CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 6

(1a) The force is given by

$$f(r) = -k/r^2 + \beta/r^3 \tag{1}$$

with a belonging potential $V(r) = -k/r + \beta/(2r^2)$. We derived in the lectures that

$$\theta = \int \frac{dr/(r^2)}{\sqrt{2mE/l^2 - 2mV/l^2 - 1/r^2}} + \text{constant}$$
(2)

Now insert the V(r) and also introduce u = 1/r to obtain:

$$\theta = \int \frac{du}{\sqrt{2mE/l^2 - 2mku/l^2 - \gamma^2 u^2}}$$
(3)

We've here assumed initial conditions so that the integration constant vanishes and defined $\gamma^2 = 1 + \beta m/l^2$. This integral can be looked up in a collection of mathematical formulae (*e.g.* Rottman) and gives us the solution:

$$\theta = -\gamma^{-1} \arccos(\frac{p/r - 1}{\varepsilon}) \tag{4}$$

where we have defined

$$p = \gamma^2 l^2 / (mk), \varepsilon = \sqrt{1 + 2E\gamma^2 l^2 / (mk^2)}.$$
 (5)

We then get the equation for the orbit:

$$r = \frac{p}{1 + \varepsilon \cos(\gamma \theta)} \tag{6}$$

Assume E < 0 in which case this equation describes a slowly precessing ellipse. The major halfaxis is $a = p/(1-\varepsilon^2)$ which by direct insertion gives a = k/(2|E|) just like for $\gamma = 1$, i.e. it is unaffected by β .

(1b) Using spherical coordinates, the Lagrange-function reads:

$$L = T - V = l^2 m (\dot{\theta}^2 + \sin^2 \theta \dot{\phi}^2) / 2 + mgl \cos \theta \qquad (7)$$

The Lagrange-equation for θ gives us:

Ì

$$\ddot{\theta} - \sin(2\theta)\dot{\phi}^2/2 + (g/l)\sin\theta = 0 \tag{8}$$

whereas the equation for ϕ provides us with

$$p_{\phi} = ml^2 \sin^2 \theta \dot{\phi} = \text{constant} \tag{9}$$

since ϕ is a cyclic coordinate in the Lagrangian. The total energy *E* is conserved. This may be expressed as

$$E = ml^2 \dot{\theta}^2 + \frac{p_{\phi}^2}{2ml^2 \sin^2 \theta} - mgl \cos \theta$$
(10)

upon eliminating $\dot{\phi}$ in favor of p_{ϕ} . We thus obtain an effective potential in the following form:

$$E = \frac{1}{2}ml^2\dot{\theta}^2 + V_{\rm eff}(\theta), \qquad (11)$$

where $V_{\text{eff}}(\theta) = \frac{p_{\phi}^2}{2ml^2 \sin^2 \theta} - mgl \cos \theta$. This means that $\dot{\theta}^2 = 2(E - V_{\text{eff}})/(ml^2)$, which in turn can be separated to yield:

$$t = \int dt = \sqrt{ml^2/2} \int \frac{d\theta}{\sqrt{E - V_{\text{eff}}(\theta)}}.$$
 (12)

We also have from the equation for the canonical momentum associated with ϕ (namely p_{ϕ}) that:

$$\phi = \frac{p_{\phi}}{\sqrt{2ml^2}} \int \frac{d\theta}{\sin^2 \theta \sqrt{E - V_{\text{eff}}(\theta)}}$$
(13)

If $p_{\phi} = 0$, then ϕ is a constant which corresponds to a planar pendulum.