CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 5

(1a) The position of particle 1 is $x_{1}=l_{1} \sin \theta_{1}$ and $y_{1}=$ $l_{1} \cos \theta_{1}$ whereas for particle 2 we have $x_{2}=l_{1} \sin \theta_{1}+l_{2} \sin \theta_{2}$ and $y_{2}=l_{1} \cos \theta_{1}+l_{2} \cos \theta_{2}$. Since the general expression for kinetic energy is $T=m_{i}\left(\dot{x}_{i}^{2}+\dot{y}_{i}^{2}\right) / 2$, we then have $L=T_{1}+$ $T_{2}-V_{1}-V_{2}$:

$$
\begin{align*}
L & =\left(m_{1}+m_{2}\right) l_{1}^{2} \dot{\theta}_{1}^{2} / 2+m_{2} l_{2}^{2} \dot{\theta}_{2}^{2} / 2 \\
& +m_{2} l_{1} l_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right) \\
& +\left(m_{1}+m_{2}\right) g l_{1} \cos \theta_{1}+m_{2} g l_{2} \cos \theta_{2} . \tag{1}
\end{align*}
$$

The Lagrange-equations for θ_{1} and θ_{2} then become:

$$
\begin{gather*}
\left(m_{1}+m_{2}\right) l_{1}^{2} \ddot{\theta}_{1}+m_{2} l_{1} l_{2} \ddot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right) \\
+m_{2} l_{1} l_{2} \dot{\theta}_{2}^{2} \sin \left(\theta_{1}-\theta_{2}\right) \\
+\left(m_{1}+m_{2}\right) g l_{1} \sin \theta_{1}=0 \tag{2}
\end{gather*}
$$

and

$$
\begin{gather*}
m_{2} l_{2} \ddot{\theta}_{2}+m_{2} l_{1} l_{2} \ddot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right) \\
\quad-m_{2} l_{1} l_{2} \dot{\theta}_{1}^{2} \sin \left(\theta_{1}-\theta_{2}\right) \\
+m_{2} g l_{2} \sin \theta_{2}=0 \tag{3}
\end{gather*}
$$

(1b) If the masses and lengths are the same, in effect $m_{1}=$
$m_{2}=m$ and $l_{1}=l_{2}=l$, we obtain:

$$
\begin{align*}
2 \ddot{\theta}_{1} & +\ddot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right) \\
& +\dot{\theta}_{2}^{2} \sin \left(\theta_{1}-\theta_{2}\right)+2(g / l) \sin \theta_{1}=0 \\
\ddot{\theta}_{2} & +\ddot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right) \\
& -\dot{\theta}_{1}^{2} \sin \left(\theta_{1}-\theta_{2}\right)+(g / l) \sin \theta_{2}=0 . \tag{4}
\end{align*}
$$

Assume that the amplitude of the angular displacements are small so that $\theta_{i} \ll 1$. Approximating then $\sin \theta_{i} \simeq \theta_{i}$ and $\cos \theta_{i} \simeq 1$, we find

$$
\begin{gather*}
2 \ddot{\theta}_{1}+\ddot{\theta}_{2}+2 \omega_{0}^{2} \theta_{1}=0 \\
\ddot{\theta}_{2}+\ddot{\theta}_{1}+\omega_{0}^{2} \theta_{2}=0 \tag{5}
\end{gather*}
$$

We defined $\omega_{0}=\sqrt{g / l}$. Use the ansatz $\theta_{i}=A_{i} \cos \omega t$ to obtain the following equation system:

$$
\begin{equation*}
\left(2 \omega_{0}^{2}-2 \omega^{2}\right) A_{1}-\omega^{2} A_{2}=0 \quad-\omega^{2} A_{1}+\left(\omega_{0}^{2}-\omega^{2}\right) A_{2}=0 \tag{6}
\end{equation*}
$$

To have a non-trivial solution, the determinant of this equation system has to vanish which gives the condition $\omega^{4}-$ $4 \omega_{0}^{2} \omega^{2}+2 \omega_{0}^{4}=0$, with solutions $\omega_{1}^{2}=(2+\sqrt{2}) \omega_{0}^{2}$ and $\omega_{2}^{2}=$ $(2-\sqrt{2}) \omega_{0}^{2}$.

