

k

,

�

00

k

+ !

2

k

�

k

= 0 ; (22.21)

with the time-dependent frequeny

!

2

k

(�) = k

2

+ (m

2

+ �R)a

2

�

a

00

a

: (22.22)

For a massless, onformally oupled (� = 1=6) salar �eld, the frequeny is independent of

the expansion of the universe, !

2

k

(�) = k

2

, f. problem 21.??.

Now we hoose the speial ase of a de Sitter universe as approximation for the inationary

phase of the early universe. Moreover, we onsider a minimally oupled salar �eld with

negligible mass. Combining then a = �1=(H�) and a

00

= �2=(H�

3

), or

a

00

a

=

2

�

2

; (22.23)

the wave equation simpli�es to

�

00

k

+

�

k

2

�

2

�

2

�

�

k

= 0 : (22.24)

We examine �rst the short and the long-wavelength limit. In the �rst ase, k � j1=�j, the

�eld equation is onformally equivalent to the one in Minkowski spae, with solution

�

k

(�;x) =

1

p

2k

(A

k

e

�ikx

+B

k

e

ikx

) : (22.25)

Here we fatored out a normalisation fator 1=

p

2k � 1=

p

2!

k

. With � = �1=(aH), we an

rewrite the short-wavelength ondition as jkj=a� H

�1

. Thus the omoving wavelength of the

partile is muh shorter than the omoving Hubble radius aH, or equivalently, its physial

wavelength is muh shorter than the Hubble radius. Therefore these solutions are alled

subhorizon modes.

In the opposite limit, we �nd a

00

�

k

= a�

00

k

whih has as growing solution �

k

/ a and thus

�

k

= onst: Thus modes with wavelengths larger than the horizon are \frozen in" and do

not osillate. They are alled superhorizon modes. The omplete solution is given by Hankel

funtions H

3=2

(�),

�

k

(�;x) = A

k

e

�ikx

p

2k

�

1�

i

k�

�

+B

k

e

ikx

p

2k

�

1 +

i

k�

�

: (22.26)
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22.2. Quantisation in urved spae-times

We ould now set out for the quantisation of the salar �eld �. If we ignore the time-

dependene and quantise the salar �eld with the time-dependent mass term (22.22) in the

standard way, we will obtain di�erent vaua and di�erent Fok spaes at di�erent times t. As

a result, a state whih was empty at time t will ontain in general partiles at time t

0

. Thus

the time-dependent gravitational �eld an exite modes �

k

, supplying energy and leading to

partile prodution. We will postpone the quantisation of a salar �eld in a FLRW metri to

the next hapter, where this equation will play a prominent role. Before that we will introdue

�rst some formalism needed and disuss two oneptionally simpler examples.

22.2. Quantisation in urved spae-times

Similarly as in Minkowski spae, we an use both anonial quantisation or the path integral

approah to quantise lassial �eld theories in urved spae-times. The latter approah is

partiularly useful, if we are interested in quantum orretions to the stress tensor: Its expe-

tation value for the quantum �eld � in the bakground of a lassial gravitational �eld g

��

is

hT

��

i =

R

D� T

��

e

iS[�;g

��

℄

R

D� e

iS[�;g

��

℄

: (22.27)

Note that now the gravitational �eld g

��

plays the usual role of a lassial soure. Inserting

the de�nition (7.50) of the dynamial stress tensor and realling that the denominator in

(22.27) is the generating funtional Z = exp(iW ) leads to

hT

��

i =

1

Z[g

��

℄

2

i

p

jgj

Æ

Æg

��

Z[g

��

℄ =

2

p

jgj

ÆW [g

��

℄

Æg

��

: (22.28)

Having alulated hT

��

i, one ould aim at solving the Einstein equations in the semi-lassial

limit, replaing T

��

by hT

��

i. In this way, one takes into aount two e�ets: First, the

gravitational bakground an produe partiles. Seond, it hanges the zero-point energies of

the � vauum, analogous to the Casimir e�et or vauum polarisation.

One of the main advantages of this approah is that it is based on a loal quantity, hT

��

i =

hT

��

(x)i. Thus if we an show in a spei� frame that e.g. hT

��

(x)i = 0, then any observer

will agree on that. By ontrast, we will see that the expetation value h

~

0jN j

~

0i for the number

of partiles measured in a spei� vauum j

~

0i depends on the trajetory of the onsidered

detetor. Therefore the onept of partile number and prodution is not a loal one. This

implies in partiular that we an address the question where or when a partile is reated

only in an approximate way. An essential ingredient in both approahes is the vauum state

to be used in the alulation of expetation values. We will therefore onentrate �rst on this

question, and then apply the simpler anonial quantisation formalism to spei� examples.

22.2.1. Bogolyubov transformations

Ambiguity of the vauum A basi ingredient of the anonial quantisation proedure is

to split the �elds into positive frequenies propagating forward in time, and negative fre-

quenies propagating bakwards. Sine we assoiate annihilation operators with negative

frequeny modes and reation operators with positive frequeny modes, this splitting de�nes

the vauum. As Minkowski spae ontains a time-like Killing vetor �eld �

t

whih has as

eigenfuntions the modes e

�i!t

with positive eigenvalues !, the vauum is invariant under
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22. Quantum �elds in urved spae-time

Lorentz transformation: All observers in inertial frames agree on the hoie of the vauum

and thus also on one and many-partile states.

In urved spae-times no inertial system an be globally extended to over the whole man-

ifold. No unique de�nition of the vauum is possible and thus the notion of partile number

beomes observer dependent whih in turn implies the reation of partiles. Using the or-

respondene g

��

(x) ! J(t), we an illustrate this behaviour with the simple example of a

harmoni osillator whih is driven during a �nite time interval 0 < t < T by an external

fore J(t).

Example 22.1: Exitation of a driven harmoni osillator.

In the notation of hapter 2.4, the Hamiltonian of a driven harmoni osillator is given by

H(�; �) =

1

2

�

2

+

1

2

!

2

�

2

� J� : (22.29)

We assume that the lassial external soure J(t) ats only in the �nite time interval 0 < t < T .

We keep the de�nition (2.58) of the annihilation and reation operators, from whih we �nd now as

equation of motion

_a = �i!a+

i

2!

J(t) : (22.30)

Speifying the initial value before we apply the external fore as a(t = 0) � a

in

results in

a(t) = a

in

e

�i!t

+

i

2!

Z

t

0

dt

0

J(t

0

)e

�i!t

0

: (22.31)

For t > T , we set a(t) � e

�i!t

a

out

� e

�i!t

(a

in

+ J

0

). Our aim is to express the in-states in term of

the out-states. We set j0

in

i =

P

1

n=0



n

jn

out

i, where the oeÆients 

n

have to be determined. Ating

with a

out

on the in-vauum gives

a

out

j0

in

i =

1

X

n=0



n

a

out

jn

out

i =

1

X

n=0

p

n

n

j(n� 1)

out

i =

1

X

n=0

p

n+ 1

n+1

jn

out

i ; (22.32)

where we relabelled n ! n + 1 in the last step. On the other hand, applying a

in

+ J

0

= a

out

on the

in-vauum results in

(a

in

+

~

J) j0

in

i = J

0

j0

in

i =

1

X

n=0

J

0



n

jn

out

i : (22.33)

Comparing the two expressions, we obtain 

n+1

= J

0



n

=

p

n+ 1 and thus 

n

= J

n

0



0

=

p

n!. Requiring

that the vauum is normalised, we an determine 

0

as j

0

j = exp(�

1

2

jJ

0

j

2

). Thus

j0

in

i = exp(�

1

2

jJ

0

j

2

+ J

0

a

y

out

) j0

out

i ; (22.34)

up to an undetermined phase: The driving fore J(t) onverted the in-vauum into a oherent state

whih ontains all n-partile states with the amplitude 

n

.

Our orresponding task in �eld theory is to �nd a mapping between �eld operators de�ned

with respet to di�erent vaua. The relation between the two sets of �eld operators is a speial

ase of a Bogolyubov transformation. We will �rst disuss this transformation in general.
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22.2. Quantisation in urved spae-times

Bogolyubov transformation We de�ned a salar produt for solutions of the Klein-Gordon

equation in Eq. (9.25). To simplify the notation, we normalise the solution in a box of �nite

volume, obtaining a disrete spetrum. Then the salar produt for plane-waves beomes

('

i

; '

j

) = Æ

ij

; and ('

�

i

; '

�

j

) = �Æ

ij

(22.35)

and zero otherwise,

('

i

; '

�

j

) = ('

�

i

; '

j

) = 0 : (22.36)

If we quantise the salar �eld (22.21) with its time-dependent frequeny at di�erent times t

and

~

t, we will obtain di�erent vaua and di�erent Fok spaes,

a

i

j0i = 0 8i ; ~a

i

�

�

~

0

�

= 0 8i :

We now searh for the onnetion between the two sets of annihilation and reation oper-

ators. We an express the �eld at any time through the two sets of reation and annihilation

operators,

�(x) =

X

i

h

a

i

'

i

(x) + a

y

i

'

�

i

(x)

i

=

X

j

h

~a

j

~'

j

(x) + ~a

y

j

~'

�

j

(x)

i

: (22.37)

Both sets of solutions, f'

j

(x); '

�

j

(x)g and f ~'

j

(x); ~'

�

j

(x)g, form a omplete basis. Thus we

an deompose any basis vetor ~'

j

(x) as

~'

j

(x) =

X

i

[�

ji

'

i

(x) + �

ji

'

�

i

(x)℄ : (22.38)

The unknown matries �

ij

and �

ij

are alled Bogolyubov oeÆients. Using the orthogonality

relations (22.35) and (22.36), we an determine the Bogolyubov oeÆients as

('

k

; ~'

j

) =

X

i

h

�

ij

('

k

; '

i

) + �

y

ij

('

k

; '

�

i

)

i

= �

jk

(22.39)

and �

jk

= �('

�

k

; ~'

j

). In the reverse diretion, we �nd in the same way

'

i

(x) =

X

j

h

�

�

ji

~'

j

(x)� �

y

ji

~'

�

j

(x)

i

: (22.40)

Rewriting Eq. (22.38) and its omplex onjugated expression in matrix form gives

�

~'

~'

�

�

=

�

� �

�

�

�

�

��

'

'

�

�

= U

�

'

'

�

�

: (22.41)

Sine both bases are orthonormal, the matrix U is unitary,

�

ij

�

�

jk

� �

ij

�

�

jk

= Æ

ik

: (22.42)

The transformation properties of the annihilation and reation operator follow as

�

a; a

y

�

=

�

~a; ~a

y

�

U : (22.43)
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If �

ij

6= 0, time-evolution mixes positive and negative frequeny modes. As a result, the

vauum

�

�

~

0

�

evaluated with the number operator N

i

= a

y

i

a

i

will ontain partiles,

h

~

0jN

i

j

~

0i =

X

j

j�

ji

j

2

: (22.44)

The orresponding energy density � in the ontinuum limit is

�

k

=

Z

d

3

k

0

(2�)

3

!

k

0

j�

k;k

0

j

2

: (22.45)

The Bogolyubov oeÆients � should therefore derease faster than k

�2

to ensure a �nite

energy density.

We will see that the presene of horizons lead to a thermal ux of partiles. For a thermal

spetrum with temperature T , the Bogolyubov oeÆients have to satisfy the ondition

j�

ji

j

2

= e

!

i

=T

j�

ji

j

2

: (22.46)

Then the unitarity ondition (22.42) of the Bogolyubov oeÆients gives

h

~

0jN

i

j

~

0i =

X

j

j�

ji

j

2

=

1

e

!

i

=T

� 1

: (22.47)

22.2.2. Choosing the vauum state

Having set up the formalism of Bogolyubov transformations, we have to �ll the formalism

with physis: Sine there is no unique vauum, we have to deide ase by ase whih is the

physially relevant one. Additionally, we need a sheme for the alulation of the Bogolyubov

oeÆients. The �rst problem, the hoie of a physially sensible vauum, simpli�es, if the

spae-time has \useful" symmetries. This inludes in partiular the ase that the spae-time

is onformally at. Spae-times whih approah asymptotially Minkowski spae for � ! �1

are also useful toy-models: For suh models, we an apply our standard formalism to onstrut

the in and out Fok spae. We study therefore �rst this ase, using a model whih has the

further virtue of being analytially solvable.

Solvable model We illustrate now the prodution of partiles in an expanding universe for

a spei�, exatly solvable model. In this two-dimensional model, the line-element is given by

ds

2

= C(�)

�

d�

2

� dx

2

�

(22.48)

and the sale fator hanges as

C(�) � a

2

(�) = A+B tanh(��) (22.49)

with A > B and � > 0. For � ! �1, the sale fator approahes the onstant value

C(�)! A�B and thus the metri approahes asymptotially Minkowski spae. In this limit

we should be able to apply our standard approah to de�ne vaua and one-partile states.

Using the separation ansatz �

k

(�; x) = �

k

(�)e

ikx

=(2�)

1=2

in the salar �eld equation with

� = 0 gives

�

00

k

+

�

k

2

+ C(�)m

2

�

�

k

= 0 : (22.50)
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Thus asymptoti in and out states have the frequeny

!

in

=

p

k

2

+m

2

(A�B) (22.51)

!

out

=

p

k

2

+m

2

(A+B) (22.52)

and approah

�

k

(�)!

e

�i(!

in

��kx)

p

4�!

in

and �

k

(�)!

e

�i(!

out

��kx)

p

4�!

out

(22.53)

for � ! �1, respetively. The omplete solutions are given by hypergeometri funtions;

we ould �nd them either using a omputer algebra program or performing the substitution

� = 1 + tanh(��). The important point is that one an relate the in and out solutions

�

in

k

(�; x) = �

k

�

out

k

(�; x) + �

k

�

out�

�k

(�; x) (22.54)

using the linear transformation properties of these funtions. The oeÆients �

k

determine

the Bogolyubov oeÆients, �

kk

0

= Æ

�k;k

0

�

k

, and are given by

j�

k

j

2

=

sinh

2

(�!

�

=�)

sinh(�!

in

=�) sinh(�!

out

=�)

(22.55)

where !

�

= (!

in

� !

out

)=2.

Using a variation of the Gamov riterion, partile reation should be ontrolled by the

ratio of the expansion rate H =

_

C=(2C) � � and !: High-frequeny modes (or subhorizon

modes in the language of the previous setion) with �=! � 1 should be not a�eted by the

expansion and behave as in Minkowski spae. Expanding j�

k

j

2

for small �, we see that partile

prodution is exponentially suppressed in this limit, j�

k

j

2

! exp(�2�!

�

=�).

Adiabati vauum In ases of pratial interest as the FLRW metri, the spae-time does

not approah asymptotially Minkowski spae. In this ase, we need an approximation sheme

for the alulation of the Bogolyubov oeÆients together with a suitable de�nition for the

vauum at an arbitrary intermediate time. Two partiular hoies for the vauum state are

the instantaneous and the adiabati vauum. The �rst one de�nes the vauum as the state of

lowest energy at eah moment of time. This implies that one uses the time-dependent !

k

(�)

in the usual Minkowski modes. This sheme over-predits the e�et of partile prodution,

as the analogue of a (quantum) mehanial pendulum with variable length makes lear: The

number of quanta E=! is an invariant, if the length of the pendulum (i.e. !) hanges adiabat-

ially [LL81℄. This invariane is however not taken into aount hoosing the instantaneous

vauum.

The de�nition of the adiabati vauum is motivated by the requirement that high-frequeny

modes should not be a�eted by the expansion of the universe: In partiular, the model (22.49)

suggests that in this limit partile prodution is exponentially suppressed. Motivated by the

WKB approximation, we express the positive mode funtions as

�

+

k

(�) =

1

p

W

k

(�)

exp

�

i

Z

�

d� W

k

(�)

�

; (22.56)

while the negative modes funtions are given by �

�

k

(�) = �

+�

k

(�). We an implement the

idea that high-frequeny modes are una�eted by the expansion of the universe requiring the

asymptoti expansion of W

k

as

W

k

(�) = !

k

(�)

�

1 + Æ

2

(�)!

�2

k

+ Æ

4

(�)!

�4

k

+ : : :

�

: (22.57)
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An adiabati vauum (of order n) is de�ned by hoosing the initial onditions for the exat

solution of �

00

k

+ !

2

k

�

k

= 0 suh that only the positive modes (22.56) (with W

k

evaluated

at order Æ

n

) are present at the initial time �

0

. This guaranties that partile prodution is

exponentially suppressed in the adiabati, high-frequeny limit.

At lowest order in the asymptoti expansion, W

k

(�) = !

k

(�), we an obtain a numerial

approximation as follows: In general, the �eld modes an be expressed as

�

k

(�) =

�

k

(�)

p

2!

k

(�)

exp

�

�i

Z

�

d� !

k

(�)

�

+

�

k

(�)

p

2!

k

(�)

exp

�

i

Z

�

d� !

k

(�)

�

; (22.58)

where �

k

(�) and �

k

(�) are the \instantaneous" Bogolyubov oeÆient. The mode equation

�

00

k

+ !

2

k

�

k

= 0 is satis�ed, if the oeÆients satisfy

�

0

k

=

!

0

k

2!

k

exp

�

2i

Z

d� !

k

�

�

k

(22.59a)

�

0

k

=

!

0

i

2!

k

exp

�

�2i

Z

d� !

k

�

�

k

: (22.59b)

Choosing the adiabati vauum at the time �

0

implies the initial onditions �

k

(�

0

) = 1 and

�

k

(�

0

) = 0. Negleting a quadrati term, we obtain as losed expression for the Bogolyubov

oeÆients

�

k

(�) '

Z

�

d�

0

!

0

k

2!

k

exp

 

�2i

Z

�

0

d�

00

!

k

!

: (22.60)

Conformal vauum For a onformally at spae-time, we an onnet the solutions of a

onformally invariant theory to those of Minkowski spae,

g

��

(x) = 


�2

(x)�

��

: (22.61)

In the ase of a onformally oupled salar, the wave equation (�� �

d

R)� = 0 beomes

�

~

� = �

��

�

�

�

�

(


D

�) ; (22.62)

where we used that in Minkowski spae

~

R = 0 and the saling law (22.8) for bosoni �elds.

The �eld

~

� has the usual Minkowski Fourier modes,

~'

k

(x) = [2!(2�)

d�1

℄

�1=2

e

�ikx

(22.63)

whih are eigenfuntions of the onformal Killing vetor � = (1;0),

�

��

~'

k

(x) = �i!

k

~'

k

(x) (22.64)

with !

k

> 0. Reversing the saling law (22.8),

~

� = 


�D

�, we obtain the solution and the

Green funtion in the spae-time (M; g

��

) as

�(x) = 


�D

(x)

X

i

h

a

i

~'

i

(x) + a

y

i

~'

�

i

(x)

i

(22.65)

�

F

(x; x

0

) = 


�D

(x)D

F

(x; x

0

)


�D

(x

0

) ; (22.66)
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where the ~'

i

are given by (22.63). The vauum of the �eld � de�ned by a

i

j0i = 0 is alled

onformal vauum. The seond relation for the propagator follows immediately from the def-

inition of the Green funtion as time-ordered produt of �elds. Note also the orrespondene

to the variable substitution u

k

(�) = a(�)�

k

(�) = 
(�)�

k

(�) whih transformed the salar

�eld equation in d = 4 into a Minkowskian form.

Sine modes whih are positive eigenmodes of Eq. (22.64) at one time remain positive

for all times, no mixing between positive and negative frequeny modes ours. As result,

partile reation of onformally invariant �elds in a onformally at spae-time is absent.

The exatly solvable model on�rms this behaviour, sine m ! 0 results in !

�

! 0 and

no partile prodution for onformally oupled massless salar ours. Phenomenologially

important ases of massless partiles are the photon and the graviton. In the �rst ase, the

onformal invariane of the Maxwell equation implies that eletromagneti �elds an not be

generated during ination, unless a mehanism whih breaks gauge invariane and generates

a mass term for the photon is invoked. In the ase of the gravitational �eld g

��

, the saling

law ~g

��

= 


(2�d)=2

g

��

of a bosoni �eld is in onit with the onformal transformation law

~g

��

= 


2

g

��

for all d. Therefore gravitons are generated in an expanding universe.

22.3. Aelerated observers and the Unruh e�et

Partile prodution an be divided in two di�erent ases: In the �rst one, the spae-time

is time-dependent (e.g. via the sale fator a(t)) and an perform \work" and thus reate

partiles. The seond, perhaps more intriguing one, is the emission of a thermal spetrum of

partiles lose to a horizon. We will onsider in this setion the seond ase, investigating the

simplest ase of an aelerated observer in Minkowski spae.

Uniformly aelerated observer In the rest frame of an uniformly aelerated observer, the

four-aeleration is given by a

�

= �x

�

= (0;a) with jaj = a = onst: We an onvert this

ondition into a ovariant form, writing

�

��

�x

�

�x

�

= �a

2

: (22.67)

In order to determine the trajetory x

�

(�) of the aelerated observer, it is onvenient to

hange to light-one oordinates,

u = t� x and v = t+ x : (22.68)

Here, we assume that the trajetory is ontained in the t-x plane; in the following we will

suppress the transverse oordinates y and z. Forming the di�erentials du and dt, we see

that the line-element in the new oordinates is ds

2

= dudv. The normalisation ondition

�

��

_x

�

_x

�

= 1 of the four-veloity beomes therefore _u _v = 1, while the aeleration equation

(22.67) results in �u�v = �a

2

. Di�erentiating then _u = 1= _v, we obtain �u = ��v= _v

2

or

�v

_v

= �a : (22.69)

Integrating results in

v(�) =

A

a

exp(a�) +C (22.70)
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t

x

a!1

Figure 22.1.: Trajetories of uniformly aelerated observers together with the horizon and

some vauum utuations.

and, using _u = 1= _v, in

u(�) = �

1

Aa

exp(�a�) +D : (22.71)

Going bak to the original Cartesian oordinates, we obtain

t(�) =

1

a

sinh(a�) and x(�) =

1

a

osh(a�) ; (22.72)

where we set the integration onstants A = 1 and C = D = 0 whih selets the trajetory

with t(0) = 0 and x(0) = 1=a. Two trajetories for �nite aeleration a are shown together

with the limiting urve a!1 in Fig. 22.1.

Exponential redshift We will disuss later gravitational partile prodution as the e�et

of a non-trivial Bogolyubov transformation between di�erent vaua. Before we apply this

formalism, we will disuss the basis of this physial phenomenon in a lassial piture. As a

starter, we want to derive the formula for the relativisti Doppler e�et. Consider an observer

who is moving with onstant veloity v relative to the Cartesian inertial system x

�

= (t; x)

where we neglet the two transverse dimensions. We an parametrise the trajetory of the

observer as

x

�

(�) = (t(�); x(�)) = (�; �v) ; (22.73)

where  denotes its Lorentz fator. A monohromati wave of a salar, massless �eld �(k) /

exp[�i!(t� x)℄ will be seen by the moving observer as

�(�) � �(x

�

(�)) / exp [�i!� ( � v)℄ = exp

"

�i!�

r

1� v

1 + v

#

: (22.74)

Thus this simple alulation reprodues the usual Doppler formula, where the frequeny ! of

the salar wave is shifted as

!

0

=

r

1� v

1 + v

! : (22.75)
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Next we apply the same method to the ase of an aelerated observer. Then t(�) =

a

�1

sinh(a�) and x(�) = a

�1

osh(a�). Inserting this trajetory again into a monohromati

wave with �(k) / exp(�i!(t� x) gives now

�(�) / exp

�

�

i!

a

[sinh(a�)� osh(a�)℄

�

= exp

�

i!

a

exp(�a�)

�

� e

�i#

: (22.76)

Thus an aelerated observer does not see a monohromati wave, but a superposition of

plane waves with varying frequenies. De�ning the instantaneous frequeny by

!(�) =

d#

d�

= ! exp(�a�) ; (22.77)

we see that the phase measured by the aelerated observer is exponentially redshifted. As

next step, we want to determine the power spetrum P (�) = j�(�)j

2

measured by the observer,

for whih we have to alulate the Fourier transform �(�).

Example 22.2: Determine the Fourier transform of the wave �(�).

Substituting y = exp(�a�) in

�(�) =

Z

1

�1

d��(�)e

i��

=

Z

1

�1

d� exp

�

i!

a

exp(�a�)

�

e

i��

(22.78)

gives

�(�) =

1

a

Z

1

0

dy y

�i�=a�1

e

i(!=a)y

: (22.79)

On the other hand, we an rewrite the integral representation (A.24) of the Gamma funtion as

Z

1

0

dt t

z�1

e

�bt

= b

�z

�(z) = exp(�z ln b) �(z) (22.80)

for <(z) > 0 and <(b) > 0. Comparing these two expressions, we see that they agree setting z =

�i�=a+ " and b = �i!=a+ ". Here we added an in�nitesimal positive real quantity " > 0 to ensure

the onvergene of the integral. In order to determine the orret phase of b

�z

, we have rewritten this

fator as exp(�z ln b) and have used

ln b = lim

"!0

ln

�

�

i!

a

+ "

�

= ln

�

�

�

!

a

�

�

�

�

i�

2

sign(!=a) : (22.81)

Thus the Fourier transform �(�) is given by

�(�) =

1

a

�

!

a

�

i�=a

�(�i�=a)e

��=(2a)

: (22.82)

The Fourier transform �(�) ontains negative frequenies,

�(��) = �(�)e

���=a

=

1

a

�

!

a

�

i�=a

�(�i�=a)e

���=(2a)

: (22.83)

Using the reetion formula of the Gamma funtion for imaginary arguments,

�(ix)�(�ix) =

�

x sinh(�x)

; (22.84)
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we �nd the power spetrum at negative frequenies as

P (��) =

�

a

2

e

���=a

(�=a) sinh(��=a)

=

�

�

1

e

��

� 1

(22.85)

with � = 2�=a. Remarkably, the dependene on the frequeny ! of the salar wave|still

present in the Fourier transform �(�)|has dropped from the negative frequeny part of

the power spetrum P (��) whih orresponds to a thermal Plank law with temperature

T = 1=� = a=(2�).

The ourrene of negative frequenies is the lassial analogue for the mixing of posi-

tive and negative frequenies in the Bogolyubov method. Therefore we expet that on the

quantum level a uniformly aelerated detetor will measure a thermal Plank spetrum with

temperature T = 1=� = a=(2�). This phenomenon is alled Unruh e�et and T = a=(2�) the

Unruh temperature.

Rindler spae-time Reall that the trajetory of an aelerated observer is given by

t(�) =

1

a

sinh(a�) and x(�) =

1

a

osh(a�) : (22.86)

It desribes one branh of the hyperbola x

2

� t

2

= a

�2

, f. Fig. 22.1.

