CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 4

(1a) See figures in the Norwegian version of the solution.
Let z be the vertical coordinate for the mass of particle 2, in
which case s = r — z is constant. The Lagrange-function for
the system is then given by L=T; + 1, — V| — V,:

Ty = m(i* +r°9)/2,V; =0,
T2:m22/2:mi’2/27V2:mgz:mg(r—s). (1

(1b) The Lagrange equation for 0 gives [ = mr>0 as a constant
since O is a cyclic coordinate. The Lagrange equation for r,
after inserting for /, then reads:

2mit— 12/ (mr*) +mg =0 2

In the case of circular motion r = ry is a constant so that ¥ = 0.
This gives us 12/ (mr3) = mg so that r = [/ (m?g)]'/3.

(1c) Inserting r = ro + x in the Lagrange equation for r gives
us:
12

2mx — 5 tmg= 0. 3)

mrg(ler/ro)

If x/ro < 1, then to first order we have

1
m ~1—3x/rp. )

Using this, and that 12/ (mr)? = mg, in the equation of motion
above provides us with the desired form:

X+3gx/(2r9) =0 (5)

With the given conditions, the solution is x = xg cos ¢. Insert-
ing this x into the equation of motion for x above provides the

angular frequency ® = +/3g/(2rp).

(2) See figures in the Norwegian version of the solution. Since
we have translational invariance in the y-direction, this com-
ponent of the momentum is conserved. It must be the same
on both sides of the barrier. Therefore, mvg, = mv, such that
vosina = vsinB. In order to relate this to the potential and
energy, we need to express the ratio of v and v0 in terms of
these quantities. Since energy is conserved (no explicit time-
dependence in the system), we have mv(z) /2=mv*/2+V,=E.
This gives us v*/v3 = 1 — V,/E which inserted back into the
conservation of momentum in the y-direction gives

sina/sinf = +/1—-V/E =n. (6)

() See figures in the Norwegian version of the solution.
Let us first identify the kinetic energy for the m particles.

There is a contribution from the motion in the plane where
0 varies: %mlazéz. There is also a contribution from the
azimuthal motion associated with the angular frequency Q:
%ml (asin®)2Q?. As for particle n,, this one slides vertically.
The distance from A is 2a cos 0 so that the kinetic energy reads
T» = 2mya*?sin’@. The potential energies, measured with

reference level V = 0 when cos® = 0, have the form:
Vi = —-2mygacos0,V, = —2mygacos0. @)
In total, we then have the following Lagrangian:

L = ma* (6> + Q2 sin” 0) + 2mya*6* sin” 0
+2(my +my)gacos®. (8)

If 6 =0 at r = 0, then we should expect 0 to increase as time
passes by until an equilibrium configuration is obtained. For
Q — oo, we should have 6 — 7/2.

Computing the objects dL/98 and dL/d8 gives us the follow-
ing equation of motion:

26(m + 2my sin® 0) 4 4m,6? sin(26) — (m; Q>
+2my6?) 5in(20) 4 @f (my +my)sin® = 0, )

where 0)(2) = 2g/a. In the equilibrium configuration, there
should be no time-dependence on 6 so that 6 = 6y and 6 =
0 = 0. In that case, the equation of motion simplifies greatly
to:

—(m1 Q%) sin(20¢) + 3 (m1 +my)sinBp. (10)

From this, we identify that [after using a trigonometric iden-
tity to rewrite sin(28g)]

my +ny oa%

I Q2 (11)

cosBy =

If m; = my = m, we can write the Lagrangian for this system
as an effective one-particle problem where

L =ma*(1+2sin’0)6*> —V'(0) (12)
with an effective potential
V'(0) = —ma® (Q2 sin® 0 4 203 cos 0) (13)

Assume Q > . In that case, one can verify that dV’ /de =
0 when cos0 = 03% /Q? just as required for the equilibrium
solution. This is a minimum since

d*v'(e)
de? le=e,

> 0. (14)



