CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 9

(1) Energy-conservation combined with conservation of angular momentum gives us:

$$
\begin{equation*}
m \dot{r}^{2} / 2+\left(V+\frac{l^{2}}{2 m r^{2}}\right)=E . \tag{1}
\end{equation*}
$$

This is an effective 1D problem with $V^{\prime}=V+\frac{l^{2}}{2 m r^{2}}$. In order for the particle to reach the center it needs to have sufficiently high energy to overcome the potential barrier, i.e. $E>V^{\prime}(r \rightarrow$ 0). This can be written as

$$
\begin{equation*}
E r^{2}>r^{2} V+l^{2} /(2 m) \tag{2}
\end{equation*}
$$

For $r \rightarrow 0$, the l.h.s. goes to zero, so that the condition on the potential becomes:

$$
\begin{equation*}
\left.\left(r^{2} V\right)\right|_{r \rightarrow 0}<-l^{2} /(2 m) . \tag{3}
\end{equation*}
$$

This can be fulfilled either with $V(r)=-k / r^{2}$ where $k>$ $l^{2} / 2 m$ or if $V(r)=-A / r^{n}$ with $n>2$ where A is a positive constant.
(2) See figure in the Norwegian version of the solution. When the particle touches the surface at $r=a$, conservation of the total energy dictates that

$$
\begin{equation*}
E=m v_{0}^{2} / 2=m v^{2} / 2-k / a . \tag{4}
\end{equation*}
$$

Also, conservation of angular momentum provides us with l infinitely far away being equal to l when the particle touches the surface, i.e.

$$
\begin{equation*}
l=m v_{0} s_{\max }=m v a \tag{5}
\end{equation*}
$$

Combining these two equations allow us to identify $s_{\text {max }}$:

$$
\begin{equation*}
s_{\max }=\sqrt{a^{2}+2 k a /\left(m v_{0}^{2}\right)} . \tag{6}
\end{equation*}
$$

All particles with impact parameter $s<s_{\max }$ will hit the surface, so that $\sigma_{\text {eff }}=\pi s_{\text {max }}^{2}$.
(3) We have that

$$
\begin{equation*}
L=T-V=m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+\dot{z}^{2}\right) / 2-V(r, \theta, z) \tag{7}
\end{equation*}
$$

The Lagrange-equations for the three generalized coordinates then read:

$$
\begin{equation*}
m \ddot{r}-m r \dot{\theta}^{2}=-\partial_{r} V, d\left(m r^{2} \dot{\theta}\right) / d t+\partial_{\theta} V=0, m \ddot{z}+\partial_{z} V=0 . \tag{8}
\end{equation*}
$$

Using Hamilton's equations, we identify the canonical momenta:

$$
\begin{equation*}
p_{r}=m \dot{r}, p_{\theta}=m r^{2} \dot{\theta}, p_{z}=m \dot{z} \tag{9}
\end{equation*}
$$

These equations can be used to replace the time derivatives of the generalized coordinates in terms of the momenta, so that the final Hamiltonian reads:

$$
\begin{equation*}
H=T+V=\left(p_{r}^{2}+p_{\theta}^{2} / r^{2}+p_{z}^{2}\right) /(2 m)+V(r, \theta, z) . \tag{10}
\end{equation*}
$$