Our aim is to determine the vauum experiened by the uniformly aelerated observer.

As �rst step, we have to �nd a frame f�; �g omoving with the observer. In this frame, the

observer is at rest, �(�) = 0, and the oordinate time � agrees with the proper time, � = � .

Introduing omoving light-one oordinates,

~u = � � � and ~v = � + � ; (22.87)

these onditions beome

~u(�) = ~v(�) = � : (22.88)

Moreover, we hoose the omoving oordinates suh that the metri is onformally at,

ds

2

= 


2

(�; �)(d�

2

� d�

2

) = 


2

(~u; ~v)d~ud~v : (22.89)

Next we have to relate the omoving oordinates f~u; ~vg to Minkowski oordinates ft; xg.

Sine d~u

2

and d~v

2

are missing in the line-element, the funtions u(~u; ~v) and v(~u; ~v) an

depend only on one of their two arguments. We an set therefore u(~u) and v(~v). Expressing

the four-aeleration _u as

du

d�

=

du

d~u

d~u

d�

; (22.90)

inserting _u = �au and

_

~u = 1 we arrive at

� au =

du

d~u

: (22.91)

Separating variables and integrating we end up with u = C

1

e

�a~u

. In the same way, we

�nd v = C

2

e

a~v

. Sine the line-element has to agree along the trajetory with the proper-

time, ds

2

= d�

2

, the two integration onstants C

1

and C

2

have to satisfy the onstraint
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�a

2

C

1

C

2

= 1. Choosing C

1

= �C

2

, the desired relation between the two sets of oordinates

beomes

u = �

1

a

e

�a~u

and v =

1

a

e

a~v

; (22.92)

or using Cartesian oordinates,

t =

1

a

e

a�

sinh(a�) and x =

1

a

e

a�

osh(a�) : (22.93)

The spae-time desribed by the oordinates de�ning the omoving frame of the aelerated

observer,

ds

2

= e

2a�

(d�

2

� d�

2

) ; (22.94)

is alled Rindler spae-time. It is loally equivalent to Minkowski spae, but di�ers globally:

If we vary the Rindler oordinates over their full range, � 2 R and � 2 R, then we over

only the one fourth of Minkowski spae with x > jtj. Thus for an aelerated observer an

event horizon exist: Evaluating on a hypersurfae of onstant omoving time, � = onst:, the

physial distane from � = �1 to the observer plaed at � = 0 gives

d =

Z

0

�1

d�

q

jg

��

j =

1

a

: (22.95)

This orresponds to the oordinate distane between the observer and the horizon in

Minkowski oordinates.

Unruh e�et We have found that the Fourier spetrum of a lassial wave seen by an

aelerated observer ontains negative frequenies whih exhibit a thermal spetrum. Now

we want to disuss this phenomenon whih is alled the Unruh e�et on the quantum level.

In order to simplify the alulation, we onsider the simplest ase of a massless salar �eld in

1+1 dimensions. Then the ation is onformally invariant,

S =

1

2

Z

dtdx

p

jgj �

��

r

�

�r

�

� =

1

2

Z

d�d�

p

jgj g

��

r

�

�r

�

� (22.96)

and the resulting wave equation has the same form for an an inertial observer using u; v and

an aelerated observer using ~u; ~v (light-one) oordinates,

�

2

�

�u�v

=

�

2

�

�~u�~v

= 0 : (22.97)

The orresponding solutions are

�(t; x) = f(u) + g(v) and �(�; �) = f(~u) + g(~v) ; (22.98)

where f and g are arbitrary smooth funtions speifying the wave form.

In the overlap region x > jtj, we an quantise the �eld using either set of oordinates,

�(x) =

Z

1

0

d!

p

(2�)2!

h

a

!

e

�i!u

+ a

y

!

e

i!u

i

+ left-movers (22.99a)

=

Z

1

0

d


p

(2�)2


h

b




e

�i
~u

+ b

y




e

i
~u

i

+ left-movers : (22.99b)
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22. Quantum �elds in urved spae-time

Here we wrote down expliitly only the right-moving modes: Beause of u(~u) and v(~v), the

two sets of modes propagate independently and we an onsider them separately.

The vauum de�ned by b

i

j0

R

i = 0 is alled the Rindler vauum, while the usual Minkowski

vauum is de�ned by a

i

j0

M

i = 0. One may wonder whih one of the two vaua is the \better"

one? First, the Rindler oordinates over only part of the Minkowski spae-time; they, and

as a result also the Rindler vauum j0

R

i, are singular on the horizon: Using the two di�erent

representation for the �eld �, its energy density follows as

� = h0

M

j (�

u

�)

2

j0

M

i = h0

R

j (�

~u

�)

2

j0

R

i : (22.100)

Now we ompare the expetation value of (�

u

�)

2

for the two vaua,

� = h0

R

j (�

u

�)

2

j0

R

i =

�

�~u

�u

�

2

h0

R

j (�

~u

�)

2

j0

R

i =

1

(au)

2

h0

M

j (�

u

�)

2

j0

M

i : (22.101)

Sine the expetation value in the Minkowski vauum is well-behaved, the Rindler vauum

diverges for u ! 0. More preisely, we see that the ontribution of the left-movers to the

energy density of the Rindler vauum diverges at the future horizon u = 0. Similarly, the

right-movers add an in�nite energy density at the past horizon v = 0. While the Rindler

vauum is thus not able to desribe physis lose to the horizon, the orresponding set of �eld

operators should be used to alulate the response of an uniformly aelerated detetor to

the Minkowski vauum.

We express now in Eq. (22.99b) the operator b




using the Bogolyubov relation, and ompare

then the oeÆients of the positive frequeny part,

1

p

2!

e

�i!u

=

Z

1

0

d


0

p

2


0

h

e

�i


0

~u

�




0

!

� e

�i


0

~u

�

�




0

!

i

: (22.102)

Next we multiply with e

�i
~u

and integrate over ~u. Performing then the trivial 


0

integral on

the RHS, we arrive at

Z

1

0

d~ue

�i!u+i
~u

=

�

�


!

�


!

; (22.103)

whih has the same form as (22.78). Hene the Bogolyubov oeÆients satisfy the ondition

for a thermal spetrum,

j�


!

j

2

= exp(2�
=a)j�


!

j

2

: (22.104)

The expetation value of the number operator valid for the aelerated observer in the

Minkowski vauum beomes

D

~

N




E

= h0

M

j b

y




b




j0

M

i =

Z

d!j�

!


j

2

: (22.105)

For ! = 
, the normalisation ondition (22.42) beomes in the ontinuum limit

R

1

0

d!

�

j�


!

j

2

� j�


!

0

j

2

�

= Æ(0). Using also (22.104) we arrive at

D

~

N




E

= Æ(0)

1

exp(2�
=a)� 1

: (22.106)

Identifying the fator Æ(0) as usually with the volume, we obtain for the number density of

salar partiles deteted by an aelerated observer in the Minkowski vauum

h~n




i =

1

exp(2�
=a) � 1

: (22.107)
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22.3. Aelerated observers and the Unruh e�et

Sine energy is onserved in Minkowski spae, you should be worried about this thermal ux

measured in an aelerated detetor: A tempting answer is that this energy is delivered by

the external agent whih aelerates the detetor. Figure 22.1 suggests however a di�erent

interpretation: Minkowski spae vauum utuations that are rossing the horizon of an a-

elerated observer are experiened by the observer as real, thermal utuations: For instane,

the vauum utuation at (t; x) = 0 is seen for an aelerated observer as a real partile exist-

ing from � = �1 to � =1. Similarly, all other vauum utuation rossing the horizon are

interpreted as the reation and annihilation of real partiles. Thus the horizon seems to be

equipped with a thermal atmosphere, whih temperature inreases the loser an aelerated

observer approahes it. In ontrast, for any Minkowski observer these utuations are the

usual \harmless" vauum utuations.

We lose this setion with a remark on the topology of the Rindler and Minkowski spae-

times: Both spae-times are at and agree loally in their overlapping region. They di�er

only from a global point of view, and thus their topology should disagree. Performing a

Wik rotation, the hyperbola x

2

� t

2

= a

�2

de�ning the horizon beomes a irle. Hene

the Rindler spae-time has the topology S

1

� R

3

. We an view this periodiity as another

indiation for the presene of a thermal spetrum. Its temperature T equals the inverse of

the irumferene 2�=a of the event horizon in the ompati�ed dimension.

Summary

The de�nition of the vauum and of the number of partiles in a spae-time without time-like

Killing vetor �eld is ambiguous and dependent on the observer. Field operators de�ned

with respet to di�erent vaua are related by a Bogolyubov transformation; the oeÆients

relating positive and negative frequenies in two di�erent vaua determine the amount of

partile prodution. In spae-times without time-like Killing vetor �eld, all SM partiles

exept photons and gluons are produed by the hanging metri. In a spae-time with event

horizon, a thermal spetrum of partiles is reated lose to the horizon.

Further reading

[MW07℄ give a pedagogial introdution of quantum e�ets in gravity, inluding path inte-

gral methods and the alulation of the onformal anomaly. Two exhaustive disussions of

quantum �eld theory in urved spae-time are the books of [BD82℄ and of [PT09℄.
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23. Ination

Observational data show that we live in a universe whih is nearly at, j


k

j � j


tot

�1j

<

�

0:1%.

A at universe however is an unstable �xed point of the time evolution of a radiation or matter

dominated universe. This raises the question about the \naturalness" of the initial onditions

of our universe: Is there any hope to explain why the universe is at? A similar problem is

posed by the formation of strutures: Gravitational ollapse an enhane initial utuations,

but is not able to reate them. Thus in an initially uniform FLRW universe, no strutures

like galaxies would evolve. A suessful osmologial theory should answer therefore how the

primordial utuations were reated whih have served as seeds for the observed strutures

today.

An inationary phase in the early universe is a very suessful attempt to explain these

and other observations whih are puzzling in the traditional big bang piture. Ination is

however not a spei� theory, but resembles from the point of view of partile physis more a

paradigm: Very di�erent models an lead to an observationally indistinguishable inationary

phase in the early universe. In order to be spei�, we will use in most of our disussion as

prototype for ination a single salar �eld, the inaton, equipped with one of our standard

potentials, V (�) = m

2

�

2

=2 or V (�) = ��

4

=4.

23.1. Motivation for ination

Aording to the standard big bang senario, the universe evolved looking bakwards to

t! 0 from a matter dominated into an radiation dominated epoh until it reahed the initial

singularity at t = 0. This standard big bang model leads to several shortomings:

� Causality or horizon problem: Why are ausally disonneted regions of the universe

homogeneous, as the isotropy of the CMB shows? This problem arises beause the

(partile) horizon grows like the osmi time t, but the sale fator a inreases in the

radiation or matter dominated epoh only as t

2=3

or t

1=2

, respetively. Thus for any

sale L ontained today ompletely inside the horizon, there exists a time t < t

0

where

L rossed the horizon. A solution to the horizon problem requires that a grows faster

than t. Sine a / t

2=[3(1+w)℄

, this demands w < �1=3 or �a > 0, i.e. an aelerated

expansion of the universe.

� Flatness problem: The urvature term in the Friedmann equation sales as k=a

2

and

dereases thus slower than the matter (/ 1=a

3

) and radiation (1=a

4

) terms. Let us

rewrite the Friedmann equation as

k

a

2

= H

2

�

8�G

3H

2

�� 1

�

= H

2

(


tot

� 1) : (23.1)

The LHS sales as (1 + z)

2

, the squared Hubble parameter in the matter dominated

epoh as (1+ z)

3

, and in the radiation dominated epoh as (1+ z)

4

. Classial gravity is
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23.1. Motivation for ination

supposed to be valid until the Plank saleM

Pl

. Most of time the universe was radiation

dominated, so we an estimate the redshift at the Plank time as 1+z

Pl

= (t

0

=t

Pl

)

1=2

�

10

30

. Thus if today the deviation from atness is j


tot

� 1j

<

�

1%, then it had too be

extremely small at the Plank time, j


tot

� 1j

<

�

10

�2

=(1 + z

Pl

)

2

� 10

�62

. Taking the

time-derivative of

j


tot

� 1j =

jkj

H

2

a

2

=

jkj

_a

2

(23.2)

gives

d

dt

j


tot

� 1j =

d

dt

jkj

_a

2

= �

2jkj�a

_a

3

< 0 (23.3)

for �a > 0. Hene j


tot

� 1j inreases, if the universe deelerates, i.e. _a dereases, and

dereases if the universe aelerates, i.e. _a inreases. Thus again a phase with �a > 0 (or

w < �1=3) may avoid this problem.

� Magneti monopole problem: Grand uni�ed theories (GUT) predit the existene of

magneti monopole with masses M

GUT

=�

GUT

. If they are produed via the Kibble

mehanism during the GUT symmetry breaking, they would overlose the universe, f.

problem 20.??.

� The standard big bang model ontains no soure for the initial utuations required for

struture formation.

Classial gravity breaks down around t � t

Pl

or T � M

Pl

, and one may wonder if these

problems an be avoided by an appropriate modi�ation of gravity above the Plank sale.

This possibility seems to be rather ontrived, beause for most preditions the time interval

between the singularity and t � t

Pl

is negligible. Therefore setting t

Pl

= 0 seems to be a good

approximation, see also problem 24.??.

Solution by ination Ination is a modi�ation of the standard big bang model where a

phase of aelerated expansion in the very early universe is introdued. While the initial

singularity in a big bang model happens at t = 0 or � = 0, an inationary phase adds

\additional" time at � < 0 (f. the remark 23.2). During this phase, the universe behaves

lose to a de Sitter universe with w = �1, H = onst:, and a(t) = a

0

exp(Ht). If this phase

prevails long enough, it solves the horizon, atness, and the monopole problem and generates

as bonus density utuations:

� The exponential growth of the sale fator, a(t

f

)=a(t

i

) = e

(t

f

�t

i

)H

� t

f

=t

i

, blows up a

small, at time t

i

ausally onneted region to superhorizon sales.

� Similarly, the growth of the sale fator solves the atness problem, driving j


tot

� 1j /

e

�2Ht

exponentially towards zero.

� Magneti monopoles or other superheavy relis are diluted as n / exp(�3Ht). At the

end of a suÆiently long inationary phase, their density is therefore pratially zero.

� Ination blows-up quantum utuation to astronomial sales, generating initial u-

tuation without sale, P

0

(k) / k

�1+"

with "� 1, as required by observations.
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23. Ination
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Figure 23.1.: Evolution of the present Hubble sale as funtion of time; the ondition

(a

0

H

0

)

�1

< (a

i

H

i

)

�1

sets a lower limit on a

f

=a

i

.

Figure 23.1 illustrates how the omoving Hubble sale 1=(aH) evolves in a universe with an

inationary phase. During ination, 1=(aH) dereases, beause �a > 0 is equivalent to

d

dt

�

1

aH

�

=

d

dt

( _a)

�1

= �

�a

( _a)

2

: (23.4)

More preisely, w ' �1 and H ' onst: imply that a inreases exponentially. Thus the

omoving Hubble radius dereases as ln(1=aH) = � ln(a) + onst: during ination: As a

result, physial sales k whih had been previously on superhorizon distane ome in ausal

ontat. Ination ends at a

f

, and the omoving Hubble sale starts to grow. During the

intermediate phase a

f

< a < a

rh

the universe goes through a phase of reheating before

the standard big bang evolution starts at a > a

rh

. The value of a

rh

is determined by the

temperature to whih the universe is reheated and is very model dependent.

Conditions for suessful ination We an rewrite the ondition for aelerated expansion

�a > 0 as

d

dt

�

1

aH

�

= �

_aH + a

_

H

(aH)

2

= �

1

a

(1� "

H

) with "

H

� �

_

H

H

2

: (23.5)

The ondition "

H

� 1 ensures that w is lose to �1 (problem 24.??). Next we de�ne as

measure for the expansion the number N of e-foldings during ination, N = ln(a

2

=a

1

). Using

then dN = d ln(a) = Hdt, we an express "

H

as

"

H

= �

_

H

H

2

= �

d lnH

dN

: (23.6)

The relative hange of "

H

should be small per Hubble time H

�1

so that ination an persist

during a suÆiently large number of e-foldings. This motivates us to introdue as a seond

parameter

�

H

�

d ln "

H

dN

=

1

H

_"

H

"

H

; (23.7)

whih should be also small, j�

H

j � 1. Thus we an quantify the onditions for suessful

ination by "

H

� 1 and j�

H

j � 1: These two onditions guaranty that the time evolution of

the sale fator is for a suÆiently long time lose to the one in a de Sitter universe.
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23.2. Ination in the homogeneous limit

Example 23.1: How muh ination is needed?

We an �nd the minimal number of e-folding to solve the horizon problem by omparing the omoving

Hubble radius today to the one at the beginning of ination (f. Fig. 23.1),

(a

0

H

0

)

�1

< (a

i

H

i

)

�1

: (23.8)

We neglet the reheating phase and approximate the omplete evolution of the universe for a > a

rh

as

radiation dominated. With H / 1=a

2

, we �nd

a

0

H

0

a

f

H

f

=

a

0

a

f

�

a

f

a

0

�

2

=

a

f

a

0

=

T

0

T

f

� 10

�28

; (23.9)

where we used T

f

= 10

15

GeV as temperature of the universe at beginning of the standard big bang

evolution for the numerial estimate. Thus

(a

i

H

i

)

�1

> (a

0

H

0

)

�1

� 10

28

(a

f

H

f

)

�1

: (23.10)

With H

i

� H

f

, N � 65 e-foldings are required to solve the horizon problem for our hoie of T

f

.

23.2. Ination in the homogeneous limit

We assume in the following that a single salar �eld, the inaton, is responsible for the

inationary phase in the early universe. We know that displaing the minimum of a salar

potential from zero generates a osmologial onstant, whih in turn leads to aelerated

expansion. In a suessful inationary model, we have to onvert this stati piture into a

dynamial proess, sine ination has to start and to stop. In partiular, the end of ination

has to be suessfully onneted to the smooth big bang piture, whih is alled often the

\graeful exit problem."

Reall also our disussion of salar �elds with non-zero vev in hapter 13. There we split

the salar �eld �(x) into a lassial part h�i � �

0

and quantum utuations Æ�(x) on top of

it. Now we onsider the more general ase where also the lassial �eld depends on time,

�(x) = �

0

(t) + Æ�(x) ; (23.11)

and its dynamis is governed by the Einstein equations. Clearly, this problem an not be

solved in general. Observations of the CMB show however that the early universe was very

homogeneous, ÆT=T � 10

�5

, and thus we an expet that lowest order perturbation theory

in Æ�(x) should work reliable. We onsidered already the evolution of �

0

(t) in a FLRW

bakground. Now we analyse under whih onditions this evolution leads suessfully to

ination, before we alulate in the next setion the utuations Æ�(x).

Equation of state of a salar �eld ondensate A salar �eld � sitting at the minimum of

its potential V (�) has the desired EoS w = �1 to drive aelerated expansion. The simplest

dynamial model for an inationary phase is a single, salar �eld whih is initially displaed

from its minimum. A neessary ondition for aelerated expansion is w < �1=3, and thus

we should �nd the EoS of a salar �eld � evolving in a FLRW bakground.

The stress tensor for a salar �eld with L =

1

2

g

��

r

�

�r

�

�� V (�) follows from

T

��

= 2

�L

�g

��

� g

��

L = r

�

�r

�

�� g

��

�

1

2

g

��

r

�

�r

�

�� V (�)

�

; (23.12)
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23. Ination

where we used the relation (??) derived in problem 19.??. We an desribe the salar �eld

also as an ideal uid. Equating the two expressions for the stress tensor gives

T

��

= r

�

�r

�

�� g

��

L

!

= (�+ P )u

�

u

�

� Pg

��

: (23.13)

Comparing the two independent tensor strutures we an identify P = L and

r

�

�r

�

� = (�+ P )u

�

u

�

: (23.14)

Contrating the indies with g

��

, remembering u

�

u

�

= 1 and using r

�

�r

�

� = 2L + 2V

results in

� = P + 2V : (23.15)

Now we have to alulate only the energy-density � = T

00

in order to determine the (isotropi)

pressure P and the equation of state w = P=�. In a FLRW bakground, the energy-density

of the �eld � is given by

� = T

00

=

_

�

2

�

�

1

2

_

�

2

�

1

2a

2

(r�)

2

� V (�)

�

=

1

2

_

�

2

+

1

2a

2

(r�)

2

+ V (�) : (23.16)

Thus the pressure

1

follows as

P =

1

2

_

�

2

+

1

2a

2

(r�)

2

� V (�) : (23.17)

If we require that the �eld � respets the symmetries of the FLRW bakground, then � has

to be homogeneous and the (r�)

2

term vanishes. As result, the equation of state simpli�es

to

w =

P

�

=

_

�

2

� 2V (�)

_

�

2

+ 2V (�)

2 [�1 : 1℄ : (23.18)

Thus a lassial salar �eld may at as dark energy, w < �1=3, leading to an aelerated

expansion of the Universe. A neessary ondition is that the �eld is \slowly rolling," i.e. that

its kineti energy is suÆiently smaller than its potential energy,

_

�

2

< 2V=3.

Slow-roll onditions for the potential We an integrate _a = aH for an arbitrary time-

evolution of H,

a(t) = a(t

0

) exp

�

Z

dtH(t)

�

: (23.19)

The number N of e-foldings is onneted to the evolution of H and � as

N = ln

a

2

a

1

=

Z

dt H(t) =

Z

d�

_

�

H(t) : (23.20)

The potential energy an dominate only long enough, if

�

� is small. Therefore we an approx-

imate the �eld equation

�

�+3H

_

�+V

0

= 0 as

_

� � �V

0

=(3H). Using then also the Friedmann

equation H

2

= 8�GV=3, it follows

N = �

Z

d�

3H

2

V

0

= �

Z

d�

8�GV

V

0

= �

Z

d�

f

M

Pl

V

f

M

Pl

V

0

; (23.21)

1

For an alternative de�nition of the pressure see problem 24.??.
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23.2. Ination in the homogeneous limit

where we introdued the redued Plank mass

f

M

Pl

� (8�G)

�1=2

. Suessful ination requires

N

>

�

60� 1 and thus we require as slow-roll parameter for the potential

"

V

�

1

2

 

f

M

Pl

V

0

V

!

2

� 1 : (23.22)

Hene the inaton potential should be at and its value V (�) should be large. An additional

onstraint on the urvature V

00

follows by di�erentiating V

0

=V and using then "

V

� 1 as

�

V

�

f

M

2

Pl

V

00

V

� 1 : (23.23)

This de�nes the seond slow-roll ondition whih requires that the urvature V

00

of the po-

tential measured in Plank units is small ompared to the value of the potential V (�).

Example 23.2: The arguable least exoti model for ination uses a single salar �eld � with

potential V =

1

2

m

2

�

2

. Then the two slow-roll parameters oinide and are given by

"

V

= �

V

=

2

f

M

2

Pl

�

2

: (23.24)

Thus we see that ination in this model requires trans-Plankian �eld values, �

i

�

p

2

f

M

Pl

. (With a

ertain understatement, one alls in this ontext �eld values \large" for �

>

�

f

M

Pl

and small otherwise.)

Combining (23.21) and (23.22), we an express the number of e-foldings as

N =

Z

�

f

�

i

d�

f

M

Pl

(2"

V

)

�1=2

=

�

2

i

4

f

M

2

Pl

�

1

2

; (23.25)

where we used maxf"

V

; �

V

g = 1 as ondition for the end of ination. Solving the horizon and atness

problem with ination requires N � 60 efoldings. Thus the largest sales observed in the CMB,

N � 60, orrespond to �eld values � = 2

p

N

CMB

� 15M

Pl

.

Classial general relativity should be valid as long as the energy density � satis�es � � V � M

4

pl

.

This allows �eld values as large as �

i

� 10

3

for m = 10

15

GeV, and as maximal number of e-folding

N � 10

6

. Therefore it is natural to expet that the true number of e-foldings is muh larger than 60.

In this ase, deviations from atness would be extremely small.

Hamilton-Jaobi equations and phase portraits The evolution of the sale fator a and the

�eld � in single-�eld ination is determined by

H

2

=

8�G

3

��

k

a

2

=

8�G

3

�

1

2

_

�

2

+ V

�

�

k

a

2

; (23.26a)

�a

a

=

8�G

3

�

V �

_

�

2

�

; (23.26b)

�

�+ 3H

_

�+ V;

�

= 0 : (23.26)

If the �eld �(t) is a monotoni funtion of the time t, then we an replae t by �(t) as evolution

variable: We di�erentiate �rst H = _a=a, obtaining

_

H = �a=a � H

2

. Inserting then (23.26a)

and (23.26b) as well as setting k = 0, we arrive at

_

H = �4�G

_

�

2

(23.27)
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Figure 23.2.: Phase portrait for the V = m

2

�

2

=2 potential, from [Muk05℄.

or

H;

�

= �4�G

_

� : (23.28)

Now we an eliminate

_

� in (23.26a), obtaining

H;

2

�

�12�GH

2

= �32�

2

G

2

V : (23.29)

The last two equations are equivalent to the usual two Friedmann equations. They have the

virtue to show that hoosing the potential V (�) aording to (23.29), single-�eld ination is

exible enough to desribe an arbitrary evolution of the Hubble parameter H. Moreover, we

an use them to onnet the two sets of slow-roll parameters, see problem 24.??.

Next, we want to hek how generi the slow-roll onditions in the spei� ase of a

V =

1

2

m

2

�

2

potential our. Inserting the Friedmann equation (23.26a) and the expliit form

of the potential into the Klein-Gordon equation (23.26) gives

�

�+ [12�G(

_

� +m

2

�

2

)℄

1=2

_

�+m

2

� = 0 : (23.30)

Sine this seond-order di�erential equation ontains no expliit time-dependene, it an be

redued to a �rst-order equation eliminating

�

� with the help of

�

� =

_

�

d

_

�

d�

: (23.31)

The result,

d

_

�

d�

= �

[12�G(

_

� +m

2

�

2

)℄

1=2

_

�+m

2

�

_

�

; (23.32)

allows to plot the phase portrait shown in Fig. 23.2. We observe two lines at

_

�

a

=

�mM

Pl

=

p

12� that attrat all trajetories starting at suÆiently large �eld values �: A

�eld that starts its evolution with j

_

�j �

_

�

a

loses fast its kineti energy

_

�, moving to the

attrator line. Close to the attrator line, it evolves with j

_

�j � 0, i.e. it satis�es the slow-roll

ondition and an drive ination. Around �

f

�

p

2

f

M

Pl

, this ondition is violated: The tra-

jetory leaves the attrator line and spirals towards the origin. This �nal stage orresponds

to oherent osillations of the inaton around its minimum and leads to the reheating of the

universe. Thus the phase portrait in Fig. 23.2 illustrates that the potential V = m

2

�

2

=2

implies an inationary phase for suÆiently large initial �eld values �.
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V (�)

�

b

V (�)

�

b

Figure 23.3.: Typial potential of a large-�eld model (left) and of a small-�eld model (right)

for ination.

