FY3403 Particle physics Problemset 4 fall 2013

Problem 1. The symmetry group of a square

In the lectures we studied the symmetry group of an equilatrial triangle. In this problem you should repeat this for a square.
a) How many elements are there in this group?
b) Find the multiplication table for this group.
c) Is this group abelian or non-abelian?
d) Find all subgroups of this group.

Problem 2. Rotation of spin- $\frac{1}{2}$ states

The rotation operator $R(\theta, \hat{n})$ for spin- $\frac{1}{2}$ wave functions (spinors) $\chi=\binom{a}{b}$ is

$$
\begin{equation*}
R(\theta, \hat{n})=\mathrm{e}^{\mathrm{i} \theta \hat{n} \cdot \boldsymbol{\sigma} / 2} \tag{1}
\end{equation*}
$$

where θ is the angle rotated and \hat{n} is the direction of the rotation axis.
a) Explain geometrically why we should have $R(-\theta,-\hat{n})=R(\theta, \hat{n})$.
b) Show, f.i. by series expansion of the exponential, that

$$
\begin{equation*}
R(\theta, \hat{n})=\cos (\theta / 2)+\mathrm{i} \sin (\theta / 2) \hat{n} \cdot \boldsymbol{\sigma} . \tag{2}
\end{equation*}
$$

c) For a state with spin along the z-axis the corresponding spinor is $\chi=\chi_{+}=\binom{1}{0}$. Rotate this state an angle $-\theta$ about the y-axis, and show that the rotated spinor becomes $\chi_{\theta}=\binom{\cos \theta / 2}{\sin \theta / 2}$.
d) Show that χ_{θ} is an eigenstate of $\sigma_{\hat{n}} \equiv \hat{n} \cdot \boldsymbol{\sigma}$, where \hat{n} is the vector obtained by rotating the unit vector \hat{e}_{z} an angle θ about the y-axis. Draw a figure.

