FY3403 Particle physics Problemset 5 fall 2013

Problem 1. Isospin classification

Write down the isospin classification $|II_3\rangle$ of the following elementary particles: (i) Ω^- , (ii) Σ^+ , (iii) Ξ^0 , (iv) Δ^0 , (v) ρ^+ , (vi) η , (vii) \bar{K}^0 .

Problem 2. Isospin analysis of pion-nucleon scattering

In this problem you should use the isospin symmetry of strong interactions to find relations between the cross-sections for the following processes

1. $\pi^+ + p \longrightarrow \pi^+ + p$

2.
$$\pi^0 + p \longrightarrow \pi^0 + p$$

3.
$$\pi^- + p \longrightarrow \pi^- + p$$

4. $\pi^+ + n \longrightarrow \pi^+ + n$

5.
$$\pi^0 + n \longrightarrow \pi^0 + n$$

- 6. $\pi^- + n \longrightarrow \pi^- + n$
- 7. $\pi^+ + n \longrightarrow \pi^0 + p$
- 8. $\pi^0 + p \longrightarrow \pi^+ + n$
- 9. $\pi^0 + n \longrightarrow \pi^- + p$
- 10. $\pi^- + p \longrightarrow \pi^0 + n$
- a) Write the isospin contents of the states involved (on the form $|I^{(1)}I_3^{(1)}\rangle |I^{(2)}I_3^{(2)}\rangle$), and decompose these into a sum over states with fixed isospin (on the form $|II_3\rangle$), for each of the cases above.
- b) The assumption of isospin symmetry means that the scattering amplitude \mathcal{M} only depends on the total isospin,

$$\langle II_3|S|I'I'_3\rangle = \mathcal{M}^{(I)}\,\delta_{II'}\,\delta_{I_3I'_3},\tag{1}$$

where the amplitudes $\mathcal{M}^{(I)}$ generally are complex numbers. They give information about how likely it is that an initial state (before the scattering) has turned into a specific final state (after the scattering). Here, S denotes the S-matrix that determines how an initial state $|i\rangle$ has evolved with time, i.e. $|\Phi(t = \infty)\rangle = S|i\rangle$. In turn, S is determined by the way the particles involved in the scattering process interact with each other. For instance, we would then have

$$\langle \frac{3}{2}, \frac{1}{2} \Big| S \Big| \frac{3}{2}, \frac{1}{2} \rangle = \mathcal{M}^{(3/2)},$$
 (2)

FY3403 Problemset 5 fall 2013

while

$$\langle \frac{3}{2}, \frac{1}{2} \Big| S \Big| \frac{1}{2}, \frac{1}{2} \rangle = 0.$$
 (3)

Express the alltogether ten scattering amplitudes \mathcal{M}_i for the above processes in terms of the amplitudes $\mathcal{M}^{(I)}$.

- c) The scattering cross-sections σ_i for the processes above has the form $\sigma_i = C |\mathcal{M}_i|^2$, where C is the same for all processes. Find all possible relations (that can be derived from isospin symmetry) between these cross-sections.
- d) When the center-of-mass energy E is at the Δ -resonance, $E \approx 1232$ MeV, the amplitude $\mathcal{M}^{(3/2)}$ becomes completely dominating. Which relations between cross-sections can be deduced in this case?