Models for ination Up-to now we have disussed the|for a partile physiist perhaps

most natural|option that a salar �eld drives ination. Moreover, we have restrited our

attention to the ase of a single salar �eld. Single �eld models an be haraterised by two

parameters, e.g. the width and the height of the potential. Generially, we an divide these

models into large and small �eld models as shown in Fig. 23.3. In the �rst lass, ination

requires trans-Plankian �eld values as e.g. for the m

2

�

2

or the ��

4

models. The potential of

these models has positive urvature, V

00

> 0, and thus "

V

> 0.

The trans-Plankian �eld values required to start ination lead learly to the question how

the inaton was displaed from its equilibrium position. A suggestion by Linde is \haoti

ination": The inaton �eld � aquires random values due to quantum utuations. In

a region of initial size 1=M

4

Pl

with � � M

Pl

, ination starts and produes a homogeneous

path inside the universe. Other regions do not undergo ination at all, or with only a few

e-foldings. Thus on sales muh larger than our suessfully inated path, the universe is

very inhomogeneous. In a variant, alled \stohasti ination", quantum utuations disturb

the lassial slow-roll trajetory so strongly that the volume �lled with large quantum u-

tuations ��M

Pl

grows exponentially. As a result, new pathes of inating \miniverses" are

generated ontinuously, leading to an eternal self-reprodution of the inationary universe. A

ontroversial question in these types of models is, how generi the observed universe is, and

how suh a statement an be made preise.

Typial examples for a small �eld model are potentials like V (�) = �(�

2

� �

2

)

2

=4 or of

the Coleman-Weinberg type. Suh potentials are generially muh atter than those of large

�eld models. They often are onneted to SSB, and the inaton sits initially at the unstable

equilibrium position � = 0. The potential has negative urvature, V

00

< 0, and thus "

V

< 0.

The idea of small �eld models implies that we hoose parameters suh that ination starts at

sub-Plankian �eld values, and thus e.g. ��

4

f

� V

0

<

�

M

4

Pl

for V (�) = V

0

� ��

4

=4. Ination

may be realised in this lass of models as follows: Before the start of ination, the universe is

at high temperature in a potentially inhomogeneous state. The symmetry of the temperature-

dependent e�etive potential V

eff

(�; T ) is restored. Thus the �eld � sits initially at � = 0.

As the universe expands, it ools down and the size of the temperature dependent orretions

beomes smaller, V (�; T ) ' V (�; 0). Finally, the symmetry is broken, the �eld starts to roll

down the potential and ination starts.

Using a salar �eld as the driving fore of ination, a natural question to address is if

we an identify the inaton with a Higgs �eld. During the 1980s, one tried to onnet the
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23. Ination

GUT phase transition and GUT Higgs �elds to ination. However, ombining the slow-

roll onditions and the size of density utuations (that will be disussed in the after next

setion) restrits the potential severely: Generially, loop orretions destroy the atness of

the potential, if the ination is not extremely weakly oupled to the SM �elds. Therefore, it

seems natural to onsider the inaton as a gauge singlet. The disovery of the SM Higgs has

reated nevertheless interest in the question if the SM Higgs an at as inaton: First, we

know that the Higgs potential attens for large values of the renormalisation sale. Seond,

its oupling ��

2

R to the urvature salar is unonstrained. A large enough number of e-

foldings an be ahieved, if the oupling � is large, � � 50 000: Suh a term attens the Higgs

potential belowM

Pl

=

p

� suÆiently to lead to slow-roll ination. This senario faes however

two problems: First, perturbative unitarity is violated below M

Pl

, requiring the existene of

new degrees of freedom. Thus preditions in \Higgs ination" depend on the unknown UV

ompletion. More severely, we have seen that the SM Higgs potential (for the values of m

h

and m

t

urrently favoured) develops an instability below M

Pl

. Thus the SM Higgs annot be

the main agent of ination, but may play some rôle during ination.

The range of options widens drastially as soon as one uses several inaton �elds, reduing

at the same time however also the preditive power of the models. We omment here only

briey on another option, namely abandoning the idea that the inaton is a fundamental

�eld. In partiular, during the very early universe higher derivative terms in the gravitational

ation may have played an important role. As a spei� possibility, one an modify gravity by

generalising the Einstein-Hilbert ation as L

EH

= R! f(R). Here, the funtion f(R) should

be hosen suh that observational onstraints are obeyed in the R ! 0 limit, while for large

R modi�ed gravity may lead to ination. An example for this approah is the Starobinsky

model proposed in 1979 that uses f(R) = R � R

2

=(6M

2

). It represents the �rst working

theory of ination and is still in exellent agreement with data. In vauum, this theory is

equivalent to standard gravity with a salar �eld: Changing �rst the metri as g

��

! g

��

=�

with � � �f(R)=�R, and using then � = exp[4

p

��=(

p

3M

Pl

)℄ in order to obtain a anonially

normalised kineti term gives the salar potential

V (�) =

3M

2

M

2

Pl

32�

2

(1� 1=�)

2

=

3M

2

M

2

Pl

32�

2

�

1� exp

�

4

p

��

p

3M

Pl

��

2

: (23.33)

Thus one an analyse the Starobinsky model using V (�) and standard gravity. The transfor-

mation g

��

! g

��

=� indues however ouplings of gravitational strength between � and all

other SM �elds. These additional gravitational ouplings indiate that it is more natural to

see this lass of models as a modi�ation of gravity.

In order to distinguish between these various possibilities, we have to work out the u-

tuations predited by these models. Before that, we onsider �rst the transition from the

inationary phase to the standard radiation dominated universe.

23.3. Reheating and preheating

The inationary period ends when the EoS beomes larger than w = �1=3 and the expansion

slows down. In pratise, we an de�ne as the end of ination the time when one of the

slow-roll parameters beomes of order one. At this point, the universe beame empty and

old; all its energy was ontained in the inaton �eld. Reheating is a olletive term for all

the mehanisms by whih this energy is transferred to a thermal state of ordinary matter,
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23.3. Reheating and preheating

initiating the usual radiation dominated epoh of the universe. One distinguishes between

\perturbative reheating" where the inaton transfers its energy via perturbative two- or

three-partile deays and \preheating" where matter �elds oupled to the inaton develop

exponentially growing instabilities.

Perturbative reheating We determine �rst the EoS valid when the energy density of the

universe is dominated by the osillating inaton. Assuming a polynomial as inaton potential,

V / �

n

, we an use the virial theorem hT i = �n=2hV i to obtain the EoS averaged over several

osillations,

w =

P

�

=

hT i � hV i

hT i+ hV i

=

n� 2

n+ 2

: (23.34)

Here we negleted the frition fator 3H whih is by assumption small. Thus during reheating,

the universe expands as matter-dominated for n = 2 and as radiation-dominated for n = 4.

Initially, the reheating proess of the universe was modelled as perturbative two-partile

deays of the inaton �. For instane, we an onsider deays into bosons � and fermions  

via the interation terms L

int

= �g

1

v��

2

� g

2

�

�

  . The self-energy of the inaton obtains

an imaginary part for q

2

� minf4m

2

�

; 4m

2

 

g whih is onneted to the total deay width �

tot

via the optial theorem (f. problem 9.??) by

=[�(m)℄ = m�

tot

(�) : (23.35)

We an inlude this imaginary part of the self-energy into the Klein-Gordon equation, setting

m

2

! m

2

+ im�

tot

(�),

�

�+ 3H

_

�+ (m

2

+ im�

tot

)� = 0 : (23.36)

The inaton has to be very weakly oupled to other �elds, �

tot

� �, and the frition term

has to be small too, H � m. Therefore we an approximate the inaton evolution as

�(t) = �(t) sin(mt) (23.37)

with the time-dependent amplitude

�(t) = �

i

exp

�

�

1

2

Z

dt (3H + �

tot

)

�

: (23.38)

We an view the osillating lassial �eld �(t) as a oherent wave of � partiles with zero

momentum and number density n(t) = �=m � m�

2

(t)=2.

To be onrete, we �x the potential as V = m

2

�

2

=2. Then we �nd in the limit �

tot

� H

with H = 2=(3t)

�(t) = �

f

t

f

t

=

1

p

3�t

M

Pl

m

; (23.39)

where we used �

f

=

p

2

f

M

Pl

= M

Pl

=

p

4� as the inaton value at the end of ination, t

f

=

2H

f

=3 and H

f

= V (�

f

). This implies � � 1=a

3

as expeted for n = 2 (problem 24.??). In the

opposite limit, �

tot

� H, the amplitude (23.38) follows the usual deay law,

�(t) = �

i

exp(��

tot

t=2) : (23.40)

De�ning the reheating time t

rh

by 3�

tot

= H, the inaton energy density at that time is

�

rh

=

�

2

tot

M

2

Pl

24�

!

=

�

2

30

g

�

T

4

rh

: (23.41)

377



23. Ination

In the seond step, we assumed that reheating ours instantaneously. In this approximation,

the reheating temperature T

rh

is therefore

T

rh

=

�

5

4�

3

g

�

�

1=4

(�

tot

M

Pl

)

1=2

' 0:14

�

100

g

�

�

1=4

(�

tot

M

Pl

)

1=2

� (mM

Pl

)

1=2

' 10

15

GeV ;

(23.42)

where we used �

tot

� m and as inaton mass m � 10

�6

M

Pl

.

Using instead the estimate from problem 24.?? for the maximal possible deay width of

the inaton, �

tot

<

�

10

8

GeV, the instantaneous reheating temperature is of order 10

13

GeV.

It is thus onsiderably smaller than the GUT energy and thus GUT baryogenesis seems

to be impossible in this piture. Moreover, in any realisti model, reheating will be de-

layed and thus the maximal temperature the universe reahes after ination will be below

10

13

GeV. In this ase, even leptogenesis seems to be only marginally possible. A way out is

the non-perturbative senario of preheating we disuss next, where in a �rst stage partiles

are resonantly produed before they thermalise by perturbative proesses.

Preheating We onsider again a light salar �eld � oupled to the inaton � via the inter-

ation L

int

= �g�

2

�

2

, but treat now � as a lassial �eld and study the evolution of the

quantum �eld � in this bakground. Then the �eld modes �

k

satisfy

��

k

+ 3H _�

k

+

�

k

2

a

2

+ g

2

�

2

�

�

k

= 0 : (23.43)

When the inaton � starts to osillate, it an transfer energy to the � �eld: In partiu-

lar, modes �

k

whih are resonant with the � osillations an beame unstable, leading to

an exponential growth of their oupation number. This phenomenon is alled parametri

resonane.

In order to illustrate the basis of the mehanism, we transform (23.43) into an equation

resembling the Shr�odinger equation for an eletron in a periodi potential. Resaling u

k

=

a

3=2

�

k

gives the osillator equation �u

k

+ !

2

k

u

k

= 0 with energy

!

2

k

=

k

2

a

2

+ g

2

�

2

�

3

4

(2

_

H + 3H

2

) : (23.44)

Now we introdue as new time variable z = mt as well as q

2

= g

2

�

2

=(4m

2

) and A

k

=

2q + k

2

=(ma)

2

, where �(t) satis�es (23.38). Then we arrive at

d

2

u

k

dz

2

+ (A

k

� 2q os(2z) +�)u

k

= 0 ; (23.45)

where we lumped the unimportant fators into

� =

m

2

�

m

2

�

3

4m

2

(2

_

H + 3H

2

) : (23.46)

Using H = 2=(3t), and thus 2

_

H + 3H

2

= 0, we see that the seond term in � vanishes.

Moreover, we an assume that the � �eld is light relative to the inaton, m

�

=m � 1, and

thus � an be negleted all-together. If the �elds evolve fast ompared to the expansion of
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23.3. Reheating and preheating

the universe, one may neglet also the a dependene in A

k

and q. The di�erential equation

(23.45) has then onstant oeÆients and beomes a Mathieu equation. Its solutions have

the form u

k

/ exp(iv

k

z), and are therefore unstable for =(v

k

) < 0. The wave-bands with

=(v

k

) < 0 orrespond to forbidden energy bands of the equivalent Shr�odinger equation for an

eletron in a periodi potential. For q

>

�

2A

k

, the bands of unstable wave-numbers k beome

large, and oupy most of k spae. The prodution of partiles is eÆient, if !

k

hanges

non-adiabatially, i.e. if _!

k

� !

2

k

. This happens when the e�etive mass of �, m

�

(t) = g�(t),

beomes zero for �(t) = 0.

Example 23.3: Broad resonane as sattering:

We an break the evolution of u

k

(t) into adiabati piees where the modes evolve as u

k

/

exp(�i

R

dt!

k

) and the partile number is onserved, and \sattering events" when the inaton rosses

zero, �(t

i

) = 0. Thus the �eld modes satisfy for t 6= t

i

Eq. (22.58) with onstant Bogolyubov oeÆ-

ients and energies,

u

k

(t) =

�

k

p

2!

k

exp

�

�i

Z

t

dt

0

!

k

�

+

�

k

p

2!

k

exp

�

i

Z

t

dt

0

!

k

�

: (23.47)

At t

i

, the inoming �eld is sattered into an outgoing �eld with new Bogolyubov oeÆients. Let us

assume that the inoming state t < t

i

ontained no partiles. Then we know that the rate of partile

prodution is given by j�

k

j

2

. Close to � = 0, we an approximate g

2

�

2

(t) � g

2

�

2

m

2

(t � t

j

)

2

�

k

4

�

(t� t

j

)

2

and thus the osillator equation �u

k

+ !

2

k

u

k

= 0 beomes

�u

k

+

�

k

2

=a

2

+ k

4

�

(t� t

j

)

2

�

u

k

= 0 : (23.48)

Now we resale momenta, � = k=a, and time, � = k

�

(t � t

j

), mapping thereby our problem on the

alulation of the tunnelling probability through the one-dimensional potential V = ��

2

,

d

2

u

k

d�

2

+

�

�

2

+ �

2

�

u

k

= 0 : (23.49)

The analytial solution to this problem is known. Alternatively, one an employ the WKB approxi-

mation to �nd n

k

= j�

k

j

2

= exp(���

2

), f. with problem 24.??.

Thus partile prodution is eÆient, if �

2

<

�

1 or (k=a)

2

<

�

k

2

�

= gm�. The analysis for a

non-empty initial state shows that generally partiles an be reated or destroyed, depending

on the value of the relative phase between initial and �nal state. If one inludes the expansion

of the universe, the relative phases behave nearly as random variables. In this limit, one �nds

that in 75% of satterings partile are reated. The number of reated partiles grows therefore

exponentially with time.

At some point, this growth has to slow down and �nally stop. Generially, this happens

already when still most energy is ontained in the inaton �eld. One possible reason is

the bak-reation of the produed partiles on the inaton �eld: The term




�

2

�

�

2

ats as

additional mass term for the inaton, hanges for




�

2

�

� m

2

the dynamis and shuts o�

partile prodution via preheating. Thus the initial phase of preheating has to be followed by

perturbative reheating and thermalisation. Note also that the bak-reation of the partile

prodution on the evolution of the sale fator ouples the evolution of �, � and the Hubble

parameter H.

Remark 23.1: Superheavy dark matter

Partiles with masses up to � 100T

rh

ould be produed during preheating. Another option is their
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23. Ination

gravitational prodution during the end of the ination, as disussed in setion 22.2. While the �rst

possibility is strongly model-dependent, the seond one relies only gravitational interations and is

therefore universal. If suh partiles are stable (or have life-times large ompared to the age of the

universe), this opens the possibility of superheavy dark matter (SHDM). They should have weak

enough interations with SM partiles not to thermalise, in order to avoid the unitarity limit (20.38).

This ensures also that SHDM behaves as old dark matter.

The energy density of the partile type X with mass M

X

at the end of ination an be alulated

using Eq. (22.60). The numerial results are well desribed by

�

X

' 10

�3

M

4

X

�

M

X

H(t

f

)

�

�3=2

exp (�2M

X

=H(t

f

)) ; (23.50)

where H(t

f

) denotes the Hubble parameter at the end of ination. Sine the modes generated are

non-relativisti, the relative abundane of SHDM has grown as T

0

=T

rh

sine reheating. The present

abundane follows therefore setting also H(t

f

) equal to the inaton mass m as




X;0

' 3� 10

�7

�

T

rh

T

0

��

m

M

Pl

�

2

�

M

X

m

�

5=2

exp (�2M

X

=m) : (23.51)

Sine T

rh

=T

0

is large, the initial abundane of SHDM has to be tiny and a stable partile with mass

M

X

� 10

13

GeV would have today an abundane of order one.

23.4. Generation of perturbations

We move now on to the study of the utuations Æ�(x). We neglet �rst that they bak-

reat via the Einstein equations on the spae-time and alulate their evolution in a �xed

FLRW metri. Allowing in the next step for deviations from the FLRW metri means that

no preferred foliation of the spae-time in time and spae exists. This arbitrariness in the

oordinate hoie requires a areful de�nition of observables, so that an unphysial gauge

dependene of observables is avoided. Having de�ned suitable gauge invariant variables, we

then solve the oupled equations for perturbation in the linear theory.

23.4.1. Flutuations in a �xed FLRW bakground

We onsider utuations of the inaton �eld � around its lassial, uniform but time-

dependent average value,

�(x; t) = �

0

(t) + Æ�(x; t) : (23.52)

Inserting this splitting into the Klein-Gordon equation (22.16) with � = 0 and a general

potential V (�) gives six terms

2

,

�

�+ �

2

t

Æ�+ 3H(

_

�+ Æ

_

�)�

1

a

2

r

2

Æ�+ V

0

(�

0

+ Æ�) = 0 : (23.53)

We evaluate �rst the potential term V

0

, expanding it around the lassial �eld �

0

,

V

0

(�

0

+ Æ�) = V

0

(�

0

) + V

00

(�

0

)Æ� = V

0

(�

0

) +m

2

eff

Æ� : (23.54)

2

Here, a prime on the potential, V

0

, denotes its derivative with respet to its argument, not to onformal

time.
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Here we introdued also m

2

eff

= V

00

(�

0

) as an e�etive mass term for the utuations Æ�.

Taking into aount that the lassial �eld �

0

satis�es separately the �eld equation (22.16)

gives as equation for the utuations

�

�

2

�t

2

�

1

a

2

r

2

+ 3H

�

�t

+m

2

eff

�

Æ� = 0 : (23.55)

We perform next a Fourier expansion of the utuations, Æ�(x; t) = V

�1

P

k

�

k

(t)e

ikx

, with

k as omoving wave-number. Sine the proper distane varies as ax, the physial momentum

is then given by p = k=a. Inserting the expansion into (23.55), we obtain

�

�

k

+ 3H

_

�

k

+

�

k

2

a

2

+m

2

eff

�

�

k

= 0 : (23.56)

Thus the utuations obey basially the same equation as the average �eld, with the e�etive

mass term as the only di�erene. Introduing again the auxiliary �eld �

k

(�) = a(�)�

k

(�), we

arrive at

�

00

k

+

�

k

2

�

a

00

a

+m

2

eff

�

�

k

= 0 : (23.57)

The e�etive mass term, m

2

eff

= V

;��

is muh smaller than the squared Hubble parameter H

during slow-roll, sine

V

;��

H

2

�

3

f

M

Pl

V

;��

V

= 3�

V

� 1 : (23.58)

This implies that we an neglet V

;��

relative to a

00

=a, beause

a

00

a

=

2

�

2

= 2a

2

H

2

� a

2

V

;��

(23.59)

is valid in the slow-roll regime. Hene the modes �

k

(�) are also desribed by

�

k

(�) = A

k

e

�i!

k

�

p

2!

k

�

1�

i

k�

�

+B

k

e

i!

k

�

p

2!

k

�

1 +

i

k�

�

: (23.60)

In order to �nd the spetrum of utuations, we should quantise � and determine its two-

point funtion. In the limit � ! �1, the auxiliary �eld � resembles a Minkowski �eld, and

thus we an write down immediately the �eld operator in this limit,

�(�;x) =

Z

d

3

k

p

2!

k

(2�)

3

h

A

k

a

k

e

�i(!

k

��kx)

+B

k

a

y

k

e

i(!

k

��kx)

i

: (23.61)

The annihilation and reation operators a

k

and a

y

k

satisfy the usual ommutation relations,

with the physial momenta replaed by the onformal momenta. However, we have still to

hoose the initial vauum state, what amounts to �xing the oeÆients A

k

and B

k

.

We observe modes whih exited the horizon �N � 60 e-folding before the end of ination.

If there is no speial hoie of the initial onditions for ination, we expet that the total

number N

tot

of e-folding is muh larger. Thus the physial momentum of these modes at

the beginning of ination, p(t

i

) � He

N

tot

��N

, is extremely high. A natural assumption is

therefore that these modes at the start of ination were empty. Thus we should require that

for early times, � ! �1, only positive frequenies survive, what implies B

k

= 0 and A

k

= 1.
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This hoie is alled the Bunh-Davies vauum. Inserting this hoie into (23.60), we �nd for

the utuations inside the horizon, k � j1=�j = aH,

jÆ�

k

j =

�

�

�

�

k

a

�

�

�

=

H�

p

2k

: (23.62)

Modes outside the horizon, k � aH, are frozen in with amplitude

jÆ�

k

j =

�

�

�

�

k

a

�

�

�

=

H

p

2k

3

: (23.63)

Power spetrum of perturbations The two-point orrelation funtion for the salar �eld

utuation Æ� is given by

hÆ�(x

0

; t

0

)Æ�(x; t)i =

Z

d

3

k

(2�)

3

jÆ�

k

j

2

e

�ik(x

0

�x)

: (23.64)

Introduing spherial oordinates in Fourier spae and hoosing x = x

0

results in

hÆ�

2

(x; t)i =

Z

4�k

2

dk

(2�)

3

jÆ�

k

j

2

=

Z

dk

k

2

2�

2

jÆ�

k

j

2

| {z }

�P (k)

=

Z

dk

k

�

2

�

(k) : (23.65)

The funtions P (k) and �

2

�

(k) are the linear and logarithmi power spetrum of the u-

tuations, respetively. The spetrum �

2

�

(k) of utuations outside of the horizon is given

by

�

2

�

(k) =

k

3

2�

2

jÆ�

k

j

2

=

H

2

4�

2

: (23.66)

Hene, the power spetrum of superhorizon utuations is independent of the wave-number

in the approximation that H is onstant during ination. The total area below the fun-

tion �

2

�

(k) plotted versus ln(k) gives h�

2

(x; t)i. Therefore a spetrum with �

2

�

(k) = onst:

ontains the same amount of utuations in eah deade of k. Suh a spetrum of utua-

tions is alled a Harisson-Zel'dovih spetrum, and is produed by ination in the limit of an

in�nitely slow-rolling inaton.

Remark 23.2: Let us ompare the power-spetrum of utuations in ination to those of normal

Minkowski spae. Realling (3.57), the latter are given by

h0j�

2

(x)j0i =

Z

d

3

k

(2�)

3

2!

k

=

Z

1

0

dk

k

k

2

(2�)

2

: (23.67)

Thus the amplitude of utuations in Minkowski spae is given by �

�

(k) � (�

2

�

(k))

1=2

= k=(2�), and

their relative size �

�

(k)=k = 1=(2�) is onstant: Going to smaller and smaller sales, utuations

keep being important { this is another point of view to understand the problem of UV divergenes.

Comparing now the relative size of utuations at the end of ination and in Minkowski spae, we �nd

��(k)j

dS

�

�

(k)j

M

= H=k

>

�

e

N

f

� e

60

:

This explains why quantum utuations beome marosopially important by ination.

The utuations in the inaton �eld, � = �

0

+ Æ�, lead to utuations in the stress tensor

T

��

= T

��

0

+ ÆT

��

, and thus to metri perturbations g

��

= g

��

0

+ Æg

��

. Thus as next step we

have to examine metri perturbations.
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23.4.2. Gauge invariant variables for perturbations

Metri salar, vetor and tensor perturbations The spatial uniformity and isotropy of the

FLRW bakground metri suggests that we deompose perturbations of the metri tensor

into irreduible omponents under spatial rotations. Thus we split the full metri tensor g

��

into its bakground part g

0

��

and salar, vetor and tensor perturbations,

g

��

= g

0

��

+ Æg

s

��

+ Æg

v

��

+ Æg

t

��

: (23.68)

This deomposition is useful, sine perturbations with di�erent heliities develop indepen-

dently in the linear approximation (problem 24.??).

The line-element of the at FLRW metri using onformal time is

ds

2

= a

2

[d�

2

� Æ

ij

dx

i

dx

j

℄ (23.69)

and thus

g

��

= a

2

(�

��

+ h

��

) and g

��

=

1

a

2

(�

��

+ h

��

) : (23.70)

We break up the perturbation h

��

in a �rst step into

h

��

=

�

2A B

i

B

i

�C

ij

�

; (23.71)

whih gives as line-element

ds

2

= a

2

�

(1� 2A)d�

2

+ 2B

i

dx

i

d� � (Æ

ij

+ C

ij

)dx

i

dx

j

�

: (23.72)

The funtion A is already a salar, while we have to �nd the irreduible omponents of B

i

and C

ij

. Any vetor in R

3

an be written as the sum of a divergene-free and a rotation-free

vetor; the latter is the gradient of a salar. Thus we an perform the replaements

B

i

= ��

i

B + V

i

(23.73)

and

C

ij

= 2DÆ

ij

+ 2�

i

�

j

E + (�

i

E

j

+ �

j

E

i

) + h

ij

: (23.74)

The six degrees of freedom of the reduible tensor C

ij

are deomposed into two salar (D;E),

two vetor (E

i

with the onstraint �

i

E

i

= 0) and two tensor (h

ij

) degrees of freedom. The

tensor h

ij

orresponds to gravitational waves in the TT gauge, with h

ii

= 0 and �

i

h

ij

= 0.

