FY3403 Particle physics

Problemset 5 fall 2013

Problem 1. Isospin classification

Write down the isospin classification $\left|I_{3}\right\rangle$ of the following elementary particles:
(i) Ω^{-}, (ii) Σ^{+}, (iii) Ξ^{0}, (iv) Δ^{0}, (v) ρ^{+}, (vi) η, (vii) \bar{K}^{0}.

Problem 2. Isospin analysis of pion-nucleon scattering

In this problem you should use the isospin symmetry of strong interactions to find relations between the cross-sections for the following processes

1. $\pi^{+}+p \longrightarrow \pi^{+}+p$
2. $\pi^{0}+p \longrightarrow \pi^{0}+p$
3. $\pi^{-}+p \longrightarrow \pi^{-}+p$
4. $\pi^{+}+n \longrightarrow \pi^{+}+n$
5. $\pi^{0}+n \longrightarrow \pi^{0}+n$
6. $\pi^{-}+n \longrightarrow \pi^{-}+n$
7. $\pi^{+}+n \longrightarrow \pi^{0}+p$
8. $\pi^{0}+p \longrightarrow \pi^{+}+n$
9. $\pi^{0}+n \longrightarrow \pi^{-}+p$
10. $\pi^{-}+p \longrightarrow \pi^{0}+n$
a) Write the isospin contents of the states involved (on the form $\left|I^{(1)} I_{3}^{(1)}\right\rangle\left|I^{(2)} I_{3}^{(2)}\right\rangle$), and decompose these into a sum over states with fixed isospin (on the form $\left|I I_{3}\right\rangle$), for each of the cases above.
b) The assumption of isospin symmetry means that the scattering amplitude \mathcal{M} only depends on the total isospin,

$$
\begin{equation*}
\left\langle I I_{3}\right| S\left|I^{\prime} I_{3}^{\prime}\right\rangle=\mathcal{M}^{(I)} \delta_{I I^{\prime}} \delta_{I_{3} I_{3}^{\prime}}, \tag{1}
\end{equation*}
$$

where the amplitudes $\mathcal{M}^{(I)}$ generally are complex numbers. They give information about how likely it is that an initial state (before the scattering) has turned into a specific final state (after the scattering). Here, S denotes the S-matrix that determines how an initial state $|i\rangle$ has evolved with time, i.e. $|\Phi(t=\infty)\rangle=S|i\rangle$. In turn, S is determined by the way the particles involved in the scattering process interact with each other. For instance, we would then have

$$
\begin{equation*}
\left\langle\frac{3}{2}, \frac{1}{2}\right| S\left|\frac{3}{2}, \frac{1}{2}\right\rangle=\mathcal{M}^{(3 / 2)}, \tag{2}
\end{equation*}
$$

while

$$
\begin{equation*}
\left\langle\frac{3}{2}, \frac{1}{2}\right| S\left|\frac{1}{2}, \frac{1}{2}\right\rangle=0 \tag{3}
\end{equation*}
$$

Express the alltogether ten scattering amplitudes \mathcal{M}_{i} for the above processes in terms of the amplitudes $\mathcal{M}^{(I)}$.
c) The scattering cross-sections σ_{i} for the processes above has the form $\sigma_{i}=C\left|\mathcal{M}_{i}\right|^{2}$, where C is the same for all processes. Find all possible relations (that can be derived from isospin symmetry) between these cross-sections.
d) When the center-of-mass energy E is at the Δ-resonance, $E \approx 1232 \mathrm{MeV}$, the amplitude $\mathcal{M}^{(3 / 2)}$ becomes completely dominating. Which relations between cross-sections can be deduced in this case?

