
CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 4

(1a) See figures in the Norwegian version of the solution.
Let z be the vertical coordinate for the mass of particle 2, in
which case s = r− z is constant. The Lagrange-function for
the system is then given by L = T1 +T2−V1−V2:

T1 = m(ṙ2 + r2
θ̇

2)/2,V1 = 0,

T2 = mż2/2 = mṙ2/2,V2 = mgz = mg(r− s). (1)

(1b) The Lagrange equation for θ gives l = mr2θ̇ as a constant
since θ is a cyclic coordinate. The Lagrange equation for r,
after inserting for l, then reads:

2mr̈− l2/(mr3)+mg = 0 (2)

In the case of circular motion r = r0 is a constant so that r̈ = 0.
This gives us l2/(mr3

0) = mg so that r = [l2/(m2g)]1/3.

(1c) Inserting r = r0 + x in the Lagrange equation for r gives
us:

2mẍ− l2

mr3
0(1+ x/r0)3

+mg = 0. (3)

If x/r0� 1, then to first order we have

1
(1+ x/r0)3 ' 1−3x/r0. (4)

Using this, and that l2/(mr0)
3 =mg, in the equation of motion

above provides us with the desired form:

ẍ+3gx/(2r0) = 0 (5)

With the given conditions, the solution is x = x0 cosωt. Insert-
ing this x into the equation of motion for x above provides the
angular frequency ω =

√
3g/(2r0).

(2) See figures in the Norwegian version of the solution. Since
we have translational invariance in the y-direction, this com-
ponent of the momentum is conserved. It must be the same
on both sides of the barrier. Therefore, mv0,y = mvy such that
v0 sinα = vsinβ. In order to relate this to the potential and
energy, we need to express the ratio of v and v0 in terms of
these quantities. Since energy is conserved (no explicit time-
dependence in the system), we have mv2

0/2=mv2/2+V0 =E.
This gives us v2/v2

0 = 1−V0/E which inserted back into the
conservation of momentum in the y-direction gives

sinα/sinβ =
√

1−V0/E = n. (6)

(3) See figures in the Norwegian version of the solution.
Let us first identify the kinetic energy for the m1 particles.

There is a contribution from the motion in the plane where
θ varies: 1

2 m1a2θ̇2. There is also a contribution from the
azimuthal motion associated with the angular frequency Ω:
1
2 m1(asinθ)2Ω2. As for particle m2, this one slides vertically.
The distance from A is 2acosθ so that the kinetic energy reads
T2 = 2m2a2θ̇2 sin2

θ. The potential energies, measured with
reference level V = 0 when cosθ = 0, have the form:

V1 =−2m1gacosθ,V2 =−2m2gacosθ. (7)

In total, we then have the following Lagrangian:

L = m1a2(θ̇2 +Ω
2 sin2

θ)+2m2a2
θ̇

2 sin2
θ

+2(m1 +m2)gacosθ. (8)

If θ = 0 at t = 0, then we should expect θ to increase as time
passes by until an equilibrium configuration is obtained. For
Ω→ ∞, we should have θ→ π/2.

Computing the objects ∂L/∂θ and ∂L/∂θ̇ gives us the follow-
ing equation of motion:

2θ̈(m1 +2m2 sin2
θ)+4m2θ̇

2 sin(2θ)− (m1Ω
2

+2m2θ̇
2)sin(2θ)+ω

2
0(m1 +m2)sinθ = 0, (9)

where ω2
0 = 2g/a. In the equilibrium configuration, there

should be no time-dependence on θ so that θ = θ0 and θ̈ =
θ̇ = 0. In that case, the equation of motion simplifies greatly
to:

−(m1Ω
2)sin(2θ0)+ω

2
0(m1 +m2)sinθ0. (10)

From this, we identify that [after using a trigonometric iden-
tity to rewrite sin(2θ0)]

cosθ0 =
m1 +m2

2m1

ω2
0

Ω2 . (11)

If m1 = m2 = m, we can write the Lagrangian for this system
as an effective one-particle problem where

L = ma2(1+2sin2
θ)θ̇2−V ′(θ) (12)

with an effective potential

V ′(θ) =−ma2(Ω2 sin2
θ+2ω

2
0 cosθ) (13)

Assume Ω > ω0. In that case, one can verify that dV ′/dθ =
0 when cosθ = ω2

0/Ω2 just as required for the equilibrium
solution. This is a minimum since

d2V ′(θ)
dθ2

∣∣∣
θ=θ0

> 0. (14)