The three degrees of freedom of the reduible vetor B

i

are deomposed into one salar (B)

and two vetor (B

i

with the onstraint �

i

B

i

= 0) degrees of freedom. Thus all-together, Æg

��

ontains four salar, four vetor and two tensor degrees of freedom. Now we an split the line-

element into salar, vetor and tensor perturbations around the uniform FLRW bakground,

ds

2

= a

2

�

(1 + 2A)d�

2

+ 2�

i

Bdx

i

d� � [(1� 2D)Æ

ij

+ �

i

�

j

E℄ dx

i

dx

j

	

(23.75a)

ds

2

= a

2

�

d�

2

+ 2V

i

dx

i

d� � (Æ

ij

+ (�

i

E

j

+ �

j

E

i

))dx

i

dx

j

�

(23.75b)

ds

2

= a

2

�

d�

2

� (Æ

ij

+ h

ij

)dx

i

dx

j

�

: (23.75)

As next step, we have to determine the soure terms for the di�erent perturbations.
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Perturbations of a (non-) ideal uid The perturbations of the stress tensor serve as soure

for the perturbations of the metri. If we model the energy ontent of the universe as an ideal

uid,

T

��

= (�+ P )u

�

u

�

� Pg

��

(23.76)

with u

�

= (1; 0; 0; 0) for a omoving observer, then ÆT

��

is parametrised by the perturbations

Æ�, ÆP and veloities v

i

. Thus the perturbed stress tensor ÆT

�

�

of an ideal uid ontains �ve

degrees of freedom,

ÆT

0

0

= Æ� ; ÆT

j

i

= Æ

j

i

ÆP and ÆT

j

0

= (�+ P )v

j

: (23.77)

We split the vetor v

i

again in its irreduible omponents, v

i

= ~v

i

+ �

i

v. Thus the perturbed

stress tensor of an ideal uid ontains three salars (Æ�, ÆP , v) and one vetor (~v

i

), summing

up to �ve degrees of freedom. The remaining �ve degrees of freedom of a general stress

tensor ÆT

��

are ontained in the anisotropi pressure tensor �

ij

. The presene of this term is

harateristi for a non-ideal uid, i.e. a uid with visosity. Sine we extrated the isotropi

pressure PÆ

ij

, the anisotropi pressure tensor is traeless, �

ii

= 0. Looking bak at the

deomposition of C

ij

, we see that the anisotropi pressure ontains two tensor (/ h

ij

), one

vetor (/ (�

i

E

j

+ �

j

E

i

) and one salar (/ �

i

�

j

E) degrees of freedom.

We an now assoiate the metri perturbations with the various ontribution to the per-

turbation of the stress tensor: Tensor perturbation h

ij

have as soure only the anisotropi

pressure �

ij

. This term is generated e.g. by freely streaming neutrinos after weak deoupling,

and its e�ets are always subleading. Therefore, we will set �

ij

= 0 in the following and treat

gravitational waves as freely propagating. Vetor perturbations orrespond to rotational ows

of matter|these perturbations are without pratial interest for two reasons: First, it is un-

likely that they are generated during ination and, seond, they have only deaying solutions.

Finally, salar perturbations are soured by Æ�, ÆP and v

i

. We will see that they ontain a

growing solution and are onneted to the inhomogeneities of matter in the universe.

Gauge invariant variables for salar perturbations In a seond step, we have to identify how

the perturbations are onneted to the physial degrees of freedom. We know already that

tensor perturbations, i.e. gravitational waves, ontain only two physial degrees of freedom.

Similarly, the line-element for salar perturbations agrees with the Newtonian weak-�eld limit

(18.72), if one sets A = D = � and E

;ij

= B

;i

= 0. Therefore, one may suspet that not all

the four salar variables desribing salar perturbations are physial.

In order to identify the physial degrees of freedom, we examine how the splitting into

salar perturbations hanges under a �nite gauge transformation,

~

h

��

= h

��

�r

�

�

�

�r

�

�

�

; (23.78)

of the metri. We deompose the gauge vetor �

�

as usually in its irreduible omponents,

�

�

= (�

0

; �

i

) = (�

0

; �

i

� + �

?

) : (23.79)

Consider now e.g. the 00 omponent of the metri tensor, Æg

(s)

00

= h

00

= 2Aa

2

, from whih

we an read o� the transformation law of A. With �

0

= a

2

�

0

, r

0

�

0

= (a

2

�

0

)

0

� �

�

00

�

�

and

�

0

00

=H , we �nd

Æg

(s)

00

= 2Aa

2

! 2

~

Aa

2

= 2Aa

2

� 2r

0

�

0

= 2Aa

2

� 2(a

2

�

0

)

0

� 2H a

2

�

0

: (23.80)
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Thus the salar perturbation A hanges under a gauge transformation as

~

A = A�H �

0

� �

00

: (23.81)

Proeeding in the same way for the other perturbations, we obtain

~

B = B + �

0

� �

0

; (23.82)

~

D = D +H �

0

; (23.83)

~

E = E � � : (23.84)

The transformations of the potentials are parametrised by only two arbitrary parameters,

�

0

and �

0

, sine �

?

inuenes only vetor perturbations. Moreover, the gauge vetor (23.79)

ontains no tensor omponent, whih expresses the fat that h

��

in the TT gauge ontains

only physial degrees of freedom. As a result, we an eliminate two variables: For instane,

hoosing �

0

= �D=H and � = E we an set

~

D =

~

E = 0.

There are two ways to eliminate the gauge ambiguity in the salar perturbations: In the

�rst one, we ombine the gauge dependent variables into invariant ombinations. Consider

e.g. the quantity

	 = D �H (B �E

0

) (23.85)

whih is invariant under gauge transformations,

	!

~

	 =

~

D �

~

H (

~

B �

~

E

0

) = D �H (B �E

0

) : (23.86)

Similarly, the ombination

� = A+H (B �E

0

) + (B �E

0

)

0

(23.87)

is shown to be invariant. This method was suggested by Bardeen and therefore 	 and � are

alled Bardeen potentials. An alternative way is to hoose a gauge ondition whih eliminates

the gauge freedom partly or ompletely, analogously to the Coulomb gauge in eletrodynamis.

The onformal Newtonian gauge has the virtue that the metri for salar perturbations is

diagonal, sine one sets B = E = 0. Then the Bardeen potentials beome 	 = D and � = A

and we an write the salar part of metri as

ds

2

= a

2

�

(1 + 2�)d�

2

� (1� 2	)Æ

ij

dx

i

dx

j

	

: (23.88)

We show in the appendix that the ombination � � 	 is only soured by the anisotropi

pressure. In the absene of anisotropi pressure, 	 = �, and thus the line-element (exept

for the onformal fator a

2

) oinides with the Shwarzshild metri in the Newtonian limit.

This makes an understanding of the perturbation, espeially on sub-horizon sales, easier.

Gauge invariant urvature perturbation In the full theory, gauge transformations ouple

matter and urvature utuations. Thus we have to �nd as �nal step a gauge invariant om-

bination of both utuations. We determine �rst how the matter perturbation Æ� transforms

under a gauge transformation ~x

�

= x

�

+ �

�

(x

�

),

f

Æ�(~x) =

~

�(~x)� �

0

(~x) = �(x)� �

0

(x+ �) = �(x)� �

0

(x)

| {z }

Æ�(x)

��

0

�

0

�

0

(x) : (23.89)
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Here we used that � is a salar �eld,

~

�(~x) = �(x), and that �

0

is uniform. Thus the pertur-

bation transforms as

f

Æ�(~x) = Æ�(x) � �

0

�

0

0

' Æ�(x) � �

0

�

0

; (23.90)

where we ould replae also �

0

0

� �

0

negleting a quadrati term. We know already that D

transforms as

~

D = D +H �

0

. Thus the quantity

R � D +H

Æ�

�

0

0

!

~

R = D +H �

0

+H

Æ�� �

0

�

0

�

0

0

= R (23.91)

alled the urvature perturbation is a gauge invariant ombination of the metri perturbation

D and the matter perturbation Æ�.

23.4.3. Flutuations in the full linear theory

Up to now, we have onsidered the evolution of the inaton �eld � in a �xed FLRW bak-

ground, negleting the bak-reation of the utuation Æ� on the metri g

��

. The Einstein

equations ouple however the inaton �eld � and the metri g

��

already at the linear level.

Having identi�ed gauge invariant variables for the perturbations, it remains to perform the

straightforward but tedious linearisation of the Einstein equations.

Perturbed stress tensor of the inaton Inserting into the stress tensor (23.12) of a salar

�eld,

T

�

�

= g

��

�

�

��

�

�� Æ

�

�

�

1

2

g

��

�

�

��

�

�� V (�)

�

; (23.92)

the deomposition �(x) = �

0

(t)+Æ�(x) into a homogeneous bakground �eld and utuation,

we �nd

ÆT

0

0

=

1

a

2

�

���

02

0

+ �

0

0

Æ�+ V
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(23.93a)
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; (23.93b)

ÆT

0

i

=

1

a

2

�

0

0

�

i

Æ� : (23.93)

Here we used the Klein-Gordon equation for �

0

to replae V

;�

0

. The only information we will

need on the spatial omponents ÆT

j

i

of the perturbed stress tensor of the inaton is that the

uniformity of the bakground requires that ÆT

j

i

/ Æ

j

i

.

Next we observe that � =

_

�

2

=2 + V (�) and P =

_

�

2

=2 � V (�) imply for the bakground

�eld �

0

that

�+ P =

_

�

2

0

=

�

02

0

a

2

: (23.94)

Comparing ÆT

0

i

= a

�2

�

0

0

�

i

Æ� to an ideal uid, ÆT

0

i

= �(� + P )�

i

v = �(�

02

0

=a

2

)�

i

v, we have

thus

v = �

Æ�

�

0

0

: (23.95)

The hoie of a o-moving gauge, where v = 0, leads hene to Æ� = 0: The inaton utuations

are zero in the frame where the observer is at rest relative to the inaton. Thus the urvature

perturbation R beomes R = D on the hypersurfaes de�ned by v = 0. Evaluating then

the three-dimensional urvature R

(3)

using the spatial part of the metri (23.75a), one �nds

R

(3)

= 4=a

2

�R. This explains the name urvature perturbation for R.
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23.4. Generation of perturbations

Perturbed Einstein equations As next step, we need the linearised Einstein tensor for per-

turbations around the FLRW metri. The result of the straight-forward but lengthy alu-

lations are given in the appendix 23.A. We use the onformal Newtonian gauge where the

metri ontains the two Bardeen potentials � and 	. Sine the anisotropi pressure is zero,

it follows � = 	, and thus the Einstein equations ontain only two free variables, whih we

hoose as � and Æ�. Therefore we an selet out of three Einstein equations (00, 0i and ij) the

two most onvenient ones. Choosing the time-time and the time-spae equations, we avoid

seond-order time derivatives and �nd

��� 3

a

0

a

�

0

� 3

a

02

a

2

� = 4�G

�

���

02

0

+ �

0

0

Æ�

0

�

�

�

00

0

+ 2

a

0

a

�

0

0

�

Æ�

�

; (23.96a)

�

0

+

a

0

a

� = 4�G�

0

0

Æ� : (23.96b)

Here we ould integrate the last equation immediately, sine H and �

0

are uniform.

Our aim is to ombine these two �rst-order equations into a single seond order equation for

the gauge-invariant variable R. An often employed strategy is to simplify �rst Eq. (23.96a),

negleting terms whih are small in the slow-roll approximation. We prefer to derive the exat

equation for single �eld ination, massaging the omplete Eq. (23.96a) into a suitable form.

We use that the bakground �eld �

0

and the sale fator a are onneted by the unperturbed

Einstein equations. Changing Eqs. (19.48) and (19.49) to onformal time, we have

2a

00

a

3

+

a

02

a

4

= �8�GP and 3

a

02

a

4

= 8�G� : (23.97)

Subtrating then these two equations, we an write

a
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� 2
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02
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2

= �4�G(� + P )a

2

= �4�G�

02
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; (23.98)

where we used also (23.94). This allows us to eliminate the � term on the RHS of (23.96a),
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: (23.99)

Next we eliminate the � term on the LHS: We substitute � by Æ� and �

0

with the help of

(23.96b), and use then again (23.98). The LHS of (23.99) beomes thereby

��� 4�G(�

02

0

�

0

+ �

0

0

Æ�) :

Then we bring all terms linear in G to the RHS and ombine them as

�� = 4�G

a

a

0

�

02

0

d

d�

�

�+

a

0

a�

0

0

Æ�

�

: (23.100)

Now we reognise the term in the parenthesis as the gauge-invariant variable R we were out

for. We an ombine the dependene of R on � and Æ� introduing as new variable

~

� = Æ�+

a�

0

0

a

0

� : (23.101)

387



23. Ination

Analogous to the uniform ase, we replae next

~

� by the auxiliary �eld u = a

~

�, whih is often

alled the Mukhanov-Sasaki variable. It is onneted to R by

u = �

a

2

�

0

0

a

0

R � zR : (23.102)

Expressed by the Mukhanov-Sasaki variable, Eq. (23.100) beomes

�� = 4�G

z
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02
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d
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u
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: (23.103)

Then we rewrite the not yet used Eq. (23.96b) as funtion of u,

a
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a
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d�
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a
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= 4�G�

0

0

u : (23.104)

The remaining task is to ombine these two equations. Applying � on (23.100), replaing

�� via (23.103) and inserting �

0

0

= za

0

=a

2

, we arrive at

d

d�

�

z

2

�

d

d�

u

z

��

= z�u (23.105)

or

u

00

�

z

00

z

u

2

��u = 0 : (23.106)

This equation desribes linear perturbations in single-�eld ination exatly, i.e. without im-

plying the slow-roll approximation or any spei� shape of the ination potential.

For superhorizon modes, �u � 0, and the growing modes satis�es u / z. The de�nition of

the Mukhanov-Sasaki variable implies then that R is onserved during ination, i.e. does not

depend on time for superhorizon modes. More generally, one an show that R is onserved

on superhorizon sales also after ination, if the perturbations are adiabati.

In order to quantise u, we need to �nd its ation S[u℄. Formally, we ould derive S[u℄ by

integrating out the the gravitational potential � from the ombined ation S[g

��

; �℄. We use

instead that the equation of motion (23.106) �xes the ation up to an unknown onstant A

as

S[u℄ = A
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02

� (�
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2
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00

z
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: (23.107)

Then we determine A by requiring that the term �

02

whih omes form the salar ation, has

the orret oeÆient 1/2. With u = � + z�, we obtain A = 1=2. The e�etive mass of the

u �eld is now

m
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= �
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00

z

= �
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; (23.108)

where we used

z = �

a

2

�

0

0

a

0

= �
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_

�

0

H

= �

p

2a

f

M

Pl

" : (23.109)

The bak-reation between the salar and the gravitational �eld is enoded in the time

behaviour of

_

� and H. The exat solutions of Eqs. (23.106) and (23.107) have to be found

by numerial integration. To proeed analytially, we employ instead the slow-roll approxi-

mation: Then the Hubble parameter is lose to onstant, H � onst:, and the kineti energy
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_

�

0

should be small for a suÆiently long time, while a is inreasing exponentially. Thus we

an treat

_

� and H as onstant, obtaining in the slow-roll approximation
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00
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00
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: (23.110)

Therefore we an identify in the slow-roll approximation the Mukhanov-Sasaki variable u with

�, while

~

� oinides with �=a. Hene, our results obtained for a �xed FLRW bakground

remain valid in the lowest order of the slow-roll approximation, if we expressR by

~

�: Inserting

(23.109) in u = a

~

� = zR, we obtain this relation as
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� : (23.111)

We an now use the onnetion between perturbations in R and

~

� using our result in a �xed

bakground,

�

2

R

(k) =

H

2

_

�

2

�

2

�

(k) =

H

2

_

�

2

H

2

4�

2

=

�

H

2

2�

_

�

�

2

k=aH

=

1

8�

2

"

�

H

f

M

Pl

�

2

�

�

�

�

�

k=aH

: (23.112)

Here, we used also

_

H = �4�G

_

�

2

from Eq. (23.27) and " = �

_

H=H

2

. Moreover, we aounted

for deviations from de Sitter (i.e. the time dependene ofH) by evaluating the power spetrum

for wave-vetors at horizon rossing, k = aH. Sine during slow-roll ination H

2

/ V , we see

that the normalisation of the power-spetrum informs us about the ratio V=".

Tensor perturbations While salar perturbations are a gauge-dependent mixture of pertur-

bations in Æg

s

��

and Æ�, tensor perturbations Æg

t

��

are fully �xed by the two physial degrees

of freedom in the gravitational wave tensor h

��

present in the TT gauge. Moreover, the

soure term for gravitational waves orresponds to anisotropi pressure, whih is absent in

the perturbed stress tensor of the inaton. We have seen that the ation (18.80) for gravita-

tional waves in the TT gauge is idential to the one of a free minimally oupled salar �eld,

hanging its normalisation by 2 � 32�G. Hene the power spetrum �

2

T

(k) of the metri

tensor perturbations is onneted to the salar perturbations �
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: (23.113)

Measuring the amplitudes of salar and tensor perturbations on the sale k = aH determines

thus both the slow-roll parameter " and the Hubble parameter H at horizon rossing of this

mode.

Deviations from a sale-invariant spetrum The spetrum of utuations is sale-invariant

only for a de Sitter universe. Sine ination has to end, we expet deviations from the sale-

invariant spetrum P (k) / 1=k whih we parametrise via the salar spetral index n

s

of the

salar utuations. Thus �

2

R

(k) / k

�(1�n

s

)

and
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� 1 �

ln�

2

R

(k)

ln(k)

=

d ln�
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(k)

dN
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d ln(k)

: (23.114)
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Sine the slow-roll parameters determine the deviations from de Sitter expansion, we should

be able to express n

s

via " and �. Using �

2

R

(k) = H

2

=(8�

2

")

�

�

k=aH

, we �nd for the �rst fator

d ln�
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dN

= 2

d lnH
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d ln "

dN

= �2"� � ; (23.115)

where we used the de�nition of the slow-roll parameters. For the evaluation of the seond

fator, we use that modes rossing the horizon satisfy k = aH, or

lnk = lna+ lnH : (23.116)

Di�erentiating this expression and realling dN = d ln(a) gives

d ln(k)

dN

= 1� " : (23.117)

Combining the results for the two fators and negleting seond order terms, we arrive at

n

s

� 1 � (�2"� �)(1 + ") � �2"� � : (23.118)

Thus the slope of the salar utuations informs us about deviations from a perfet de Sitter

phase, or via "

V

and �

V

, on the shape of the inaton potential.

Next we onsider tensor utuations, de�ning their spetral slope by

n

t

�

ln�

2
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(k)

ln(k)

: (23.119)

In ontrast to the salar slope, n

t

ontains no " term and thus it is given simply by

n

t

= �2" : (23.120)

Tensor-salar ratio The ratio r of perturbations in tensor and salar modes is determined

in single �eld ination fully by the slow-roll parameter ",
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This result has two important onsequenes. First, we an derive an upper limit on rj

k=aH

as funtion of the inaton �eld value at the time of horizon rossing of the sale k. This limit,

often alled the Lyth bound, an be derived using d�=(dtH) = d�=dN . Then the amount

�� the inaton evolved between the horizon exit of the CMB modes and the end of ination

is given by

�� �

f

M

Pl
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CMB

0

dN

p

r=8 � few�

f

M

Pl

�

r

0:01

�

1=2

: (23.122)

Here, we used that r during slow-roll should be nearly onstant. This relation onnets the

tensor-salar ratio on CMB sales and the minimal initial value of the inaton. Hene large,

observable tensor perturbations require trans-Plankian initial values of the inaton.

As seond onsequene, we an derive a so-alled onsisteny relation. We an ombine

r = 16" and n

t

= �2" as follows

n

t

= �2" = �

r

8

: (23.123)

The slope of the tensor perturbations is �xed by the ratio of the amplitudes of salar and

tensor perturbations. Measuring n

t

independently provides therefore a onsisteny hek of

single �eld ination.
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Emergene of lassial �elds Ination ampli�es the length-sales of perturbations whih

have been generated as quantum utuations. Sine �eld operators as

�(�;x) =

Z
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3
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3=2
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k
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e

�ikx
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(�)a

k

e

ikx

�

(23.124)

are omplex, the expetation values of produts of �elds are omplex too. Moreover, they

are depending on their order. In ontrast, the utuations of a uid are lassial and real. In

general, we expet that the initial quantum utuations are onverted into lassial utua-

tions by the phenomenon of deoherene, i.e. by the oupling to a thermal bath. In the ase

of superhorizon utuations, the oupling between the inaton and the gravitational �eld is

suÆient for this onversion proess: For modes after horizon exit, k

�

� 1=j�j, whih are

frozen in, the �eld operator simpli�es to

�(�;x) =

Z

k
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; (23.125)

where �

k

are arbitrary phases. Thus the mode funtions are real, �

(+)

k

(�) = �

(�)

k

(�). As

a result, also the expetation values of produts of �elds beome real and do not depend

on the order. This an be also seen alulating the anonially onjugated �eld operator on

super-horizon sales,

�(�;x) =

�L

��

0

= �

1

�

�(�;x) (23.126)

whih is proportional to �(�;x). Therefore, the two operators ommute and � behaves as

a lassial �eld. Thus we an treat the perturbations as lassial random �elds and replae

quantum averages by statistial averages. Sine we inluded only the quadrati part of the

potential, f. Eq. (23.54), the quantum �eld � is a free Gaussian �eld. As a result, the or-

responding lassial random �eld is Gaussian too, implying that all information is ontained

in the two-point orrelation funtions. Deviations from Gaussianity should be non-zero but

tiny.

23.5. Outlook: Further evolution of utuations

We have found that ination generates a nearly power-law like spetrum of urvature utu-

ations and gravitational waves. Superhorizon modes are frozen-in and an be desribed by

lassial Gaussian random �elds. These utuations beome observable through the temper-

ature utuations of the CMB and the large-sale struture of the universe. The evolution

of these utuations after ination follows lassial physis, and thus this topi is outside the

fous of this book. We give therefore in this setion only a skethy overview.

After reheating, the matter ontent of the universe onsists of a plasma ontaining at least

the SM degrees of freedom. Additionally, there should be new partiles assoiated to a dark

matter setor and to baryogenesis. Initially, all the speies

3

are tightly oupled and an

desribed therefore as an ideal uid with a single mode of perturbation Æ�. This implies that

the utuations are adiabati, i.e. that they satisfy

Æ�

i

= _�

i

Æ(x) and ÆP

i

=

_

P

i

Æ(x) (23.127)

3

An exeption might be e.g. non-thermal DM whih presene would lead to isothermal utuations.
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Figure 23.4.: Shemati evolution of perturbations in old dark matter, photons, and baryons.

with a single funtion Æ(x) desribing the density and pressure utuations of all the ompo-

nents i. In this ase, the onservation law for R ontinues to hold for superhorizon modes.

As the universe ools down, some speies go �rst out of hemial and later out of kineti equi-

librium. As a result, the evolution of these speies has to be desribed either by a non-ideal

uid inluding anisotropi pressure or by a set of oupled Boltzmann equations. Examples

where suh a treatment is neessary are the free-streaming of neutrinos after weak deoupling

and of photons after reombination.

During the evolution of the universe, at least two episodes happened where unknown physis

beyond the SM an inuene the evolution of utuations: These two episodes are the gen-

eration of the baryon asymmetry and of the dark matter abundane. If both are generated

through the freeze-out mehanism disussed in hapter 20 and 21, then the same ratio n

B

=s

and n

DM

=s is generated in the whole universe. As a result, the utuations remain adiabati.

Another option is that the ratios n

B

=s or n

DM

=s vary in spae. Suh utuations are alled

isourvature perturbations. This may happen e.g. in axion models, if the Peeei-Quinn phase

transition takes plae at a smaller temperature than reheating. Then the observable uni-

verse today ontains many pathes with di�erent values of the misalignment angle #. Sine

# is spae dependent, the resulting axion dark matter density n

DM

=s varies in spae, too.

Observations of the CMB are onsistent with a purely adiabati utuation spetrum and

an be thus used to limit models prediting isourvature perturbation.

Matter perturbations The evolution of the perturbations Æ�

i

and ÆP

i

an be determined

from the Einstein equations, following the same strategy as in the ase of the inaton but

using the stress tensor for a sum of the various uid omponents. The evolution of the density

ontrast in di�erent omponents of the energy density of the universe is shematially shown

in Fig. 23.4 assuming adiabati utuations.

An important feature to note is that the density ontrast of radiation is approximately

onstant. This an be understood from the fat that the sale on whih radiation is grav-

itationally bound is omparable to the Hubble radius (problem 24.??). As a result, also

the density ontrast of baryons is approximately onstant as long the photon-baryon uid is

392



23.5. Outlook: Further evolution of utuations

tightly oupled. In ontrast, the density ontrast of CDM grows as Æ

CDM

/ (1 + z) starting

from matter-radiation equilibrium z

eq

. At reombination, baryons deouple from photons

and start to fall into the potential walls formed by CDM. Note also that utuations of CDM

on small sales k rossed earlier the horizon. They started therefore to grow and to form

gravitationally bound systems earlier, leading to the hierarhial formation of strutures in

a CDM universe. Observations strongly favour this piture. Finally, the growth of the den-

sity ontrast stops outside of already gravitationally bound strutures, when the aelerated

expansion of Universe starts at z ' 0:5.

Example 23.4: Derive the onnetion between R and the gravitational potentials.

We mathed already the utuations of the inaton and the plasma, see Eqs. (23.94) and (23.95),

�nding v = �Æ�=�

0

0

. Thus we an express the urvature perturbation in the onformal Newtonian

gauge as

R = 	�H v : (23.128)

Using now the (integrated) 0i omponent of the Einstein equation, 	

0

+H � = 4�Ga

2

(� + P )v and

H

2

= 8�Ga

2

�=3, we obtain

R = 	+

2

3

� +	

0

=H

1 + w

: (23.129)

Here, w = P=� is the e�etive EoS with P =

P

i

P

i

and � =

P

i

�

i

for the di�erent omponents of the

plasma. This equation allows us to dedue two important results, f. problem 24.??: First, di�eren-

tiating it for adiabati perturbations shows that R is also after ination onserved on superhorizon

sales. Seond, we an use it to dedue from R the gravitational potentials, i.e. we an onnet the

preditions of inationary models with the input for the formation of large-sale strutures. In parti-

ular, Eq. (23.129) simpli�es negleting anisotropi pressure and assuming w = onst: on superhorizon

sales to

� = 	 =

3 + 3w

5 + 3w

R : (23.130)

This gives � = 2R=3 for the radiation and � = 3R=5 for the matter dominated epoh.

Angular power spetrum We will next examine in somewhat more detail the osmi mi-

rowave bakground (CMB). Flutuations in the CMB temperature are seen on the sphere of

last sattering. Thus it is onvenient to deompose a map of CMB temperatures T (#; �) into

spherial harmonis Y

lm

(#; �),

T =

1

X

l=0

l

X

m=�l

a

lm

Y

lm

(#; �) : (23.131)

The �rst two moments are usually onsidered separately: The monopole moment l = 0 of a

CMB temperature map orresponds to the average temperature of the CMB, T

0

= 2:725 K.

