CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 8

(1) See figure in the Norwegian version of the solution. The scattering angle Θ satisfies $2 \Psi+\Theta=\pi$. From the figure, we see that the impact parameter is given by $s=a \cos \Theta / 2$, so that

$$
\begin{equation*}
|d s / d \Theta|=(a / 2) \sin (\Theta / 2) \tag{1}
\end{equation*}
$$

. Therefore, the differential scattering cross section is

$$
\begin{equation*}
\sigma(\Theta)=s|d s / d \Theta| / \sin \Theta=a^{2} / 4 \tag{2}
\end{equation*}
$$

The total cross section is obtained by integration over Θ, so that

$$
\begin{equation*}
\sigma=2 \pi \int_{0}^{\pi} \sigma(\Theta) \sin \Theta d \Theta=\pi a^{2} \tag{3}
\end{equation*}
$$

This is physically sensible since it is the actual cross-sectional area of the sphere.
(2) See figure in the Norwegian version of the solution. Let us use as a starting point

$$
\begin{equation*}
\Theta=\pi-2 \int_{0}^{u_{m}} \frac{s \cdot d u}{\sqrt{1-V / E-s^{2} u^{2}}} \tag{4}
\end{equation*}
$$

as shown in the lectures. Since $f=k / r^{3}$ we have $V=k u^{2} / 2$. Above, $u_{m}=1 / r_{m}=1 / \sqrt{s^{2}+k /(2 E)}$ is the inverse minimum distance of approach. Performing the integration with our explicit form of V, one obtains

$$
\begin{equation*}
\Theta=\pi-2 s u_{m}\left[\arcsin \left(u / u_{m}\right)\right]_{0}^{u_{m}}=\pi\left(1-s u_{m}\right) \tag{5}
\end{equation*}
$$

Introduce $x=\Theta / \pi$ and reexpress the above equation as follows:

$$
\begin{equation*}
s=s(x, E)=\sqrt{k /(2 E)} \frac{1-x}{\sqrt{2 x-x^{2}}} \tag{6}
\end{equation*}
$$

We then have:

$$
\begin{equation*}
\sigma(\Theta)=\frac{s}{\sin \Theta}|d s / d \Theta|=\frac{s}{\pi \sin \pi x}|d s / d x| \tag{7}
\end{equation*}
$$

which using the above expression for $s(x, E)$ gives:

$$
\begin{equation*}
\sigma(\Theta)=\frac{k}{2 \pi E} \frac{1-x}{x^{2}(2-x)^{2} \sin \pi x} \tag{8}
\end{equation*}
$$

