FY3403 Particle physics Problemset 3 fall 2013

Problem 1. Kinematics of Compton scattering

In an experiment carried out by A.H. Compton in 1923 it was demonstrated that light scattered from a charged particle at rest will change its wavelength according to the formula

$$
\begin{equation*}
\lambda^{\prime}=\lambda+\frac{h}{m c}(1-\cos \theta) \tag{1}
\end{equation*}
$$

where λ is the wavelength of the incoming light, λ^{\prime} the wavelength of the scattered light, θ the scattering angle, and m the mass of the particle. This can be viewed as the definite proof of the particle nature of the photon.
a) Consider the incoming light as a massless particle with momentum $p=\frac{h}{\lambda}$ and energy $E_{\gamma}=p c$ (where h is the Planck constant), and write down the conservation laws for energy an momentum for the scattering process.
b) Solve the conservation laws with respect to the momentum p^{\prime} of the scattered photon.
c) Show that the result from the previous point is in accordance with equation (1).

Hint: A pedestrian way to attack the problem is ${ }^{1}$ to first eliminate $p_{y}^{(\mathrm{m})}$, then $p_{x}^{(\mathrm{m})}$ (where $\boldsymbol{p}^{(\mathrm{m})}$ is the momentum of the particle after the scattering process), and finally solve for p^{\prime} (the absolute value of the photon momentum after the scattering process).
Given: The relativistic connection between energy and momentum for a particle with mass m is

$$
\begin{equation*}
E=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}} . \tag{2}
\end{equation*}
$$

Problem 2. Unstable particles produced by cosmic rays

Cosmic rays will produce muons, $\mu^{ \pm}$, high in the atmosphere, assume at a height of 8 km . Assume that the muons have a kinetic energy T and a velocity directed towards the center of the earth. What is the probability that a muon will reach the surface of the earth if
a) $\mathrm{T}=20 \mathrm{MeV}$
b) $\mathrm{T}=20 \mathrm{GeV}$
c) Cosmic rays will also produce pions, e.g. $\pi^{ \pm}$, at the same height. Repeat the calculation for such particles
In all these calculations you may neglect interactions between the produced particles and the atmosphere.
Given:
$m_{\mu}=105.66 \mathrm{MeV}, \tau_{\mu}=2.197 \times 10^{-6} \mathrm{~s}$
$m_{\pi^{ \pm}}=139.57 \mathrm{MeV}, \tau_{\pi^{ \pm}}=2.603 \times 10^{-8} \mathrm{~s}$

[^0]Problem 3. Kinematics of π^{0}-decay
A neutral pion may decay into two photons

$$
\begin{equation*}
\pi^{0} \rightarrow \gamma_{1}+\gamma_{2} \tag{3}
\end{equation*}
$$

a) Use conservation of four-momentum to find the energy of the two photons (measured in MeV) when the pion is at rest before the decay.
b) Next assume that the pion has a momentum $p_{\pi}=100 \mathrm{MeV} / \mathrm{c}$ when it decays. One of the photons emerge at an angle $\theta_{1}=60^{\circ}$ relative to \boldsymbol{p}_{π}. Find the energy of this photon. Also find the energy and direction of motion of the other photon.
c) Neutral pions with known energy E_{π} may decay into two photons. In each decay we observe the two photons and measure the angle θ_{12} between them. Show that we may determine the mass $m_{\pi^{0}}$ of the pion if we know the energy E_{π}, and have found the least possible value $\theta_{\min }$ of the opening angle θ_{12}.

[^0]: ${ }^{1}$ Assume the incoming photon is moving in the positive x-direction and that the scattering process happens in the $x y$-plane.