The relative motion of the Sun with respet to the CMB introdues (mainly) a dipole l = 1

anisotropy. More preisely, the temperature transforms as

T =

T

0

p

1� �

2

1� � os#

= T (1 + os� +O(�

2

)) ; (23.132)

where we an neglet the higher order terms beause the peuliar veloity of the Sun is small,

� = v= � 1: From the size of the dipole one dedues that the Sun moves with 370 km/h

relative to the CMB.
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If this dipole anisotropy is subtrated, temperature di�erenes of the order ÆT=T � 10

�5

remain between di�erent diretions of the sky. However, in eah diretion the spetrum is the

one of a perfet blak-body. The moments l � 2 of the utuations ÆT=T ,

�(#; �) �

ÆT

T

=

1

X

l=2

l

X

m=�l

a

lm

Y

lm

(#; �) (23.133)

are onneted with the osmologial parameters and physial proesses between reombination

and today. For an isotropi universe, the m dependene of the oeÆients a

lm

ontains no

information and one de�nes therefore

C

l

= ha

lm

a

�

lm

i =

1

2l + 1

l

X

m=�l

a

lm

a

�

lm

: (23.134)

Sine a single spherial harmoni Y

lm

orresponds roughly to angular variations of # � �=l,

the oeÆient C

l

determines the power of utuation with the angular sale �=l. Note that

this proedure allows one to replae an average over an ensemble of universes by an average

over di�erent pathes of the observed Universe. For small `, this introdues an irreduible

statistial error ÆC

`

=C

`

� 1=

p

2`+ 1 whih is alled osmi variane.

We are not interested in the temperature utuations �(#; �) themselves, but only in

their statistial properties. For Gaussian initial quantum utuations, all the information is

ontained in the two-point orrelation funtion,

C(#) =




�(#; �)�(#

0

; �

0

)

�

: (23.135)

(Sine the initial urvature utuations are small, the perturbations of all other quantities

are linearly related to the urvature utuations and therefore Gaussian too.) A Legendre

transformation gives then

C

l

= 2�

Z

1

�1

d os# C(#)P

l

(os#) ; (23.136)

whih summarise in an eÆient way the experimental data ÆT (#; �) ontained in the many

pixels of an CMB experiment. In the next step, we have to onnet the temperature utua-

tions observed today to the utuations at reombination.

Temperature utuations Our aim is to onnet the frequeny of a photon emitted on the

last sattering surfae (LSS) to its frequeny today. This alulation is simpli�ed performing

it in the frame whih is onformally at for zero perturbations, ~g

��

= g

��

=a

2

(�), using that

light-like geodesis oinide in two onformally related frames.

Let us onsider the ovariant momentum P

�

= dx

�

=d� of a photon as funtion of onformal

time � = x

0

(�). Then we an rewrite the geodesi equation dP

�

=d�+�

�

��

P

�

P

�

= 0 using

dP

�

d�

=

d�

d�

dP

�

d�

= P

0

dP

�

d�

(23.137)

as

dP

�

d�

+ �

�

��

P

�

P

0

P

�

P

0

P

0

= 0 : (23.138)
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In the following, we will need only the omponent of this equation desribing the evolution

of P

0

. Using the onformal Newtonian gauge and urvature perturbations, the Christo�el

symbols related to the frame ~g

��

are given by �

0

i0

= �

i

�, and �

0

ij

= 	

0

Æ

ij

. Inserting them

into the geodesi equation for P

0

, it follows

dP

0

d�

+

�

�

0

+	

0

Æ

ij

P

i

P

0

P

j

P

0

+ 2�

i

�

P

i

P

0

�

P

0

= 0 : (23.139)

Without perturbations, dP

�

=d� = 0 and thus the vetor n

i

= n

i

= P

i

=P

0

is a onstant

tangent vetor along the photon trajetory with unit norm. Next we rewrite the parenthesis

as

�

0

+	

0

Æ

ij

n

i

n

j

+ 2n �r� = �(�

0

�	

0

) + 2(�

0

+ n �r�) : (23.140)

Here, we ombined the terms suh that the seond parenthesis on the RHS is a total derivative,

sine

d�(�;x(�))

d�

= �

0

+

�x

��

�r� = �

0

+

�x=��

��=��

�r� = �

0

+

P

P

0

�r� = �

0

+ n �r� :

(23.141)

Integrating (23.140) along the photon trajetory and using that P

�

is onstant at zero order,

we obtain

P

0

(�

0

)� P

0

(�

1

)

P

0

(�

1

)

=

Z

�

0

�

1

d�(�

0

�	

0

)� 2[�(�

0

)� �(�

1

)℄ : (23.142)

Now we have to onnet this expression to the observed photon frequeny today in the frame

g

��

. Let us denote the frequeny in the rest-frame of the plasma of a photon emitted at the

point x of the LSS with �!. In the frame onneted to the g

��

oordinates, the plasma moves

with the four-veloity u

�

, with the omponents u

0

= (1� �) and u

i

= v

i

(reall that we use

onformal quantities). Thus it follows

u

0

= (1 + �) and u

i

= u

i

= �v

i

:

We hoose in the rest-frame of the plasma at the position where the photon is emitted normal

oordinates, �g

��

(x) = �

��

. Then �u

�

= (1;0) and ! = �u

�

�

P

�

=

�

P

0

. Sine ! = u

�

P

�

= �u

�

�

P

�

,

we an use

! = u

�

P

�

= (1 + �)P

0

� v � P = (1 + �� n � v)P

0

(23.143)

to alulate the frequeny !(�

1

) of the photon emitted at LSS. The same formula applies

to the frequeny !(�

0

) measured by an observer at present time �

0

with veloity v

i

in the

onformal frame. Thus the relative frequeny shift is

!(�

0

)� !(�

1

)

!(�

1

)

=

Z

�

0

�

1

d�(�

0

�	

0

)� [�(�

0

)� �(�

1

) + n � vj

�

0

� n � vj

�

1

℄ : (23.144)

The RHS is independent of the photon frequeny and thus an initially thermal photon spe-

trum remains thermal. Consequently, the same formula gives also the relative temperature

hange �(�n) = ÆT=T of the CMB in the diretion k = �kn. The monopole ontribution

�(�

0

) is not observable, sine it an be absorbed into the average CMB temperature. Similarly,

the term n � vj

�

0

orresponds to the dipole term due to the movement of the observer versus
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the CMB whih we subtrated. Finally, we should add the temperature utuations on the

LSS whih are onneted to the energy density utuation on the LSS via Æ�



=�



= 4ÆT=T .

Combining everything, we obtain

�(n; �

0

) =

Z

�

0

�

r

d�(�

0

�	

0

)

| {z }

ISW

+

1

4

Æ�



�



+�(�

r

)

| {z }

SW

+ n � vj

�

r

| {z }

Doppler

: (23.145)

The last term aounts for the Doppler e�et indued by the movement of the plasma relative

to the oordinate frame. The two terms in the middle desribe the Sahs-Wolfe e�et, whih

has two ontributions: An overdense spot emits photons with larger average energies but

has also a larger (negative) gravitational potential whih in turn leads to a larger redshift.

Thus the two ontributions anel partly. Finally, the �rst terms alled the integrated Sahs-

Wolfe e�et take into aount the hange of the gravitational potentials between LSS and

today. Next we should stress the approximations we made: First, we have assumed that

reombination happens instantaneously. Seond, we have negleted that some of the photons

may satter on free eletrons after the universe beome reionised by the �rst stars at z

<

�

10.

We omit from now on the argument �

0

and write simply �(n; �

0

) � �(n). One again, it

is useful to move to Fourier spae: The integral in �(n) reeives ontributions along the path

x(�) = �n with � 2 [�

r

; �

0

℄. Thus the Fourier transformed �(k) is a funtion only of �n and

the magnitude k, or �(k) = �(kn; k) � �(k os#; k). Performing the Fourier transformation,

we an expand thus the phase in Legendre polynomials,

�(n) =

ÆT (�n)

T

=

Z

d

3

k�(os#; k)e

ik� os#

(23.146)

=

X

l

i

l

(2l + 1)

Z

d

3

k

e

�

l

(k)P

l

(os #) (23.147)

We denoted the Legendre transformed by

~

�

l

(k), beause one usually extrats the e�et of

primordial utuations in the gravitational potential setting

e

�

l

(k) � �

i

(k)�

l

(k) : (23.148)

Inserting �(n) into (23.135) and the result then in (23.136), we arrive at our �nal formula

for the angular power spetrum indued by salar perturbations,

C

l

= 4�

Z

dk

k

�

�

i

(k)�

2

l

(k) : (23.149)

Hene the CMB power spetrum is determined by the produt of the power spetrum �

�

i

(k)

of initial utuations and the funtions �

2

l

(k). The latter ontain projetion e�ets of the

plane waves onto the sphere of last sattering, enode the physis of the osmologial uid at

reombination and the evolution of the gravitational potential between ination and today.

As simplest appliation, we onsider the Sahs-Wolfe e�et whih is relevant on large an-

gular sales. From an analysis of the uid equations one �nds that on superhorizon sales

� = �=3 = 3�

i

=10 = R=5 holds (f. example 24.4),

�(n) =

Z

d

3

k�(n � n; k) =

1

3

Z

d

3

k�(k)e

ik�n(�

0

��

r

)

: (23.150)
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Expanding the plane wave in Legendre polynomials, we obtain as oeÆients spherial Bessel

funtions,

e

�

l

=

1

3

�(k)j

l

(k(�

0

� �

r

)) =

3

10

�

i

(k)j

l

(k(�

0

� �

r

)) ; (23.151)

or, if we extrat the primordial spetrum and use �

0

� �

r

,

�

l

=

3

10

j

l

(k(�

0

� �

r

)) '

3

10

j

l

(k�

0

) : (23.152)

Inserting �

l

into Eq. (23.149) results in

C

l

=

36�

100

Z

dk

k

�

�

(k)j

2

l

(k�

0

) : (23.153)

Choosing a power-law �

�

(k) ' A

�

(k=k

0

)

n

s

�1

, we an evaluate the integral (problem 24.??)

and obtain �nally in the limit of a at spetrum

C

l

=

18�

100

A

�

l(l + 1)

: (23.154)

Thus a at primordial spetrum results in a at temperature power-spetrum (at l

<

�

100).

Comparing this result to observations determines the normalisation of the primordial utu-

ations as A

�

' 2:6 � 10

�9

, what in turn �xes (V=")

1=4

� 6� 10

16

GeV using (23.112).

In the left panel of Fig. 23.5, numerial results for the temperature power spetra from salar

perturbations are shown as a blak line. After the plateau up to l � 100, a series of peaks

with delining amplitude is visible. These peaks are aused by the oherent osillations of

the baryon-photon uid, with gravitation as the driving and photon pressure as the restoring

fore. The fundamental frequeny of these sound waves orresponds to the sound horizon,

and thus the �rst peak at l � 200 indiates the horizon sale at reombination. The fat that

these peaks are visible in the power spetrum requires that the osillations are in phase on

the whole LSS|what is a natural predition of ination: Sine Fourier modes Æ

k

are frozen-in

outside the horizon, their initial ondition is Æ

k

= onst: and

_

Æ

k

= 0 at horizon rossing. In

other words, all modes Æ

k

� os(kx+�

k

) start with �

k

= 0 at horizon rossing. The relative

size of these peaks depends on the osmologial parameters; and the preise measurement of

the CMB power spetrum has led to the standard model of osmology.

Metri perturbations and CMB polarisation Another important predition of ination are

tensor perturbations whih lead to additional temperature utuations. Their derivation

proeeds analogous to the salar ase, but now the non-vanishing Christo�el symbols in the

onformal Newtonian gauge are given by �

0

ij

= �h

0

ij

. Thus the geodesi equation beomes

dP

0

d�

�

1

2

P

0

h

0

ij

n

i

n

j

= 0 : (23.155)

In linear order, we an neglet again the time dependene of P

0

and obtain immediately

P

0

(�

0

)� P

0

(�

1

)

P

0

(�

1

)

=

1

2

Z

�

0

�

1

d� h

0

ij

n

i

n

j

: (23.156)
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Figure 23.5.: CMB temperature and polarisation power spetra from salar (left) and tensor

perturbations (right) for a (unrealisti) tensor-to-salar ratio r = 0:38, from

[Cha06℄.

The perturbations of an ideal uid ontain no tensor omponent and thus the plasma four-

veloity is undisturbed by metri perturbations, u

�

= (1; 0). Therefore it is ! = P

0

, and only

the ISW e�et ontributes to temperature utuations indued by tensor perturbations,

�(n; �

0

) =

1

2

Z

�

0

�

1

d� h

0

ij

n

i

n

j

: (23.157)

The onnetion between the angular power spetrum C

l

and the primordial spetrum of

tensor utuations is derived following the same logi as in the ase of salar perturbation,

and we summarise therefore just the result: The temperature utuations indued by tensor

perturbations have also a plateau up to

<

�

100, and deay then faster than those of salar

perturbations, f. with the blak line in the right panel of Fig. 23.5. Sine the relative size of

tensor and salar perturbations is bounded as r < 0:1, it seems thus hopeless to disentangle

the two using only temperature utuations. What omes to our resue is that the CMB is

polarised and that one of the two polarisation states an be generated only by gravitational

perturbations.

In order to understand how the CMB beame polarised, we have to abandon the approxi-

mation of instantaneous reombination. Let us model instead the LSS as a layer of thikness

2��

r

: Then for �

r

���

r

, photons are tightly oupled to the baryon uid, while for �

r

+��

r

they are free-streaming. In the intermediate region, they satter on free eletrons. The

sattering is desribed by the non-relativisti Thomson ross setion, � / j"

0

� "j

2

, f. with

Eq. (9.69). If we hoose linear polarisation vetors with "

k

ontained in the sattering plane

spanned by k and k

0

, and "

?

perpendiular to the plane, then �

k

/ os

2

# and �

?

/ 1. Thus

Thomson sattering generates linearly polarised photons. However, this is not suÆient for

the generation of polarised radiation: If the initial photon intensity is isotropi, the polarisa-

tion is averaged out integrating over the diretions of the initial photons. In the ase of the

CMB, the initial photon intensity is however anisotropi, beause the intensity of blak-body
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radiation is a funtion of T . Thus inhomogeneities ÆT=T lead to utuations of the intensity

whih result in turn in utuations of the polarisation. This implies �rst that the utuations

in temperatures and the degree of polarisation are orrelated and seond that the degree of

polarisation is bounded by ÆT=T . Third, the CMB polarisation disappears in the limit of

instantaneous reombination, ��

r

! 0. More preisely, the polarisation is proportional to

the ratio of the mean-free-path l of photons and the thikness ��

r

of the LSS.

Next we disuss how we an desribe the polarisation states of the CMB photons. The

intensity I of a photon beam is determined by the square of the eletri �eld strength vetor,

I /




E

2

�

, where the average h� � �i is taken over one osillation period. If we distinguish the

two polarisation states of a photon, i.e. set E ! E

a

= fE

+

; E

�

g, then the intensity beomes

a tensor, I

ab

. This tensor

4

is a Hermitian 2 � 2 matrix and has thus four real omponents,

while the polarisation of a photon beam is fully desribed by two real parameters. We are

only interested in the polarisation and we introdue therefore instead of I

ab

the normalised,

traeless 2� 2 polarisation tensor

P

ab

=

1

hE



E



i

�

hE

a

E

b

i �

1

2

hE



E



ig

ab

�

: (23.158)

Sine we onsider the polarisation on the LSS, we have to use for g

ab

the two-dimensional

metri tensor on S

2

. We break the vetor E

a

into its rotation and divergene free part, whih

we all E and B, respetively,

P

ab

=

�

r

a

r

b

�

1

2

g

ab

�

E + ("

a

r

b

r



+ "

b

r

a

r



)B : (23.159)

From the three quantities T , E, and B, we an form six bilinear observables: the auto-

orrelations TT , EE, BB and the ross orrelations TE, TB, EB. Sine T and E are salars,

but B is a pseudo-salar, the ombinations TB and EB are zero (if parity is onserved).

Moreover, the polarisation signal is weak and thus the ross orrelation TE is (after TT )

easiest to observe. Figure 23.5 shows additional to the temperature power spetra also the

ross orrelation and the E and B power spetrum.

Typial E and B modes are plotted in Fig. 23.6: The expression for P

ab

shows that E

polarisation transforms as a salar, while B polarisation is a pseudo-salar. As a result, E

modes are symmetri with respet to reetions at a line through the enter, while B modes

hange sign. This distintion makes B modes on super-horizon sales

5

to a \smoking gun"

for the presene of gravitational waves during reombination: Sine salar perturbations are

haraterised by salar funtions, they an not lead to any B polarisation. On the other hand,

gravitational waves onsists of left- and right-irularly polarised waves, whose amplitudes

h

�

are random variables. Thus in some diretions left- and in other diretion right-irular

polarised waves dominate, leading in turn to a (loally) parity breaking B polarisation.

The detetion of tensor perturbations would provide important information on the in-

ationary models. Suh a measurement would inform us that i) B modes are orrelated

with temperature utuations. No ausal mehanism an generate these orrelations on

superhorizon sales. ii) The tensor-salar-ratio r measures the energy sale of ination,

4

Expanding I

ab

on the sphere, we have to use spin-2 spherial harmonis,

2

Y

l

m

(#; �). This indiates already

that the (irreduible) spin-2 part of the polarisation signal is soured by tensor perturbations of the metri.

5

Weak gravitational lensing an transform E intoB-modes, as a ausal mehanism however only on subhorizon

sales: this ontribution is shown in the left panel of Fig. 23.5.
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b b

Figure 23.6.: The two E polarisation (left panel) and B polarisation (right panel) modes

around a polarisation extremum shown by a irle.

V

1=4

� (r=0:01)

1=4

10

16

GeV. iii) A large value r > 0:01 requires large-�eld models and thus

trans-Plankian �eld values. iv) The observation of tensor perturbations would be a proof

that gravity is a usual quantum theory, sine they are soured by quantum utuations.

Suesses and problems of the inationary paradigm Ination has a set of suessful

preditions: First, the atness of the universe, 
 ' 1, whih seemed in the 1980s and early

1990s at odds with observations. Seond, ination seeds salar perturbations whih are very

lose to Gaussian, nearly sale-invariant with a small red tilt, and lead, at least in the simplest

models, to adiabati temperature utuations of the CMB. Third, ination predits tensor

perturbations whih an be deteted via B modes. Last but not least, the auto- and ross

orrelation of these utuations have �xed phase relations on superhorizon sales, whih are

diÆult to understand in any ausal mehanism. From these preditions, only the existene

of tensor perturbations still awaits on�rmation.

Having summarised the suesses, we turn now to possible problems of the inationary

paradigm. First, we ome bak to the question if trans-Plankian �eld values of the inaton

are problemati. More preisely, we ask if, we an trust our analysis of large �eld models

like e.g. V =

1

2

m

2

�

2

. From the point of view of general relativity, the answer is yes: If m

is suÆiently small, the energy density satis�es � � V � M

4

pl

and lassial relativity holds.

Moreover, the virtuality of the quantum utuations is lose to zero and thus speial relativity

ensures that the large spatial momenta are not dangerous as long as their four-momentum

squared is small. However, if we oneive a spei� inationary model L

infl

as part of a

omplete e�etive �eld theory L

BSM

beyond the SM, then

L = L

BSM

+L

infl

+

1

X

n=1



n

M

n

Pl

O

4+n

: (23.160)

Usually, we an neglet the operators O

4+n

of dimension �ve and higher, whih are suppressed

by powers of (E=M

Pl

)

n

. However, in large �eld models the whole in�nite tower of higher-

dimensional operators should ontribute during ination with a priori equal weight. Thus

there is no reason to trust the analysis of these models restrited to the operators with d � 4

ontained in L

BSM

+L

infl

. If the upper limits on r ontinue to improve, this problem might

beome in the future however a purely aademi one,
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23.A. Appendix: Perturbed Einstein equations

Another potential problem beomes lear looking bak at Eqs. (23.65) and (23.66). For

a onstant power spetrum, �

2

�

(k) = H

2

=(4�

2

), the two-point funtion




Æ�

2

�

is logarithmi-

ally IR and UV divergent. The former divergene is aused by exponentially large wave-

lengths. These modes are homogeneous over the horizon sale both in the present and in

the inationary epoh. Therefore this IR divergene an be absorbed into a resaling of the

lassial inaton �eld. Considering the UV divergene, we have to reall that for �eld modes

k

>

�

aH the spetrum is the one of a free �eld in Minkowski spae. Thus the divergene of




Æ�

2

�

=

R

dk=k�

2

�

(k) is the same as in Minkowski spae, and should be ured with our usual

renormalisation proedure. Sine the modes �

k

of a free �eld are independent, the subtration

of subhorizon modes should not a�et the spetra of superhorizon modes in �

2

�

(k). While

thus the use of �

2

�

(k) = H

2

=(4�

2

) seems to be in aord with our standard pratise, other

subtration proedures are possible and would lead to di�erent preditions. Moreover, we

should keep in mind that our preditions depend on the hoie of the vauum state. Again,

our seletion of the Bunh-Davies vauum is well-motivated, but annot be derived from �rst

priniples.

Finally, let us omment on the naturalness of the initial onditions in ination. We have

seen that ination in the homogeneous limit happens for a large set of initial values, onsid-

ering e.g. the phase portrait for the lassial V = m

2

�

2

=2 potential in Fig 23.2. Suh large

utuations should be rare, but the probability per volume to sit inside an inationary path

should be large, preisely beause these pathes are exponentially inated. In the \eternal

ination" senario, this simple lassial piture is hanged sine quantum utuations modify

the lassial ination trajetories. It is unlear what measure for the initial onditions should

be used and thus it is also disputed how natural the initial onditions for suessful ination

are in this senario.

23.A. Appendix: Perturbed Einstein equations

The derivation of the Einstein equations in the onformal Newtonian gauge (23.88) is straight-

forward but tedious. One may either alulate diretly the linearised Einstein tensor for

this metri, or one may use that the k = 0 FLRW metri is onformally at. Therefore

one an map the linearised Einstein equations for perturbations around Minkowski spae

derived in hapter 18.3 on the FLRW metri using the transformation rules (22.2) between

onformally related spae-times, see e.g. [GR11a℄. Alternatively, one may use a program

like di�erentialGeometry.py to alulate �rst the Einstein tensor G

��

for the metri (23.88),

expanding then G

��

in � and 	. Either way, the Einstein tensor in the onformal Newtonian

gauge at linear order in the perturbations 	 and � follows as

ÆG

0

0

=

2

a

2

�

�	� 3

a

0

a

	

0

� 3

a

02

a

2

�

�

(23.161a)

ÆG

0
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a
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�

�

(23.161b)

ÆG

j

i
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1

a

2

�

i

�
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(��	)�

2
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2

Æ
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00

+

1

2

�(��	) +
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0
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(�

0
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) + 2

a

00

a

��

a

02

a

2

�

�

:

(23.161)

The spatial omponents ÆG

j

i

of the Einstein tensor ontain the two independent tensor stru-

tures �

i

�

j

and Æ

j

i

. In the ase of an ideal uid or a salar �eld, anisotropi pressure is absent,
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23. Ination

ÆT

j

i

= Æ

j

i

P . As a result, the Einstein equation implies �

i

�

j

(� � 	) = 0 for i 6= j. But

� � 	 annot be onstant, sine the perturbed Einstein tensor should vanish in the limit

�;	 ! 0. Moreover, isotropy and homogeneity forbid a linear dependene of the potentials

on the oordinates. Thus we found that

� = � and A = D (23.162)

in the absene of anisotropi pressure.

Summary

Ination denotes a phase of nearly exponential expansion of the early universe, whih solves

the horizon and atness problem of the standard big bang model. It generates a nearly sale-

invariant spetrum of Gaussian density utuations whih is typially red-tilted, n

s

< 1, and

in the simplest models adiabati. The utuations have �xed phase relations on superhorizon

sales what results in harateristi osillations of the CMB temperature utuations. The

ratio r of power in gravitational waves and urvature perturbations is determined by the

slow-roll parameter " = r=16, whih ontrols also the slope of the tensor perturbations n

T

=

�2" = �r=8.

Further reading

Our derivation of the perturbation spetrum follows the one of [GR11a℄. For a somewhat

omplementary approah see [LL09℄. Both referenes as well as [Muk05℄ disuss also in muh

more detail the onnetion to CMB utuations. A more detailed review of preheating is

given by [ABCRM10℄ and [GR11a℄.
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24. Blak holes

John Mihell speulated already 1784 that the gravitational attration of a mass onentrated

inside a suÆiently small radius an beome so strong that not even light esapes. The advent

of general relativity put Mithell's premise that energy is subjet to gravity on a �rm footing

but nevertheless the idea of blak holes was aepted only very slowly. In modern language,

we all a blak hole a solution of Einstein's equations ontaining a physial singularity whih

in turn is overed by an event horizon: The horizon ats as a perfet unidiretional membrane

whih any ausal inuene an ross only towards the singularity. After this piture beame

aepted in the 1960ies, the disovery by Hawking that quantum e�ets lead to the emission

of thermal radiation by a blak holes ame as big surprise. Before we examine this proess of

Hawking radiation, we disuss the essential features of stationary and rotating blak holes.

24.1. Shwarzshild blak holes

De�nitions Let us start by introduing few de�nitions: First, we need to distinguish between

physial and oordinate singularities. The latter arise only for a spei� oordinate hoie

and all measurable quantities remain �nite at a oordinate singularity. By ontrast, physial

singularities an not be eliminated by a hange of oordinates and physial quantities as the

urvature or the stress tensor diverge. Next, we reall our de�nition of an event horizon as a

three-dimensional hypersurfae whih limits a region of a spae-time whih an never inuene

an observer. The event horizon is formed by light-rays and is therefore a null surfae. Hene

we require that at eah point of suh a surfae de�ned by f(x

�

) = 0 a null tangent vetor

n

�

exists that is orthogonal to two spae-like tangent vetors. The normal n

�

to this surfae

is parallel to the gradient along the surfae, n

�

= hr

�

f = h�

�

f , where h is an arbitrary

non-zero funtion. From

0 = n

�

n

�

= g

��

n

�

n

�

(24.1)

we see that the line-element vanishes on the horizon, ds = 0. Hene the (future) light ones

at eah point of an event horizon are tangential to the horizon.

