## CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 6

(1a) The force is given by

$$
\begin{equation*}
f(r)=-k / r^{2}+\beta / r^{3} \tag{1}
\end{equation*}
$$

with a belonging potential $V(r)=-k / r+\beta /\left(2 r^{2}\right)$. We derived in the lectures that

$$
\begin{equation*}
\theta=\int \frac{d r /\left(r^{2}\right)}{\sqrt{2 m E / l^{2}-2 m V / l^{2}-1 / r^{2}}}+\text { constant } \tag{2}
\end{equation*}
$$

Now insert the $V(r)$ and also introduce $u=1 / r$ to obtain:

$$
\begin{equation*}
\theta=\int \frac{d u}{\sqrt{2 m E / l^{2}-2 m k u / l^{2}-\gamma^{2} u^{2}}} \tag{3}
\end{equation*}
$$

We've here assumed initial conditions so that the integration constant vanishes and defined $\gamma^{2}=1+\beta m / l^{2}$. This integral can be looked up in a collection of mathematical formulae (e.g. Rottman) and gives us the solution:

$$
\begin{equation*}
\theta=-\gamma^{-1} \arccos \left(\frac{p / r-1}{\varepsilon}\right) \tag{4}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
p=\gamma^{2} l^{2} /(m k), \varepsilon=\sqrt{1+2 E \gamma^{2} l^{2} /\left(m k^{2}\right)} . \tag{5}
\end{equation*}
$$

We then get the equation for the orbit:

$$
\begin{equation*}
r=\frac{p}{1+\varepsilon \cos (\gamma \theta)} \tag{6}
\end{equation*}
$$

Assume $E<0$ in which case this equation describes a slowly precessing ellipse. The major halfaxis is $a=p /\left(1-\varepsilon^{2}\right)$ which by direct insertion gives $a=k /(2|E|)$ just like for $\gamma=1$, i.e. it is unaffected by $\beta$.
(1b) Using spherical coordinates, the Lagrange-function reads:

$$
\begin{equation*}
L=T-V=l^{2} m\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right) / 2+m g l \cos \theta \tag{7}
\end{equation*}
$$

The Lagrange-equation for $\theta$ gives us:

$$
\begin{equation*}
\ddot{\theta}-\sin (2 \theta) \dot{\phi}^{2} / 2+(g / l) \sin \theta=0 \tag{8}
\end{equation*}
$$

whereas the equation for $\phi$ provides us with

$$
\begin{equation*}
p_{\phi}=m l^{2} \sin ^{2} \theta \dot{\phi}=\text { constant } \tag{9}
\end{equation*}
$$

since $\phi$ is a cyclic coordinate in the Lagrangian. The total energy $E$ is conserved. This may be expressed as

$$
\begin{equation*}
E=m l^{2} \dot{\theta}^{2}+\frac{p_{\phi}^{2}}{2 m l^{2} \sin ^{2} \theta}-m g l \cos \theta \tag{10}
\end{equation*}
$$

upon eliminating $\dot{\phi}$ in favor of $p_{\phi}$. We thus obtain an effective potential in the following form:

$$
\begin{equation*}
E=\frac{1}{2} m l^{2} \dot{\theta}^{2}+V_{\mathrm{eff}}(\theta), \tag{11}
\end{equation*}
$$

where $V_{\text {eff }}(\theta)=\frac{p_{\phi}^{2}}{2 m l^{2} \sin ^{2} \theta}-m g l \cos \theta$. This means that $\dot{\theta}^{2}=$ $2\left(E-V_{\text {eff }}\right) /\left(m l^{2}\right)$, which in turn can be separated to yield:

$$
\begin{equation*}
t=\int d t=\sqrt{m l^{2} / 2} \int \frac{d \theta}{\sqrt{E-V_{\mathrm{eff}}(\theta)}} . \tag{12}
\end{equation*}
$$

We also have from the equation for the canonical momentum associated with $\phi$ (namely $p_{\phi}$ ) that:

$$
\begin{equation*}
\phi=\frac{p_{\phi}}{\sqrt{2 m l^{2}}} \int \frac{d \theta}{\sin ^{2} \theta \sqrt{E-V_{\mathrm{eff}}(\theta)}} \tag{13}
\end{equation*}
$$

If $p_{\phi}=0$, then $\phi$ is a constant which corresponds to a planar pendulum.