We add two additional de�nitions for spae-times with speial symmetries. A stationary

spae-time has a time-like Killing vetor �eld. In appropriate oordinates, the metri tensor

is independent of the time oordinate,

ds

2

= g

00

(x)dt

2

+ 2g

0i

(x)dtdx

i

+ g

ij

(x)dx

i

dx

j

: (24.2)

A stationary spae-time is stati, if it is invariant under time reversal. Thus the o�-diagonal

terms g

0i

have to vanish, and the metri simpli�es to

ds

2

= g

00

(x)dt

2

+ g

ij

(x)dx

i

dx

j

: (24.3)

An example for a stationary spae-time is the metri around a spherially symmetri mass

distribution whih rotates with onstant veloity. If the mass distribution is at rest, then the

spae-time beomes stati.
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24. Blak holes

Shwarzshild metri The Shwarzshild solution desribes the stati spae-time outside a

spherially symmetri mass distribution and is therefore of the form (24.3). Our disussion

of symmetri spaes in setion 19.1 implies that the spatial part g

ij

of the metri tensor is

given by Eq. (19.4) with S(t) = onst: Moreover, the metri tensor an depend only on the

radial distane r to the enter of the mass distribution. Thus the omplete line-element is

ds

2

= A(r)dt

2

�B(r)dr

2

� r

2

(d#

2

+ sin

2

#d�

2

) ; (24.4)

where A(r) and B(r) are two arbitrary funtions. Following the steps from Eq. (19.9a)

to (19.13), but using now T

��

= 0 appropriate for the vauum outside a spherial mass

distribution, leads

1

to (problem 25.??)

ds

2

=

�

1�

2M

r

�

dt

2

�

�

1�

2M

r

�

�1

dr

2

� r

2

(d#

2

+ sin

2

#d�

2

) : (24.5)

Here we required also that the metri is asymptotially at, i.e. that we reover Minkowski

spae for M=r ! 0. The weak-�eld limit r � 2M implies that M is the total mass as

measured by an observer at in�nity. The spei� oordinates used in (24.5) whih make

the stati property of the spae-time manifest are alled Shwarzshild oordinates. The

Shwarzshild solution whih is parametrised only by the mass M is the unique spherially

symmetri vauum solution of the Einstein equations: Allowing for time-dependent funtions,

A(t; r) and B(t; r) would result in the same stati spae-time, a result known as Birkho�'s

theorem.

The main properties of the Shwarzshild solution an be summarised as follows: The

time-independene and spherially symmetry of the metri imply the existene of four Killing

vetors. If we order oordinates as ft; r; �; #g, then the two Killing vetors leading to the

onservation of energy and z omponent of the angular momentum are �

�

� (�

t

; �

r

; �

�

; �

#

) =

(1; 0; 0; 0) and �

�

= (0; 0; 0; 1). The Shwarzshild oordinates have two singularities at r =

2M and r = 0. The radius 2M is alled Shwarzshild radius R

s

and has numerially the

value

R

s

= 2M =

2G

N

M



2

' 3 km

M

M

�

; (24.6)

where M

�

denotes the mass of the Sun. In a stationary, radial-symmetri spae-time the

general equation of a surfae, f(x

�

) = 0 simpli�es to f(r) = 0. Then the ondition de�ning

a horizon beomes simply g

rr

= 0 or g

rr

= 1=g

rr

= 1. Thus r = R

s

is an event horizon.

Moreover, at R

s

the oordinate t and r swith their harater: for r < R

s

, the \time

oordinate" t beomes spae-like, while r is time-like. In order to deide if r = 2M and r = 0

are oordinate or physial singularities one an alulate the salar invariants formed from

the Riemann tensor. For instane, one �nds R

����

R

����

= 48M

2

=r

6

, indiating that r = 2M

is a oordinate and r = 0 a physial singularity: Approahing r = 0, any marosopi body

would be destroyed by tidal fores. However, the question if at r = 0 a true singularity exists

annot be addressed within lassial gravity whih is expeted to breakdown for urvatures

larger than R �M

2

Pl

.

Gravitational redshift An observer with four-veloity u measures the frequeny

! = k � u (24.7)

1

We set G

N

= 1 in this hapter, if not otherwise stated.
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24.1. Shwarzshild blak holes

of a photon with four-momentum k. For an observer at rest,

u � u = 1 = g

tt

(u

t

)

2

; (24.8)

and hene we an express u through the Killing vetor � as

u = (1� 2M=r)

�1=2

� : (24.9)

Inserting this expression into Eq. (24.7), we �nd for the frequeny measured by an observer

at the position r

!(r) = (1� 2M=r)

�1=2

� � k : (24.10)

Sine � � k is onserved and !

1

= � � k, we obtain

!

1

= !(r)

r

1�

2M

r

: (24.11)

Thus a photon limbing out of the potential wall of the mass M looses energy, in agreement

with the priniple of equivalene. In the same way, a signal sent towards an observer at in�nity

by a spaeship falling towards r = 2M will be more and more redshifted, with !

1

! 0 for

r ! 2M . Thus the event horizon at r = 2M is also an in�nite redshift surfae.

Radial infall into a blak hole We investigate now the time dependene of a trajetory

desribing the infall of an objet into a blak hole. The geodesis of the Shwarzshild

metri are easiest derived ombining the normalisation ondition of the four-veloity with

the onserved quantities de�ned by the Killing vetors � and �.

A test partile moving in the Shwarzshild metri initially in the radial diretion will

ontinue so, beause then _u

�

= _u

#

= 0 (problem 25.??). The normalisation ondition u�u = 1

written out for a radial trajetory simpli�es to

1 = A

�

dt

d�

�

2

�A

�1

�

dr

d�

�

2

; (24.12)

where we set also A � 1� 2M=r. Now we replae the veloity u

t

by the onserved quantity

e � � � u = A

dt

d�

; (24.13)

obtaining

1 = �

e

2

A

+

1

A

�

dr

d�

�

2

: (24.14)

We onsider the free fall of a partile that was at rest at spatial in�nity. Then the proper

and oordinate time oinide for r ! 1, dt=d� = 1, and thus e

2

= 1. Then the radial

equation (24.14) simpli�es to

1

2

�

dr

d�

�

2

= �

M

r

(24.15)

and an be integrated by separation of variables,

Z

0

r

drr

1=2

=

p

2M

Z

�

�

�

d� ; (24.16)

405



24. Blak holes

with the result

2

3

r

3=2

=

p

2M (�

�

� �) : (24.17)

Hene a freely falling partile needs only a �nite proper time to fall from �nite r to r = 0.

In partiular, it passes the Shwarzshild radius 2M in �nite proper time, and no singular

behaviour of the trajetory at 2M is apparent.

We an answer the same question using the oordinate time t by ombining Eqs. (24.13)

and (24.15),

dt

dr

=

dt

d�

d�

dr

= �

�

2M

r

�

�1=2

�

1�

2M

r

�

�1

: (24.18)

Integration gives

t� t

0

=

Z

r

r

0

dr

0

�

2M

r

0

�

�1=2

�

1�

2M

r

0

�

�1

= (24.19)

= �2M

"

�

2

3

�

r

0

2M

�

3=2

� 2

�

r

0

2M

�

1=2

+ ln

�

�

�

�

�

p

r

0

=2M + 1

p

r

0

=2M � 1

�

�

�

�

�

#

r

r

0

!1 for r ! 2M:

Sine the oordinate time t is the proper time for an observer at in�nity, a freely falling partile

reahes the Shwarzshild radius r = 2M only for t ! 1 as seen from spatial in�nity. The

last result an be derived immediately for light-rays. Choosing a light-ray in radial diretion

with d� = d# = 0, the metri (24.5) simpli�es with ds

2

= 0 to

dr

dt

= 1�

2M

r

: (24.20)

Thus light travelling towards the star, as seen from the outside, will travel slower and slower

as it omes loser to the Shwarzshild radius r = 2M . The oordinate time is / ln j1�2M=rj

and thus for an observer at in�nity the signal will reah r = 2M again only asymptotially

for t!1.

We noted already that at R

s

= 2M the oordinates t and r swith their harater, r

beoming time-like. Sine the proper time � of an observer has to inreases ontinuously,

the time-like oordinate has to hange ontinuously too. Beause of dr=dt = 1 � 2M=r < 0,

we antiipate therefore that r has to derease ontinuously for any partile that rossed the

horizon until it hits the singularity at r = 0.

Eddington-Finkelstein oordinates We next try to �nd new oordinates whih are regular

at r = 2M and valid in the whole range 0 < r < 1. Suh a oordinate transformation has

to be singular at r = 2M , otherwise we an not hope to anel the singularity present in

the Shwarzshild oordinates. We an eliminate the troublesome fator g

rr

= (1 �

2M

r

)

�1

introduing a new radial oordinate r

�

de�ned by

dr

�

=

dr

1�

2M

r

: (24.21)

Integrating (24.21) results in

r

�

(r) = r + 2M ln

�

�

�

r

2M

� 1

�

�

�

+A ; (24.22)
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24.1. Shwarzshild blak holes

with A � �2Ma as integration onstant. The oordinate r

�

(r) is often alled tortoise o-

ordinate, beause r

�

(r) hanges only logarithmially lose to the horizon. This oordinate

hange maps the range r 2 [2M;1℄ of the radial oordinate onto r

�

2 [�1;1℄. A radial null

geodesis satis�es d(t� r

�

) = 0, and thus in- and out-going light-rays are given by

~u � t� r

�

= t� r � 2M ln

�

�

�

r

2M

� 1

�

�

�

�A ; outgoing rays ; (24.23)

~v � t+ r

�

= t+ r + 2M ln

�

�

�

r

2M

� 1

�

�

�

+A ; ingoing rays : (24.24)

For r > 2M , Eq. (24.20) implies that dr=dt > 0 so that r inreases with t. Therefore (24.23)

desribes outgoing light-rays, while (24.24) orresponds to ingoing light-rays for r > 2M .

We an extend now the Shwarzshild metri using as oordinate the \advaned time pa-

rameter ~v" instead of t. Forming the di�erential,

d~v = dt+ dr +

�

r

2M

� 1

�

�1

dr = dt+

�

1�

2M

r

�

�1

dr ; (24.25)

we an eliminate dt from the Shwarzshild metri and �nd

ds

2

=

�

1�

2M

r

�

d~v

2

� 2d~vdr � r

2

d
 : (24.26)

This metri was found �rst by Eddington and was later redisovered by Finkelstein. Although

g

~v~v

vanishes at r = 2M , the determinant g = r

4

sin

2

# is non-zero at the horizon and thus the

metri is invertible. Moreover, r

�

was de�ned by (24.22) initially only for r > 2M , but we

an use this de�nition also for r < 2M , arriving at the same expression (24.26). Therefore,

the metri using the advaned time parameter ~v is regular at 2M and valid for all r > 0. We

an view this metri hene as an extension of the r > 2M part of the Shwarzshild solution,

similar to the proess of analyti ontinuation of omplex funtions. The prie we have to

pay for a non-zero determinant at r = 2M are non-diagonal terms in the metri: As a result,

the spae-time desribed by (24.26) is not symmetri under the exhange t ! �t. We will

see shortly the onsequenes of this asymmetry.

We now study the behaviour of radial light-rays, whih are determined by ds

2

= 0 and

d� = d# = 0. Thus radial light-rays satisfy Ad~v

2

� 2d~vdr = 0, whih is trivially solved

by ingoing light-rays, d~v = 0 and thus ~v = onst: The solutions for d~v 6= 0 are given by

(24.23). Additionally, the horizon r = 2M whih is formed by stationary light-rays satis�es

ds

2

= 0. In order to draw a spae-time diagram, it is more onvenient to replae the light-like

oordinate ~v by a new time-like oordinate. We show in the left panel of Fig. 24.1 geodesis

using as new time oordinate

~

t = ~v � r. Then the ingoing light-rays are straight lines at

45 degrees with the r axis. Radial light-rays whih are outgoing for r > 2M and ingoing

for r < 2M follow Eq. (24.24). A few future light-ones are indiated: They are formed by

the intersetion of light-rays, and they tilt towards r = 0 as they approah the horizon. At

r = 2M , one light-ray forming the light-one beomes stationary and part of the horizon,

while the remaining part of the one lies ompletely inside the horizon.

Let us now disuss how Fig. 24.1 would like using the retarded Eddington-Finkelstein

oordinate ~u. Now the outgoing radial null geodesis are straight lines at 45

Æ

. They start

from the singularity, rossing smoothly r = 2M and ontinue to spatial in�nity. Suh a

situation, where the singularity is not overed by an event horizon is alled a \white hole."

The osmi ensorship hypothesis postulates that singularities formed in gravitational ollapse
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24. Blak holes

a

b

Figure 24.1.: Left: The Shwarzshild spae-time using advaned Eddington-Finkelstein o-

ordinates; the singularity is shown by a zigzag line, the horizon by a thik and

geodesis by thin lines. Right: Collapse of a star modelled by pressureless mat-

ter; dashes lines show geodesis, the thin solid line enompasses the ollapsing

stellar surfae.

are always overed by event horizons. This implies that the time-invariane of the Einstein

equations is broken by its solutions. In partiular, only the BH solution using the retarded

Eddington-Finkelstein oordinates should be realised by nature|otherwise we should expet

that ausality is violated. This behaviour may be ompared to lassial eletrodynamis,

where all solutions are desribed by the retarded Green funtion, while the advaned Green

funtion seems to have no relevane.

Collapse to a BH After a star has onsumed its nulear fuel, gravity an be balaned only

by the Fermi degeneray pressure of its onstituents. Inreasing the total mass of the star

remnant, the stellar EoS is driven towards the relativisti regime until the star beomes

unstable. As a result, the ollapse of its ore to a BH seems to be inevitable for a suÆiently

heavy star.

Let us onsider a toy model for suh a gravitational ollapse. We desribe the star by

a spherially symmetri loud of pressureless matter. While the assumption of negligible

pressure is unrealisti, it implies that partiles at the surfae of the star follow radial geodesis

in the Shwarzshild spae-time. Thus we do not have to bother about the interior solution

of the star, where T

��

6= 0 and our vauum solution does not apply. In advaned Eddington-

Finkelstein oordinates, the ollapse is shematially shown in the right panel of Fig. 24.1.

At the end of the ollapse, a stationary Shwarzshild BH has formed. Note that in our toy

model the event horizon forms before the singularity, as required by the osmi ensorship

hypothesis. The horizon grows from r = 0 following the light-like geodesi a shown by the

thin blak line until it reahes its �nal size R

s

= 2M . What happens, if we drop latter a lump

of matter ÆM on a radial geodesis into the BH? Sine we do not add angular momentum

to the BH, the �nal stage is aording to the Birkho�'s theorem still a Shwarzshild BH:

All deviations from spherial symmetry orresponding to gradient energy in the intermediate

regime are being radiated away as gravitational waves. Thus in the �nal stage, the only
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24.1. Shwarzshild blak holes

hange is an inrease of the horizon, size R

s

! 2(M + ÆM). Therefore some light-rays (e.g. b)

whih we expeted to esape to spatial in�nity will be trapped. Similarly, light-ray a whih

we thought to form the horizon will be deeted by the inreased gravitational attration

towards the singularity. In essene, knowing only the spae-time up to a �xed time t we are

not able to deide whih light-rays form the horizon. The event horizon of a blak hole is a

global property of the spae-time: It is not only independent of the observer, but inuened

by the omplete spae-time.

How does the stellar ollapse looks like for an observer at large distanes? Let us assume

that the observer uses a neutrino detetor and is able to measure the neutrino luminosity

L

�

(r) = dE

�

=dt = N

�

!

�

=dt emitted by a shell of stellar material at radius r. In order to

determine the luminosity L

�

(r), we have to onnet r and t. Linearising Eq. (24.19) around

r = 2M gives

r � 2M

r

0

� 2M

= e

�(t�t

0

)=2M

: (24.27)

For an observer at large distane r

0

, the time di�erene between two pulses send by a shell

falling into a BH inreases thus exponentially for r ! 2M . As a result the energy !

�

of an

individual neutrino is also exponentially redshifted

!

�

(r) = !

�

(r

0

)e

�(t�t

0

)=2M

: (24.28)

A more detailed analysis on�rms the expetation that then also the luminosity dereases

exponentially. Thus an observer at in�nity will not see shells whih slow logarithmially

down as they fall towards r ! 2M , as it is suggested by Eq. (24.19). Instead the signal

emitted by the shell will fade away exponentially, with the short harateristi time sale of

M =Mt

Pl

=M

Pl

� 10

�5

s for a stellar-size BH.

Kruskal oordinates We have been able to extend the Shwarzshild solution into two dif-

ferent branhes, a BH solution using the advaned time parameter ~v and a white hole solution

using the retarded time parameter ~u. The analogy with the analyti ontinuation of om-

plex funtions leads naturally to the question, if we an ombine these two branhes into

one ommon solution. Moreover, our experiene with the Rindler metri suggests that an

event horizon where energies are exponentially redshifted implies the emission of a thermal

spetrum: If true, our BH would not be blak after all. One way to test this suggestion is to

relate the vaua as de�ned by di�erent observers via a Bogolyubov transformation. In order

to simplify this proess, we would like to �nd new oordinates for whih the Shwarzshild

spae-time is onformally at.

An obvious try to proeed is to use both the advaned and the retarded time parameters.

For most of our disussion, it is suÆient to onentrate on the t; r oordinates in the line-

element ds

2

= d�s

2

+ r

2

d
, and to neglet the angular dependene from the r

2

d
 part. We

start by eliminating r in favour of r

�

,

d�s

2

=

�

1�

2M

r(r

�

)

�

(dt

2

� dr

�2

) ; (24.29)

where r has to be expressed through r

�

. This metri is onformally at, but the de�nition

of r(r

�

) on the horizon ontains the ill-de�ned fator ln(2m=r � 1). Clearly, a new set of

oordinates where this fator is exponentiated is what we are looking for.
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24. Blak holes

This is ahieved introduing both Eddington-Finkelstein parameters,

~u = t� r

�

; ~v = t+ r

�

; (24.30)

for whih the metri simpli�es to

d�s

2

=

�

1�

2M

r(~u; ~v)

�

d~ud~v : (24.31)

From (24.22) and (24.30), it follows

~v � ~u

2

= r

�

(r) = r + 2M ln

�

�

�

r

2M

� 1

�

�

�

� 2Ma ; (24.32)

or

1�

2M

r

=

2M

r

exp

�

~v � ~u

4M

�

exp

�

a�

r

2M

�

: (24.33)

This allows us to eliminate the singular fator 1� 2M=r in (24.31), obtaining

d�s

2

=

2M

r

exp

�

a�

r

2M

�

exp

�

�

~u

4M

�

d~u exp

�

~v

4M

�

d~v : (24.34)

Finally, we hange to Kruskal light-one oordinates u and v de�ned by

u = �4M exp

�

�

~u

4M

�

and v = 4M exp

�

~v

4M

�

; (24.35)

arriving at

ds

2

=

2M

r

exp

�

a�

r

2M

�

dudv + r

2

d
 : (24.36)

Kruskal diagram The oordinates ~u; ~v over only the exterior r > 2M of the Shwarzshild

spae-time, and thus u; v are initially only de�ned for r > 2M . Sine they are regular at the

Shwarzshild radius, we an extend these oordinates towards r = 0. In order to draw the

spae-time diagram of the full Shwarzshild spae-time shown in Fig. 24.2, it is useful to go

bak to time- and spae-like oordinates via

u = T �R and v = T +R : (24.37)

Then the onnetion between the pair of oordinates fT;Rg, fu; vg and ft; rg is given by

uv = T

2

�R

2

= �16M

2

exp

�

r

�

2M

�

= �16M

2

�

r

2M

� 1

�

exp

�

r

2M

� a

�

; (24.38a)

u

v

=

T �R

T +R

= exp [�t=(2M)℄ : (24.38b)

Lines with r = onst: are given by uv = T

2

� R

2

= onst: They are thus parabola shown

as dotted lines in Fig. 24.2. Lines with t = onst: are determined by u=v = onst: and are

thus given by straight (solid) lines through zero. In partiular, null geodesis orrespond to

straight lines with angle 45

Æ

in the R� T diagram. The horizon r = 2M is given by to u = 0

or v = 0. Hene two separate horizons exist: A past horizon at t = �1 (for v = 0) and
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Tt = 0

R

t

=

1

t

=

�

1

t

=

�

2

M

t

=

2

M

r

=

3

M

r

=

4

M

r

=

2

M

II

II'

I' I

Figure 24.2.: Spae-time diagram for the Kruskal oordinates T and R.

a future horizon at t = +1 (for u = 0). Also the singularity at r = 0 orresponds to two

separate lines in the R� T Kruskal diagram

2

and is given by

T = �

p

16M

2

+R

2

: (24.39)

The horizon lines ft = �1; r = 2Mg and ft = 1; r = 2Mg divide the spae-time in four

parts: The future singularity is unavoidable in part II, while in region II' all trajetories start

at the past singularity. Region I orresponds to the original Shwarzshild solution outside

the horizon r > 2M , while region I and II enompass the advaned Eddington-Finkelstein

solution. The regions I' and II' represent the retarded Eddington-Finkelstein solution, where

II' orresponds to a white hole. Note that I' represents a new asymptotially at Shwarzshild

exterior solution.

The presene of a past horizon v = 0 at t = �1 makes the omplete BH solutions time-

symmetri and orresponds to an eternal BH. If we model a realisti BH, i.e. one that was

reated at �nite t by a ollapsing mass distribution, with Kruskal oordinates, then any e�et

indued by the past horizon should be onsidered as unphysial.

24.2. Kerr blak holes

The stationary spae-time outside a rotating mass distribution an be derived by symmetry

arguments similarly to the ase of the Shwarzshild metri, but it was found �rst aidentally

by R. Kerr in 1963. The blak hole solutions of this spae-time is fully haraterised by two

quantities, the massM and the angular momentum L of the Kerr BH. Both parameters an be

2

Reall that we suppress two spae dimension: Thus a point in the R� T Kruskal diagram orrespond to a

sphere S

2

, and a line to R� S

2

.
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24. Blak holes

manipulated, at least in a Gedankenexperiment, dropping material into the BH: Examining

the response of a Kerr blak hole to suh hanges was ruial for the disovery of \blak hole

thermodynamis."

In Boyer-Lindquist oordinates, the metri outside of a rotating mass distribution is given

by

ds

2

=

�

1�

2Mr

�

2

�

dt

2

+

4Mar sin

2

#

�

2

d�dt�

�

2

�

dr

2

� �

2

d#

2

�

�

r

2

+ a

2

+

2Mra

2

sin

2

#

�

2

�

sin

2

#d�

2

;

(24.40)

with the abbreviations

a = L=M ; �

2

= r

2

+ a

2

os

2

# ; � = r

2

� 2Mr + a

2

: (24.41)

The metri is time-independent and axially symmetri. Hene two obvious Killing vetors

are as in the Shwarzshild ase � = (1; 0; 0; 0) and � = (0; 0; 0; 1), where we order again

oordinates as ft; r; #; �g. The presene of the mixed term g

t�

means that the metri is

stationary, but not stati { as one expets for a star or BH rotating with onstant rotation

veloity. Finally, the metri is asymptotially at and the weak-�eld limit shows that L is

the angular momentum of the rotating blak hole.

Singularity We examine �rst the potential singularities at � = 0 and � = 0. The alulation

of the salar invariants formed from the Riemann tensor shows that only � = 0 is a physial

singularity, while � = 0 orresponds to a oordinate singularity. The physial singularity at

�

2

= 0 = r

2

+a

2

os#

2

orresponds to r = 0 and # = �=2. Thus the value r = 0 is surprisingly

not ompatible with all # values. To understand this point, we onsider the M ! 0 limit of

the Kerr metri (24.40) keeping a = L=M �xed,

ds

2

= dt

2

�

�

r

2

+ a

2

dr

2

� r

2

d#

2

� (r

2

+ a

2

) sin

2

#d�

2

: (24.42)

The omparison with the Minkowski metri shows that

x =

p

r

2

+ a

2

sin# os� ; z = r os# ;

y =

p

r

2

+ a

2

sin# sin� ;

(24.43)

Hene the singularity at r = 0 and # = �=2 orresponds to a ring of radius a in the equatorial

plane z = 0 of the Kerr blak hole.

Horizons We have de�ned an event horizon as a three-dimensional hypersurfae, f(x

�

) = 0,

that is null. In a stationary, axisymmetri spae-time the general equation of a surfae,

f(x

�

) = 0, simpli�es to f(r; #) = 0. The ondition for a null surfae beomes

0 = g

��

(�

�

f)(�

�

f) = g

rr

(�

r

f)

2

+ g

##

(�

#

f)

2

: (24.44)

In the ase of the surfae de�ned by the oordinate singularity � = r

2

� 2Mr + a

2

= 0 that

depends only on r,

r

�

=M �

p

M

2

� a

2

: (24.45)
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the ondition de�ning a horizons beomes simply g

rr

= 0 or g

rr

= 1=g

rr

=1. Hene, r

�

and

r

+

de�ne an inner and outer horizon around a Kerr blak hole.

The surfae A of the outer horizon follows from inserting r

+

together with dr = dt = 0

into the metri,

ds

2

= �

2

+

d#

2

+

�

r

2

+

+ a

2

+

2Mr

+

a

2

sin

2

#

�

2

+

�

sin

2

#d�

2

; (24.46)

Using r

2

�

+ a

2

= 2Mr

�

, we obtain

ds

2

= �

2

+

d#

2

+

�

2Mr

+

�

+

�

2

sin

2

#d�

2

: (24.47)

Hene the metri determinant g

2

restrited to the angular variables is given by

p

g

2

=

g

##

g

��

= 2Mr

+

sin# and integration gives the area A of the horizon as

A =

Z

2�

0

d�

Z

�

0

d#

p

g

2

= 8�Mr

+

= 8�M(M +

p

M

2

� a

2

) : (24.48)

Note that the area depends on the angular momentum of the blak hole that an in turn

be manipulated by dropping material into the hole: The horizon area A for �xed mass M

beomes maximal for a non-rotating blak hole, A = 16�M

2

, and dereases to A = 8�M

2

for

a maximally rotating one with a = M . For a > M , the metri omponent g

rr

= � has no

real zero and thus no event horizon exists.

Ergosphere and dragging of inertial frames The Kerr metri is a speial ase of a metri

with g

t�

6= 0. As result, both massive and massless partiles with zero angular momentum

falling into a Kerr blak hole will aquire a non-zero angular rotation veloity ! = d�=dt as

seen by an observer from in�nity.

We onsider a light-ray with d# = dr = 0. Then the line-element beomes

g

tt

dt

2

+ 2g

t�

dtd�+ g

��

d�

2

= 0 : (24.49)

Dividing by g

��

dt

2

we �nd as two possible solutions for the angular rotation veloity

_

�

�

= �

g

t�

g

��

�

s

�

g

t�

g

��

�

2

�

g

tt

g

��

: (24.50)

There are two interesting speial ases of this equation. First, on the surfae g

tt

= 0, the two

possible solutions of ! = d�=dt for light-rays satisfy

_

�

+

= �2

g

t�

g

��

and

_

�

�

= 0 : (24.51)

Hene, the rotating blak hole drags spae-time at g

tt

= 0 so strongly that even a photon an

only o-rotate. Similarly, this ondition spei�es a surfae inside whih no stationary observers

are possible: The normalisation ondition u � u = 1 is inonsistent with u

a

= (1; 0; 0; 0) and

g

tt

< 0: However strong your roket engines are, your spae-ship will not be able to hover at
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the same point inside the region with g

tt

< 0. Therefore one alls a surfae with g

tt

= 0 a

stationary limit surfae. Solving

g

tt

= 1�

2Mr

�

2

= 0 ; (24.52)

we �nd the position of the two stationary limit surfaes at

r

1=2

=M �

p

M

2

� a os# : (24.53)

The ergosphere is the spae bounded by these two surfaes.

The other interesting speial ase of (24.50) ours when the allowed range of values,

�

�

� ! � �

+

, shrinks to a single value, i.e. when

!

2

=

g

tt

g

��

=

�

g

t�

g

��

�

2

: (24.54)

This happens at the outer horizon r

+

and de�nes the rotation veloity !

H

of the blak hole.

In the ase of a Kerr blak hole, we �nd

!

H

=

a

2Mr

+

: (24.55)

Thus the rotation veloity of the blak hole orresponds to the rotation veloity of the light-

rays forming its horizon, as seen by an observer at spatial in�nity.

Penrose proess and the area theorem The total energy of a Kerr BH onsists of its rest

energy and its rotational energy. These two quantities ontrol the size of the event horizon

and therefore it is important to understand how they hange dropping matter into the BH.

The energy of any partile moving on a geodesis is onserved, E = �p � �. Inside the

ergosphere, the Killing vetor � is spae-like and the quantity E is thus the omponent of a

spatial momentum whih an have both signs. This lead Penrose to entertain the following

Gedankenexperiment: Suppose the spae raft A starts at in�nity and falls into the ergo-

sphere. There it splits into two parts: B is dropped into the BH, while C esapes to in�nity.

In the splitting proess, four-momentum has to be onserved, p

A

= p

B

+ p

C

. We an now

hoose a time-like geodesis for B falling into the BH suh that E

B

< 0. Then E

C

> E

A

and

the esaping part C of the spae raft has at in�nity a higher energy than initially.

The Penrose proess dereases both the mass and the angular momentum of the BH by an

amount equal to that of the spae raft B falling into the BH. We want to show now that the

hanges are orrelated in suh a way that the area of the BH inreases. Let us �rst de�ne a

new Killing vetor,

K = � + !

H

� :

This Killing vetor is null on the horizon and time-like outside. It orresponds to the four-

veloity with the maximal possible rotation veloity. Now we use E

B

= �p

C

� � and L

B

=

�p

C

� � and

p

B

�K = p

B

� (� + !

H

�) = �(E

B

� !

H

L

B

) < 0; (24.56)

to obtain the bound L

B

< E

B

=!

H

. Sine E

B

< 0, the added angular momentum is negative,

L

B

< 0.
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The mass and the angular momentum of the BH hange by ÆM = E

B

and ÆL = L

B

, when

partile B drops into the BH. Thus

ÆM > !

H

ÆL =

aÆL

r

2

+

+ a

2

(24.57)

Now we de�ne the irreduible mass of BH as the mass of that Shwarzshild BH whih event

horizon has the same area,

M

2

irr

=

1

2

(M

2

+

p

M

2

� L

2

) (24.58)

or

M

2

=M

2

irr

+

�

L

2M

irr

�

2

: (24.59)

Thus we an interpret the total mass as the Pythagorean sum of the irreduible mass and a

ontribution related to the rotational energy. Di�erentiating the relation (24.58) results in

ÆM

irr

=

a

4M

irr

p

M

2

� a

2

�

!

�1

H

ÆM � ÆL

�

(24.60)

Our bound implies now ÆM

irr

> 0 or ÆA > 0. Thus the surfae of a Kerr BH an only

inrease, even when its mass dereases.

24.3. Blak hole thermodynamis and Hawking radiation

Bekenstein entropy We have shown that lassially the horizon of a blak hole an only

inrease with time. The only other quantity in physis with the same property is the entropy,

dS � 0. This suggests a onnetion between the horizon area and its entropy. To derive this

relation, we apply the �rst law of thermodynamis dU = TdS � PdV + : : : to a Kerr blak

hole. Its internal energy U is given by U =M and thus

dU = dM = TdS � !dL ; (24.61)

where !dL denotes the mehanial work done on a rotating marosopi body.

Our experiene with the thermodynamis of non-gravitating systems suggests that the

entropy is an extensive quantity and thus proportional to the volume, S / V . We give now

an argument, that shows that the entropy S of a blak hole is proportional to its area A. We

introdue the \rationalised area" � = A=4� = 2Mr

+

, f. (24.48), or

� = 2M

2

+ 2

p

M

4

� L

2

: (24.62)

The parameters desribing a Kerr blak hole are its massM and its angular momentum L and

thus � = �(M;L). We form the di�erential d� and �nd after some algebra (problem 25.??)

p

M

2

� a

2

2�

d� = dM +

a

�

dL : (24.63)

Using now Eqs. (24.48) and (24.55), we an rewrite the RHS as

p

M

2

� a

2

2�

d� = dM + !

H

dL : (24.64)
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Thus the �rst law of blak hole thermodynamis predits the orret angular veloity !

H

of

a Kerr blak hole. Inluding the term �dq representing the work done by adding the harge

dq to a blak hole, the area law of a harged blak hole together with the �rst law of BH

thermodynamis reprodues the orret surfae potential � of a harged blak hole.

The fator in front of d� is positive, as its interpretation as temperature requires. We

identify

TdS =

p

M

2

� a

2

2�

d� (24.65)

and thus S = f(A). The validity of the area theorem requires that f is a linear funtion,

the proportionality oeÆient between S and A an be only determined by alulating the

temperature of blak hole. Hawking ould show 1974 that a blak hole in vauum emits

blak-body radiation (\Hawking radiation") with temperature

T =

2

p

M

2

� a

2

A

(24.66)

and thus

S =

k

3

4~G

A =

A

4L

2

Pl

: (24.67)

The entropy of a blak hole is not extensive, but proportional to its surfae. It is large, beause

its basi unit of entropy, 4L

2

Pl

, is so tiny. The presene of ~ in the �rst formula, where we have

inserted the natural onstants, signals that the blak hole entropy is a quantum property.

The heat apaity C

V

of a Shwarzshild blak hole follows with U = M = 1=(8�T ) from

the de�nition

C

V

=

�U

�T

= �

1

8�T

2

< 0 : (24.68)

As it is typial for self-gravitating systems, its heat apaity is negative: Thus a blak hole

surrounded by a ooler medium emits radiation, heats up the environment and beomes

hotter.

Blak hole temperature If the interpretation of the BH area as its entropy is orret, then

we should be able to treat a BH as a thermal system. In partiular, a BH should emit

thermal radiation with temperature T . As the entropy and the temperature of a BH are

quantum properties, we should examine the evolution of a quantum �eld in the bakground

of a gravitational �eld desribing a BH solution. We onsider the generating funtional Z[J ℄

of a real salar �eld in a Shwarzshild bakground

Z[J ℄ =

Z

D� e

i(S[�;g

��

℄+hJ�i)

(24.69)

together with the generating funtional Z[J

��

℄ of the gravitational �eld oupled to an external

stress tensor J

��

as soure,

Z[J

��

℄ =

Z

Dg

��

e

i(S[g

��

℄+hJ

��

g

��

i)

: (24.70)

Here S[g

��

℄ is the Einstein-Hilbert ation of gravity oupled to soure J

��

. The path integral

over S[g

��

℄ is even less well-behaved than those of other quantum �elds. In partiular, the

gravitational ation is not bounded from below and the lassial limit for a BH ontains
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24.3. Blak hole thermodynamis and Hawking radiation

singularities. Lukily, we an read the quantity of our interest, the BH temperature, from the

path integral without the need to evaluate it.

Using Kruskal oordinates, we have eliminated the oordinate singularity at r = 2M but

we are left with the physial urvature singularity at r = 0. Realling the onnetion between

the Kruskal oordinates T and R and the Shwarzshild oordinates t and r given by (24.38)

and setting A = 0 gives

T

2

�R

2

= exp

�

r

2M

��

r

2M

� 1

�

(24.71a)

T +R

T �R

= � exp

�

�t

2M

�

(24.71b)

Thus the singularity at r = 0 is mapped onto the surfae R

2

� T

2

= 1. With the hange

T ! � = iT , the metri beomes (up to an overall sign) Eulidean

� ds

2

=

32M

3

r

exp

�

�

r

2M

�

(d�

2

+ dR

2

) + r

2

d
 : (24.72)

Now (24.71a) implies that r is real and larger than 2M for real � and R. Thus we avoid the

singularity at r = 0 by the hange to an Eulidean metri.

If we set R+ i� = �e

i�

, then (24.71b) beomes

R+ i�

R� i�

= e

2i�

= exp

�

i

t

E

2M

�

; (24.73)

where we also introdued Eulidean Shwarzshild time it

E

= t. Our oordinates are single-

valued funtions only, if 2� = t

E

=(2M) is a periodi funtion with period � = 2�. Thus the

Eulidean time has the period � = 8�M and onsequently the Eulidean path integral has

to be restrited to periodi �elds, �(t

E

;x) = �(t

E

+ �;x) and g

��

(t

E

;x) = g

��

(t

E

+ �;x).

However, this ondition desribes the partition funtion of a thermal system with temperature

T = 1=� = 1=(8�M). In this piture, the BH is in thermal equilibrium with its environment

�lled by the salar �eld �, emitting and absorbing the same amount of radiation.

Hawking radiation in 1+1 dimension An alternative, more diret approah to Hawking

radiation is to alulate the rate of partile prodution measured by an observer at r ! 1

using the method of Bogolyubov transformations. As usually, the alulation simpli�es if we

onsider the onformally invariant ase of a massless salar �eld in 1+1 dimensions. Then we

an express the solutions of the ation

S =

Z

d

2

x

p

jgj

1

2

g

��

r

�

�r

�

� (24.74)

through light-one oordinates as

� = f(~u) + g(~v) = f(u) + g(v) : (24.75)

Here, f and g are arbitrary smooth funtions speifying the wave form, and (~u; ~v) and (u; v)

are the tortoise and Kruskal light-one oordinates, respetively.

For an observer at spatial in�nity, we an use the tortoise light-one oordinates ~u; ~v and

the metri (24.31)

ds

2

=

�

1�

2M

r(~u; ~v)

�

d~ud~v : (24.76)
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24. Blak holes

Unruh e�et Hawking e�et

aeleration a surfae gravity � = 1=(4M)

u = � exp(�a~u)=a u = � exp(��~u)=�

v = exp(a~v)=a v = exp(�~v)=�

Minkowski vauum j0

M

i Kruskal vauum j0

K

i

Rindler vauum j0

R

i Boulware vauum j0

B

i

Table 24.1.: Comparison of variables used in the Unruh and Hawking e�et.

With r

�

! r for r !1, the metri beomes at large distanes Minkowskian,

ds

2

! d~ud~v = dt

2

� dr

2

; (24.77)

and thus oordinate time t and proper time � oinide for suh an observer. This observer

will split the modes using the Shwarzshild oordinate time t,

�(x) =

X

i

h

b

i

e

�i
~u

+ b

y

i

e

i
~u

i

+ left-movers : (24.78)

The vauum de�ned by b

i

j0

B

i = 0 is alled the Boulware vauum j0

B

i. The tortoise o-

ordinates over however only the Shwarzshild spae-time with r > 2M . They, and as a

result also the Boulware vauum j0

B

i, are singular on the horizon: the regularised vauum

h0

B

jT

��

(r = 2M) j0

B

i energy diverges at r = 2M using these oordinates

On the other hand, we know that the Kruskal oordinates u; v over the whole Shwarzshild

spae-time; in partiular they are not singular on the horizon. Close to the horizon,

ds

2

! dudv = dT

2

� dR

2

; (24.79)

and thus the time T should be used to split the modes into positive and negative frequeny

modes,

�(x) =

X

i

h

a

i

e

�i
u

+ a

y

i

e

i
u

i

+ left-movers : (24.80)

Now the Kruskal vauum is de�ned by a

i

j0

a

i = 0 for all i. The energy density of j0

a

i is �nite

(after subtrating as usually the zero-point energies) in the whole manifold, and inreasing

towards the singularity. For a suÆiently large BH, we an treat the metri as a lassial

stati bakground, negleting any quantum bak-reation.

We �nd now the spetrum of partile measured by an observer at r!1 onneting the two

vaua by a Bogolyubov transformation. Comparing the ase at hand with the Unruh e�et,

we �nd the following analogy shown in Table 24.1. With the identi�ation a = � = 1=(4M),

we an translate the result for the Unruh e�et to the spetrum emitted by a BH,

D

~

N

E

= h0

K

j b

y

b j0

K

i =

1

exp(2�
=�) � 1

Æ(0) (24.81)

obtaining a thermal spetrum with temperature T = �=(2�) = 1=(8�M). The quantity

� is the surfae gravity of the BH, i.e. it orresponds to the aeleration of a test partile

experiened on the horizon, f. problem 25.??.
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24.3. Blak hole thermodynamis and Hawking radiation
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Figure 24.3.: E�etive potential d V

eff

desribing the entrifugal barrier in d = 4 for two

di�erent values of the angular momentum l=M .

The state j0

K

i ontains not only outgoing right-movers, but also inoming left-movers with

the same temperature. Sine we are assuming a stati system in thermal equilibrium, the

amount of energy emitted and absorbed by the BH should be equal. This assumes that the

BH is stati and eternal, i.e. does not originate from the ollapse of star. In the latter ase,

the past horizon at v = 0 does not exists and the spae-time approahes the at Minkowski

metri. Therefore it is more appropriate to hoose a

i

as annihilation operators only for the

out-going right-movers, and b

i

for the left-movers. Hene an observer at spatial in�nity sees

only thermal radiation emitted by the BH.

Comment on 1+3 dimension How are our results modi�ed in d > 2 dimensions? We know

that the lassial Newtonian potential V (r) =M=r aquires an additional, e�etive term due

to the entrifugal barrier. The same happens in the relativisti ase: We an separate the

Klein-Gordon equation �� = 0, if we insert the ansatz

�(r

�

; t; #; �) =

X

l;m

f

m

l

(r

�

; t)Y

m

l

(#; �) : (24.82)

The resulting equation for f

m

l

(r

�

; t) is

�

�

2

�t

2

�

�

2

�r

2

+

�

1�

2M

r

��

2M

r

3

+

l(l + 1)

r

2

��

f

m

l

(t; r) = 0 ; (24.83)

where the two terms in the round brakets de�ne the e�etive potential V

eff

= dV

l

=dr. A plot

of the e�etive potential V

eff

desribing the entrifugal barrier is shown in Fig. 24.3. Note

that even for l = 0 a barrier exists and therefore a partile has to tunnel through it. Sine

the tunnelling probability is energy dependent, the spetrum emitted by a BH is modi�ed

by a grey-fator 


l

(E). The ondition for thermal radiation, namely an equal emission and

absorption rate, is however satis�ed also for 


l

(E) < 1.

419



24. Blak holes

Information paradox The disovery of Hawking that blak holes evaporate led to the so

alled information paradox: The event horizon formed during the ollapse of a massive star

hides all information about its initial state in a set of onserved quantum numbers,M;J , and

Q. If the blak hole is stable, the information about the infalling material an be stored in

its mirophysial states. If the blak hole evaporates however, then the question arises where

the information goes|or if it is lost.

In order to see why a loss of information during blak hole evaporation seems to ontra-

dit basi properties of quantum theory, let us reall �rst the familiar ase of sattering in

Minkowski spae. The S-matrix maps initial states j 

in

i at t = �1 on �nal states states

j 

out

i = S j 

in

i at t = +1. Sine the S-matrix is unitary, we an reover the initial state

measuring the �nal state, j 

in

i = S

y

j 

out

i. In other words, the unitary time-evolution of

quantum theory guaranties the preservation of information.

Next we onsider the ase that a BH is formed at �nite time t. We neglet �rst Hawking

radiation so that the BH is stable. At t ! �1, we are in Minkowski spae and we an

hoose the initial state j 

in

i as a pure state from the elements of the usual Minkowski Hilbert

spae, j 

in

i 2 H

in

(M). Some of the sattered partiles will end in the BH and hit �nally

the singularity; others will stay outside the horizon at t ! 1. We denote the Hilbert spae

of states ending in the singularity as H

out

(BH), while the Hilbert spae of states esaping

is H

out

(M). Now the question arises what the omplete Hilbert spae H

out

(M;BH) of �nal

states is. Hawking argued that all operators de�ned on the Hilbert spaes H

out

(M) and

H

out

(BH) ommute, beause the BH singularity is at spae-like distanes to the outside fu-

ture. Therefore the omplete Hilbert spae of �nal states,H

out

(M;BH), is the tensor produt

of the individual Hilbert spaes, H

out

(M;BH) = H

out

(M) 
H

out

(BH). Consequently, the

�nal states j 

out

i are produt states, j 

out

(M;BH)i = j 

out

(M)i 
 j 

out

(BH)i. An observer

outside the BH horizon an perform only measurements on j 

out

(M)i. Thus the outome of

its measurements is desribed by a density matrix,

� = tr

BH

fj 

out

(M)i h 

out

(M)jg ; (24.84)

where the trae is over a omplete set of states in H

out

(BH). Now we add the e�et of

Hawking radiation. If the blak hole evaporates ompletely, then a pure state has been

transformed into a mixed state desribed by the density matrix (24.84). Sine the time

evolution in quantum theory is unitary, this annot happen without assuming that quantum

gravity violates the basi priniples of quantum theory. Various proposals how this paradox

an be avoided have been made, but no lear piture has emerged yet.

Summary

Blak holes are solutions of Einstein's equations ontaining a physial singularity whih|

aording to the osmi ensorship hypothesis|is always overed by an event horizon. This

horizon is a global property of the spae-time, being independent of the observer and in-

uened by the omplete spae-time. Within lassial physis, the event horizon an only

inrease and has been therefore assoiated by Bekenstein with the entropy of a blak holes.

However, the event horizon is a in�nite redshift surfae and emits in the semi-lassial piture
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24.3. Blak hole thermodynamis and Hawking radiation

thermal radiation. This Hawking radiation leads in turn to the information paradox.

Further reading

The Kerr solution is derived using symmetry arguments by iteLudvigsen199905. Additional

material on lassial BHs an be found e.g. in [HEL06℄. [BD82℄ treat Hawking radiation

in four dimensions. The entropy of a BH is alulated by [BL04℄. For a desription of the

information paradox see e.g. [Mat09℄, the more reent disussion an be traed from [AMPS13℄

and its desents.
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25. Cosmologial onstant

We have enountered three ontributions to the osmologial onstant: A non-zero � term

in the Einstein-Hilbert Lagrangian would mean that an empty spae-time has lassially a

non-zero energy density. Another lassial ontribution to the osmologial onstant arises

naturally in theories with SSB, beause the minimum of the potential is non-zero either

before or after the symmetry breaking. We expet a sequene of broken symmetries during

the osmologial evolution, and it looks therefore mysterious why we end up today with

V ' 0. Finally, the vauum utuations of quantum �elds ontribute to the osmologial

onstant and it is often only this aspet whih is alled the osmologial onstant problem.

We start this hapter reonsidering these quantum utuations, studying the inuene of the

used regularisation sheme. Then we will introdue alternative explanations for the observed

aelerated expansion of the universe in the present epoh whih either modify gravity or add a

new omponent of matter, dubbed dark energy. This approah assumes that the osmologial

onstant problem is solved, i.e. that �

�

+ h�i = 0. One may argue that we need a theory of

quantum gravity to understand how this works, and we lose with some omments on this

issue.

25.1. Vauum energy density

Let us reall that we obtained for the regularised vauum energy density h�i two expressions

with a very di�erent dependene on the regularisation parameter. Using in the Wilsonian

approah an e�etive ation inluding only modes up to the saleM , we found that � /M

4

. In

ontrast, in DR power-like divergenes are absent and thus � depends only logarithmially on

the renormalisation sale �. We will now reonsider these alulations, evaluating additionally

the pressure P exerted by vauum utuations. This will allow us to hek whih one of the

two results reprodue orretly the equation of state w = �1 required for a Lorentz invariant

vauum.

As usually, we look at the simplest ase, a real salar �eld, where we only have to reollet

our previous results from setion 3.4 and example 5.1. The ontribution of a free salar �eld

to the expetation value of the vauum energy density h�i measured by an observer at rest is

given by

h�i = h0jT

00

j0i =

1

2

h0j

_

�

2

+ (r�)

2

+m

2

�

2

j0i =

Z

d

3

k

(2�)

3

1

2

!

k

(25.1)

with !

k

=

p

m

2

+ k

2

. The same observer measures an isotropi ontribution of the salar

zero-point utuations to the vauum pressure, P

ij

= PÆ

ij

, given by

hP i =

1

3

h0jT

ii

j0i =

1

6

h0j(

_

�)

2

+ (r�)

2

�m

2

�

2

j0i =

1

3

Z

d

3

k

(2�)

3

k

2

2!

k

: (25.2)

The salar Feynman propagator �

F

(0) at oinident points an be written as the limit of two
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25.1. Vauum energy density

�elds at nearby points,

i�

F

(0) = h0j�(x

0

)�(x)j0i

x

0

&x

=

Z

d

3

k

(2�)

3

2!

k

e

�ik(x

0

�x)

�

�

�

�

x

0

&x

=

Z

d

3

k

(2�)

3

2!

k

: (25.3)

Thus we an onnet the Feynman propagator i�

F

(0) with the stress tensor at the one-loop

level forming the trae of the stress tensor of an ideal uid and inserting Eqs. (25.1) and

(25.2) for the energy density and pressure, respetively,

hT

�

�

i = h�i � 3hP i =

m

2

4�

2

Z

M

0

dk

k

2

p

m

2

+ k

2

= m

2

i�

F

(0) : (25.4)

Using again the equation of state w = hP i=h�i = �1 valid for a ontribution to the osmo-

logial onstant, we an rewrite this relation as

h�i = �hP i =

m

2

4

i�

F

(0) : (25.5)

Thus we should impose two physial onditions on the vauum utuations: First, Lorentz

invariane requires that the energy density and the pressure of the vauum satisfy the EoS

w = �1. Seond, the trae hT

�

�

i of the stress tensor and the Feynman propagator �

F

(0) are

onneted by (25.5) at the one-loop level (or at O(�

0

)). Sine at O(�

0

) the mass m is uto�

independent, this implies that a M

4

term is absent at one-loop in the vauum energy density.

As a side remark, we reall that lassially T

�

�

! 0 for m ! 0. The trae anomaly will

generate an additional ontribution proportional to the beta funtion �(�) = ���=�� of the

��

4

interation,

hT

�

�

i =

1

2

m

2

�

2

+

�

2�

�

4

: (25.6)

The last term is only logarithmially sensitive to the UV uto� M . This suggests that a term

/ M

4

is absent in general. Note also that while the trae anomaly gives a ontribution to

the vauum energy, its EoS does not qualify it as dark energy.

Cuto� in spatial momenta We start investigating a sharp uto� in the spatial momenta,

as used in many disussions of the osmologial onstant problem. Integrating the energy

density (25.7a) up to the maximal sale jkj �M , we obtain

h�i =

1

4�

2

Z

M

0

djkjk

2

p

m

2

+ k

2

=

1

4�

2

M

4

Z

1

0

dz z

2

p

x

2

+ z

2

(25.7a)

=

1

16�

2

"

M

4

p

1 + x

2

�

1 +

1

2

x

2

�

�

1

2

m

4

arsinh

�

1

x

�

#

; (25.7b)

with z � jkj=M and x � m=M � 1. Similarly, we �nd for the pressure

hP i = =

1

3

1

4�

2

Z

M

0

djkj

k

4

p

m

2

+ k

2

=

1

3

1

4�

2

M

4

Z

1

0

dz

z

4

p

x

2

+ z

2

(25.8a)

=

1

3

1

16�

2

"

M

4

p

1 + x

2

�

1 +

1

2

x

2

�

+

3

2

m

4

arsinh

�

1

x

�

#

(25.8b)
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25. Cosmologial onstant

and for the Feynman propagator at oinident points

i�

F

(0) =

1

4�

2

Z

M

0

djkj

k

2

p

m

2

+ k

2

=

1

4�

2

M

2

Z

1

0

dz

z

2

p

x

2

+ z

2

(25.9a)

=

1

8�

2

"

M

2

p

1 + x

2

�m

2

arsinh

�

1

x

�

#

: (25.9b)

All three results show the behaviour expeted from naive power-ounting, � / P / M

4

and

�

F

(0) /M

2

in the limitM � m. We an hek now, if these results ful�l the two onstraints.

We �rst neglet the mass of the salar partile, i.e. onsider the limit x ! 0: Then vauum

utuations are predited to have the EoS of radiation, w = hP i=h�i = 1=3 + O(x

4

) and to

break sale invariane, hT

�

�

i 6= 0 for m

2

! 0. Moreover, the relation (25.5) between the stress

tensor and the Feynman propagator �

F

(0) is violated.

The natural explanation for this behaviour is that regularisation shemes that break sym-

metries lead to spurious terms reeting this violation. In our ase, a momentum uto� breaks

Lorentz invariane and thus we annot expet that a relation like w = �1 for the vauum

utuations is orretly reprodued. Using a regularisation sheme whih breaks symmetries

requires therefore to add additional, symmetry breaking ounter-terms and to subtrat the

o�ending terms by hand. This suggests that the subleading m

4

terms do satisfy the two

onditions, what is indeed the ase.

Dimensional regularisation We replae the three-dimensional integrals in (25.1){(25.3) by

d� 1 dimensional ones. Using then DR and the de�nition of Euler's Beta funtion, we obtain

h�i =

�

4�d

(2�)

(d�1)

1

2

Z

d

d�1

k

p

m

2

+ k

2

=

�

4

2 (4�)

(d�1)=2

�(�d=2)

�(�1=2)

�

m

�

�

d

: (25.10)

Similarly, it follows

hP i =

�

4�d

(2�)

(d�1)

1

2(d� 1)

Z

d

d�1

k

k

2

!

k

=

�

4

4 (4�)

(d�1)=2

�(�d=2)

�(1=2)

�

m

�

�

d

: (25.11)

and

i�

F

(0) = �

4�d

(m

2

)

d

2

�1

(4�)

d=2

�

�

1�

d

2

�

: (25.12)

Expanding next in " = 4� d results in

h�i = �hP i = �

m

4

64�

2

�

2

"

+

3

2

�  + ln

�

4��

2

m

2

��

+O(") : (25.13)

It follows that DR reprodues the orret EoS as well as the relation (25.5). The latter

ensures also that T

�

�

! 0 for m! 0, as expeted at O(�

0

). Note also that the integrands in

both Eqs. (25.10) and (25.11) are positive de�nite. Therefore, any uto� sheme has to fail

reproduing the orret EoS. In ontrast, we know that the integration measure of DR is not

positive de�nite and here we see an example where this property is required to reprodue the

orret physis.
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25.2. Dark energy

In order to obtain the observed value of � and P at a ertain sale �, we have to add a

orresponding ounter-term. After subtration of the M

4

term and identifying 4�� with the

uto� sale M , we �nd in both shemes the same logarithmi dependene

h�i = �

m

4

32�

2

arsinh (M=m) � �

m

4

32�

2

ln (M=m) ; (25.14)

in the limit M = 4�� � m. We thus onlude that the natural value of the vauum energy

density is h�i � m

4

. While this behaviour redues the \numerial size" of the osmologial

onstant problem, it does not solve it, sine the natural value of h�i in the SM would be

determined by the top quark, m

4

t

� �

�

.

25.2. Dark energy

Sine the theoretially expeted value of the osmologial onstant is muh larger than the

observed one, one may hope that the osmologial onstant is set to zero by some priniple

yet to be disovered. In this ase, we require an alternative explanation for the aeler-

ated expansion of the Universe in the present epoh. Suh explanations an be divided in

modi�ations of gravity and dark energy, depending on if the LHS or RHS of the Einstein

equations are hanged. Sine we an reshu�e matter and gravity by �eld rede�nitions, suh

a distintion is somewhat ambiguous. As a pratial riterion, one an use the presene of

additional long-range fores and thus the violation of the strong equivalene priniple as the

harateristi feature of modi�ed gravity models.

Quintessene These models introdue a salar �eld � with a anonially normalised kineti

term that evolves in the slow-roll regime. Its potential V (�) has to be hosen suh that the

slow-roll regime sets in only reently, i.e. at redshift z ' 0:7. In general, quintessene models

predit time-dependent deviations from w = �1, whih an be observationally tested. While

these models annot solve the osmologial onstant problem on the fundamental level, they

may address the oinidene problem. The observed value of �

�

implies that the potential

energy of the new salar �eld is tiny: For instane, the potential V (�) = ��

4

requires as

oupling � � 10

�122

, while V (�) = m

2

�

2

=2 leads to m � 10

�33

eV. Thus quintessene models

are extremely �ne-tuned. They require therefore some stabilising mehanism, if they are

embedded in a more omplete theory. We neglet this problem and disuss here only how

these models attempt to solve the oinidene problem.

We onsidered already in Eqs. (23.26a) and (23.27) the inaton � oupled to the Friedmann

equations as a dynamial system. Re-interpreting � as a quintessene �eld and adding normal

matter with density � and EoS w

m

= P=�, we obtain as equations of motion

H

2

=

8�G

3

�

1

2

_

�

2

+ V + �

�

; (25.15a)

_

H = �4�G

h

_

�

2

+ (1 + w

m

)�

i

: (25.15b)

Additionally, we have the usual Klein-Gordon equation for �. Next we introdue the dimen-

sionless variables

x =

_

�

p

48�GH

and y =

p

V

p

24�GH

: (25.16)
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The energy fration of the quintessene �eld, 


�

= �

�

=�

r

, beomes then 


�

= x

2

+ y

2

, while

its EoS is given by

w

�

=

x

2

� y

2

x

2

+ y

2

: (25.17)

We obtain dimensionless equations of motion taking derivatives of x and y with respet to

N = ln(a). Setting also � � �(8�G)

1=2

V

;�

=V , they are given by

dx

dN

= 3x+

p

6

2

�y

2

+

3

2

x[(1� w

m

)x

2

+ (1 + w

m

)(1� y

2

)℄ ; (25.18a)

dy

dN

= �

p

6

2

�xy +

3

2

y[(1 �w

m

)x

2

+ (1 + w

m

)(1 � y

2

)℄ : (25.18b)

For omparisons with observations, it is useful to de�ne the e�etive equation of state w

eff

�

P

tot

=�

tot

, sine this is the EoS dedued from measuring H and

_

H. Using

_

H = �a=a�H

2

, we

an express the Einstein equations (19.47) and (19.48) for a at FLRW metri as

3H

2

= �� and 3H

2

+ 2

_

H = ��P : (25.19)

Thus the e�etive equation of state beomes

w

eff

=

P

tot

�

tot

= �1�

2

_

H

3H

2

: (25.20)

Applied to quintessene, Eq. (25.15), we �nd

_

H

H

2

= �3x

2

�

3

2

(1 + w

m

)(1� x

2

� y

2

) (25.21)

and thus

w

eff

= w

m

+ (1� w

m

)x

2

� (1 + w

m

)y

2

: (25.22)

An interesting simpli�ation appears, if � is onstant. Then the two equations (25.18) are

losed and an be analysed as a two-dimensional dynamial system. The derivation of the

�xed points of this dynamial system, whih an be obtained setting dx=dN = dy=dN = 0, is

the topi of problem 26.??. In partiular, there exist trajetories onneting the saddle point

(x; y) = (0; 0) with 


�

= 0 and w = w

m

to the stable �xed point (x; y) = (�=

p

6;

p

1� �

2

=6)

with 


�

= 1 and w

eff

= w

�

= �1 + �

2

=3. Thus this ase orresponds to a transition from

a matter-dominated universe to an aelerated expansion with w

eff

= �1 + �

2

=3 > �1.

Integrating the de�nition of �, we see that the ase � = onst: orresponds to the speial ase

of exponential potentials, V (�) = V

0

exp(���=

f

M

Pl

). For other potentials, Eqs. (25.18) have

to analysed ombined with the Klein-Gordon equation for the quintessene �eld.

Traker solutions Another sublass of quintessene models uses the potentials

V (�) =

M

4+n

n�

n

(25.23)

with n > 2. Sine V (�) is unbounded from below, it violates our standard stability require-

ment and should be therefore modi�ed by quantum orretion at small �. The Klein-Gordon

equation in a FLRW bakground with a(t) / t

�

beomes for this potential

�

�+

3�

t

_

��

M

4+n

�

n+1

= 0 : (25.24)
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A speial solution alled traker solution is provided by

�

�

(t) = CM

1+�

t

�

(25.25)

with � = 2=(2 + n), f. problem 26.??. This solutions is an attrator, as we an hek

onsidering the driving fore

F(�) = �V

0

(�) =

M

4+n

�

n+1

(25.26)

ating on �: For �(t) < �

�

(t), the fore is larger, F(�) > F(�

�

), and the solution � makes

up leeway. Similarly, a �eld with �(t) > �

�

(t) has a smaller driving fore and falls bak to

the traking solution. At late times, the evolution of the salar �eld �(t) is thus given by the

traking solution for a wide range of initial onditions.

We onsider in the following always the traking regime and set for simpliity � ' �

�

. Using

(25.25), it follows that the kineti �eld energy sales as

_

�

2

/ t

2��2

and that

_

�

2

' V (�) holds.

Thus the traker solution violates the slow-roll ondition. The energy density �

�

dereases

with a / t

�

as

�

�

/

1

t

2�2�

/

1

a

(2�2�)=�

: (25.27)

Using � / a

�3(1+w)

, we obtain as EoS for the traker �eld

w

�

= �1 +

2

3

1� �

�

=

n

2 + n

w

m

�

2

2 + n

: (25.28)

Thus for large n, it traks the EoS of the dominant form of usual matter in the universe. In

partiular, w

�

is able to follow the hange of w

m

during the radiation-matter transition.

Sine the �eld does not evolve in the slow-roll regime, it seems that it annot lead to the

desired aelerated expansion. However, the relative ontribution 


�

of the �eld to the total

energy density inreases, 


�

/ t

2�

, and at some point Eq. (25.24) assuming an evolution in

a �xed bakground is no longer valid. This happens when �

�

� (�=t)

2

. The orresponding

matter density follows with H � 1=t as �

m

� 3H

2

f

M

2

Pl

� (

f

M

Pl

=t)

2

. Thus the ontributions

of ordinary matter and the traker �eld are equal for � � M

Pl

. This oinides with the

generi slow-roll ondition

1

for power-law potentials: Thus the traker potential leads to an

aelerated expansion, as soon as it dominates the energy density of the universe. Sine 


�

in

this lass of models was never extremely small, the oinidene problem is alleviated relative

to the �CDM model. However, the question why � �M

Pl

happens at the present epoh has

still to be addressed in a spei� dark energy model.

Additionally to reprodue orretly the evolution of a(t), dark energy models have to re-

produe the observed large-sale struture. Deviations to the standard �CDM model an

beome important only at late times, and thus these models an be onstrained mainly using

the evolution of large-sale strutures at redshifts z

<

�

5.

25.3. Modi�ed gravity

An important lass of modi�ed gravity models are the so-alled f(R) gravity models, whih

generalise the Einstein-Hilbert form replaing R by a general funtion f(R). Thus the ation

1

The model belongs to the lass of large-�eld models, with its assoiated problems.
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of f(R) gravity oupled to matter has the form

S =

Z

d

4

x

p

jgj

�

1

2~�

f(R) +L

m

�

; (25.29)

where L

m

may ontain both non-relativisti matter and radiation. Note that for f(R) 6=

R, the gravitational onstant ~� = 8�

~

G deviates from Newton's onstant G measured in a

Cavendish experiment. The �eld equations an be derived from the ation (25.29) either

by a variation w.r.t. the metri or the onnetion. The dynamis and the number of the

resulting degrees of freedom di�er in the two treatments. Following the �rst approah, we

obtain generalising the derivation in setion 18.2

F (R)R

��

�

1

2

f(R)g

��

�r

�

r

�

F (R) + g

��

�F (R) = ��T

��

(25.30)

with F � df=dR. Taking the trae of this expression, we �nd

F (R)R � 2f(R)g

��

+ 3�F (R) = ��T : (25.31)

The term �F (R) ats as a kineti term, so that these models ontain an additional propa-

gating salar degree of freedom, � = F (R). Applied to a at FLRW metri, one obtains from

the 00 and ii part of the �eld equation (25.30) the modi�ed Friedmann equations as

3FH

2

= ~� (�

m

+ �

rad

) +

1

2

(FR � f)� 3H

_

F ; (25.32a)

�2F

_

H = ~�

�

�

m

+

4

3

�

rad

�

+

�

F �H

_

F : (25.32b)

Dividing (25.32a) by 3FH

2

, we an express the RHS through dimensionless variables x

i

whih

orrespond at the present epoh to the density parameters 


i

= ~��

i

=(3F

0

H

2

0

),

x

1

= �

_

F

HF

; x

2

= �

f

6FH

2

; x

3

=

R

6H

2

and x

4

=

~�

2

�

rad

3FH

2

: (25.33)

For a at universe, the matter omponent has then to satisfy

~��

m

3FH

2

= 1� x

1

� x

2

� x

3

� x

4

: (25.34)

We are interested in the \late" universe, when the e�et of radiation is negligible, and set

therefore x

4

= 0. Following the example of quintessene, we obtain dimensionless equation of

motions taking derivatives of x

i

with respet to N = ln(a),

dx

1

dN

= �1� x

3

� 3x

2

+ x

2

1

� x

1

x

3

; (25.35a)

dx

2

dN

=

x

1

x

3

m

� x

2

(2x

3

� x

1

� 4) ; (25.35b)

dx

3

dN

= �

x

1

x

3

m

� 2x

3

(x

3

� 2) : (25.35)

Here, m � d lnF=d lnR haraterises the deviation from a �CDM model whih has m = 0,

while the seond parameter r is de�ned by

r � �

d ln f

d lnR

=

x

3

x

2

: (25.36)
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In order to simplify the omparison with observations whih assume typially standard Ein-

stein gravity, we keep the de�nition (25.20) of the e�etive equation of state w

eff

. Then we

reall from Eq. (19.46) the urvature of a at FLRW metri,

R = g

��

R

��

= 6

a�a+ _a

2

a

2

= 6(

_

H + 2H

2

) : (25.37)

Combined with the de�nition of x

3

, we an express the e�etive EoS as a funtion of only x

3

,

w

eff

= �

2

3

�

x

3

�

1

2

�

: (25.38)

The osmologial evolution an now be studied for a hosen f(R) solving numerially the

system (25.35). Alternatively, one an determine analytially the �xed points of this dynam-

ial system, study their stability and the behaviour of w

eff

: As result, one �nds that models

with an aelerated expansion as attrator solution either ontradit observations (behaving

as a(t) / t

1=2

before aeleration), violate stability onstraints (having w

eff

< �1) or are

hardly distinguishable from quintessene models in standard gravity [AGPT07℄. In addition

to reprodue the observed large-sale struture, modi�ed gravity models have to pass solar

system tests: Sine they ontain typially a light salar (as � = F (R) in f(R) gravity) whih

mediates a 5th fore, they require a sreening mehanism to evade onstraints of loal gravity

tests.

25.4. Comments on quantising gravity

Gravity as an e�etive theory The Einstein-Hilbert ation ontains with the Plank sale

f

M

Pl

a dimensionfull oupling, and gravity is therefore a non-renormalisable theory. As any

other non renormalisable theory, we an treat Einstein gravity as an e�etive �eld theory, at

least in the limit that horizons play no role. Inluding higher-order operators, we should be

able to alulate quantum orretions to observables as e.g. the Newtonian potential following

the sheme outlined in setion 12.5. If we reall that [R℄ = m

2

and thus also [R

��

℄ = [R

����

℄ =

m

2

, we an order possible higher-order terms aording their dimension d = 6; 8; : : : as

S

eff

= �

Z

d

4

x

p

jgj

�

(R+ 2�) + L

2

�

A

1

R

2

+A

2

R

��

R

��

+A

3

R

����

R

����

�

+O(L

4

)

	

:

(25.39)

Here, the length sale L � 1=M indiates when the higher-order operators beome important.

Suppressing Lorentz indies, we an write shematially the gravitational wave equation (with

A

i

� 1) as

�h+ L

2

��h � �T : (25.40)

Solving for the propagator, we obtain in momentum spae

D(k

2

) �

1

k

2

+ L

2

k

4

=

1

k

2

�

1

k

2

+M

2

: (25.41)

In the stati limit, the �rst term orresponds to the usual Newtonian 1=r potential, while the

seond one is of the Yukawa type,

� � �GM

�

1

r

�

exp(�r=L)

r

�

: (25.42)
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Thus the higher-order operators lead in tree-level amplitudes to short-range interations,

whih are exponentially suppressed on sales r � L. Newton's law is not tested on sub-mm

sales and thus L is only bounded as L

<

�

1mm. If L would be lose to this limit, as e.g.

in senarios with large extra dimensions, new gravitational e�ets may be detetable both in

Cavendish-like experiments and at aelerators. However, one usually assoiates L with the

Plank length L

Pl

, and then the ation beomes

S

eff

=

Z

d

4

x

p

jgj

�

�(R � 2�) � a�

2

R

2

+ b�

2

R

��

R

��

+ : : :

	

: (25.43)

Performing perturbation theory, we expand the metri g

��

around the lassial Minkowski

bakground. Applied to the inverse g

��

and

p

jgj =

p

det(�g

��

), this will generate an in�nite

tower of gravitational self-interations and ouplings to matter. Suppressing again Lorentz

indies, we an write shematially

S

eff

=

f

M

2

Pl

4

Z

d

4

x

��

1

2

h�h+ h�h

2

+ : : :

�

+

�

�ah�

2

h+ bh�

2

h

2

+ : : :

�

+

�

: (25.44)

Sine we are interested in quantum e�ets, it is onvenient to resale the gravitational �eld

as h

��

=

1

2

f

M

Pl

h

��

suh that it is anonially normalised and has mass dimension one,

S

eff

=

Z

d

4

x

"

�

1

2

h�h+

1

f

M

Pl

h�h

2

+ : : :

�

+

 

a

f

M

2

Pl

h�

2

h+

b

f

M

3

Pl

h�

2

h

2

+ : : :

!

+

#

: (25.45)

The terms in the �rst round braket orrespond to an expansion of the Einstein-Hilbert ation.

Their tree-level ontributions to the Newtonian potential of a stati soure with massM have

long-range. The leading term orresponding to single graviton exhange, f. with Eq. (7.47),

is given by

�

= �

2

�

M

f

M

Pl

1

r

1

f

M

Pl

�

M

f

M

2

Pl

1

r

: (25.46)

Here, the heavy soure ontributes the fator

p

GM , while the oupling to the test partile

adds only

p

G. We an estimate the ontribution of the next, trilinear term as follows

�

= �

3

�

�

M

f

M

Pl

�

2

1

f

M

Pl

1

r

2

1

f

M

Pl

�

1

f

M

2

Pl

�

M

f

M

Pl

�

2

1

r

2

: (25.47)

The two heavy soures add eah a fator M=

f

M

Pl

, while the trilinear oupling ontributes the

fator 1=

f

M

Pl

. The dependene 1=r

2

follows then by dimensional analysis. At �rst sight, one

might guess that the e�et of the higher-order term �

3

is unobservable: However, lassial

soures of gravitational �elds an be strong, M=

f

M

Pl

� 1, and ompat, r � few � R

s

�

M=

f

M

2

Pl

. If the latter ondition is satis�ed, then �

2

� �

3

� �

n

� 1 and all higher-order terms

in the post-Newtonian expansion beome important. Ideal objets to test this expansion are

therefore lose binary systems of neutron stars or blak holes. Using the virial theorem, we

an express �

3

as �

3

� GM=r � (v=)

2

, what shows that �

3

is lassial, �

3

/ ~

0

.

Next we onsider how loop orretion to the Einstein-Hilbert ation a�et observables like

the Newtonian potential. As we know from our general disussion in setion 11.4.1, the

divergenes have the struture of loal operators. Sine the one-loop orretions ome with a
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25.4. Comments on quantising gravity

fator �, the one-loop divergenes of the lassial Einstein-Hilbert Lagrangian are onneted

to �

2

terms in the e�etive Lagrangian. Thus the sole e�et of these terms is to renormalise

the oeÆients a and b. Moreover, we know that the non-analyti terms indued by the loop

orretions are �nite and omputable. In partiular, the one-loop orretion to the graviton

propagator in the harmoni gauge is given by

k

4

M

2

Pl

�

21

120

(�

��

�

��

+ �

��

�

��

) +

1

120

�

��

�

��

� �

1

"

� ln(k

2

=�

2

) + onst:

�

: (25.48)

As in the ase of QCD, one has to add the e�et of Faddeev-Popov ghosts to obtain a

onsistent results using a ovariant gauge. Performing then e.g. on-shell renormalisation, we

are left with the logarithm whih turns in the stati limit after Fourier transformation into a

1=r

3

term. Combining these results, the Newtonian potential is

� = �

GM

r

"

1�

3M



2

r

2

+

41

10�

~G



2

r

3

�

2

3

exp

 

�

1

a

r

~G

96�

3

r

!#

; (25.49)

where we set for simpliity b = 0, and added , ~ and the numerial prefators [Ste78,

BBDH03℄. This example shows that loop orretions to observables in lassial gravity an be

alulated following the usual e�etive theory approah. These orretions are|as expeted|

tiny for E � M

Pl

. Additional loop orretions due to higher-order operators will be even

more suppressed. Therefore any onsistent theory of gravity will lead to experimentally indis-

tinguishable preditions for the loop orretions in the limit E � M

Pl

. However, deviations

from Einstein gravity are testable via gravitational wave emission of ompat objets and

observations on astronomial and osmologial sales.

Approahes beyond Einstein gravity In addition to being a non-renormalisable theory, grav-

ity poses spei� tehnial problems: For instane, anonial quantisation relies on the light-

one struture of spae-time as input, while the metri should be the output of a quantum

theory of gravity. Using the path integral avoid this problem and allows even the summation

over spae-times with di�erent topologies. However, also the path integral formulation of

quantum gravity is plagued by problems: The justi�ation for a Wik rotation from a metri

with Lorentzian to Eulidean signature is obsure|but even if we formally perform the Wik

rotation, the Eulidean gravitational ation remains unbounded from below.

In the traditional view, one neglets these prinipal problems and stays within the frame-

work of QFT in d = 4. The question arises then what UV ompletion the Einstein-Hilbert

ation has. One possibility is that the graviton is a omposite partile, similar to the pion.

However, the onstraint that the agent of gravity ouples in d = 4 QFT to the onserved

stress tensor seems to forbid this option. Another possibility is that the graviton is a funda-

mental partile, and additional partiles and symmetries lead to an unitarisation of gravity.

In partiular, adding supersymmetries improves the UV behaviour of gravity and makes it

renormalisable up to the two-loop level, sine all possible one and two-loop divergenes are

forbidden by supersymmetri Ward identities. While no expliit three-loop alulations have

been performed to date, power ounting arguments suggest however that divergenes exist at

the three-loop level. An even more minimalisti ansatz is the idea of asymptoti safety whih

assumes that Einstein gravity, de�ned non-perturbatively e.g. on a lattie, is a onsistent

theory. This requires that the non-perturbatively alulated running gravitational oupling
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onstant G

N

(q

2

) has a UV �xed point. In this ase, a onsistent ontinuum limit of gravity

ould be de�ned. However, even the onept of a universal running oupling onstant is, at

least in perturbative alulations, ill-de�ned [Don12℄. While it is not exluded that this is an

artifat of perturbation theory, little evidene is known that supports asymptoti safety.

We give next a simple argument suggesting that quantum gravity does not admit loal

observables. As starter, let us onsider the ase of gauge theories. Here, measurable quanti-

ties are assoiated to n-point funtions hO(x

1

) � � �O(x

n

)i of gauge-invariant operators O(x),

or to S-matrix elements. While the one-partile states used in the initial and �nal states

of the S-matrix are not gauge-invariant, the possible gauge transformations are redued in

the limit t ! �1 to global transformations whih map one physial state onto a di�erent

physial state: Tying the states to t = �1 eliminates thus the redundany of loal gauge

transformations.

Now we onsider the ase of gravity where the gauge group is the group of all invertible

oordinate transformations. This means that no loal operators O(x) exist whih are gauge-

invariant, leaving the S-matrix as observable. More expliitly, we an show this as follows: Let

us onsider the expetation value of observables whih are salar funtions of the metri and

a salar �eld, O(x) � O(g

��

(x); �(x)). We write hO(x

1

) � � �O(x

n

)i as a path integral average,

and use that a salar transforms as O(x) =

~

O(~x) under a general oordinate transformation,

hO(x

1

) � � �O(x

n

)i =

Z

D�Dg

��

O(x

1

) � � �O(x

n

) e

iS[�;g

��

℄
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Next we apply the invariane of the ation, S[

~

�; ~g

��

℄ = S[�; g

��

℄, and the measure D

~

�D~g

��

=

D�Dg

��

, and relabel then the integration variables as � and g

��

,
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Thus hO(x

1

) � � �O(x

n

)i annot depend on the spae-time points x

i

and has to be onstant.

We an ompare this behaviour to the ase of spae-time symmetries in Minkowski spae:

Applying as a symmetry transformation e.g. translations results in the onstraint that an

observable an depend only on the di�erenes ~x

i

� x

i

, i.e. it should be translation invariant.

Inreasing the symmetry group to general oordinate transformations, the restrition on ob-

servables beomes so severe that no non-trivial solution is possible. This argument suggests

that a quantum theory of gravity is not simply a version of Einstein-Hilbert gravity with

improved UV properties, but should inlude some fundamentally new features ompared to

the loal quantum �eld theories of point partiles we have onsidered. Examples for suh

non-loal theories may ontain a minimal length sale like loop gravity and string theory, or

may be based on the non-ommutativity of spae-time.

Finally, we omment on the idea of gravity as an emergent phenomenon. We have usually

assumed that the Universe at higher energies beomes more and more symmetri. However,

several ondensed matter systems show the opposite behaviour, where new symmetries emerge

at low energies. Applying this piture to gravity, the gravitational �eld and thus spae-time

would be no fundamental degrees of freedom, but would appear at E � M

Pl

as an approx-

imate symmetry of the low-energy world. Support for this idea omes from few diretions:
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25.4. Comments on quantising gravity

First, the osmologial onstant problem is solved, if the oupling of the gravitational �eld to

the stress tensor is shift-invariant, T

��

! T

��

+ g

��

. However, this simple solution exludes

that the gravitational ation is a funtional of the metri g

��

. Seond, one an derive the

Einstein equations using a thermodynamial language, an attempt whih is suggested by the

thermodynamial desription of blak holes and horizons in general. More importantly, it is

possible to re-interpret the gravitational �eld equations as equations desribing the heating

and ooling of null surfaes within this thermodynamial piture. This thermodynami de-

sription poses the question, if the gravitational �eld is not merely a marosopi desription

for the unknown fundamental degrees of freedom. A onrete example for a theory where

spae-time is emergent is string theory, sine there the metri is not a fundamental degree of

freedom. Last but not least, blak hole formation provides a fundamental limitation to the

measurement of spae-time: Probing spae-time distanes below the Plank sale is impossi-

ble, beause otherwise the measuring devie would ollapse to a blak hole (problem 26.??).

This implies that the unertainty relations derived from the usual ommutation relations of

quantum �elds break down on sales

<

�

1=M

Pl

, or in other words that loal quantum �eld

theory should be replaed by a new theoretial setting. Matvei Bronstein [Bro36℄ used �rst

this argument to onlude:

\The elimination of the logial inonsistenies onneted with this requires a radi-

al reonstrution of the theory, and . . . perhaps also the rejetion of our ordinary

onepts of spae and time, modifying them by some muh deeper and nonevident

onepts. Wer's niht glaubt, bezahlt einen Thaler."

Summary

Alternatives to the standard �CDM model involve either new salar �elds (dark energy) or

modify gravity. While dark energy models are generially plagued by �ne-tuning problems,

modi�ations of gravity ontain new additional degrees of freedom whih pose both theoretial

and observational hallenges. The osmologial onstant problem raises the question, if our

(e�etive) �eld theory approah has a restrited validity. Few hints suggest that loality has

to be abandoned in a quantum theory of gravity and that spae-time may be an emergent

phenomenon.

Further reading

[Mar12℄ disusses exhaustively the osmologial onstant problem. Dark energy and modi�ed

gravity models and their observational onsequenes are reviewed by [JLS16℄. The e�etive

�eld theory approah to gravity is disussed by [Don12℄, while [Pad16℄ reviews links between

gravity and thermodynamis.
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