CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 4

(1a) See figures in the Norwegian version of the solution. Let z be the vertical coordinate for the mass of particle 2, in which case $s=r-z$ is constant. The Lagrange-function for the system is then given by $L=T_{1}+T_{2}-V_{1}-V_{2}$:

$$
\begin{align*}
& T_{1}=m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right) / 2, V_{1}=0, \\
& T_{2}=m \dot{z}^{2} / 2=m \dot{r}^{2} / 2, V_{2}=m g z=m g(r-s) . \tag{1}
\end{align*}
$$

(1b) The Lagrange equation for θ gives $l=m r^{2} \dot{\theta}$ as a constant since θ is a cyclic coordinate. The Lagrange equation for r, after inserting for l, then reads:

$$
\begin{equation*}
2 m \ddot{r}-l^{2} /\left(m r^{3}\right)+m g=0 \tag{2}
\end{equation*}
$$

In the case of circular motion $r=r_{0}$ is a constant so that $\ddot{r}=0$. This gives us $l^{2} /\left(m r_{0}^{3}\right)=m g$ so that $r=\left[l^{2} /\left(m^{2} g\right)\right]^{1 / 3}$.
(1c) Inserting $r=r_{0}+x$ in the Lagrange equation for r gives us:

$$
\begin{equation*}
2 m \ddot{x}-\frac{l^{2}}{m r_{0}^{3}\left(1+x / r_{0}\right)^{3}}+m g=0 . \tag{3}
\end{equation*}
$$

If $x / r_{0} \ll 1$, then to first order we have

$$
\begin{equation*}
\frac{1}{\left(1+x / r_{0}\right)^{3}} \simeq 1-3 x / r_{0} \tag{4}
\end{equation*}
$$

Using this, and that $l^{2} /\left(m r_{0}\right)^{3}=m g$, in the equation of motion above provides us with the desired form:

$$
\begin{equation*}
\ddot{x}+3 g x /\left(2 r_{0}\right)=0 \tag{5}
\end{equation*}
$$

With the given conditions, the solution is $x=x_{0} \cos \omega t$. Inserting this x into the equation of motion for x above provides the angular frequency $\omega=\sqrt{3 g /\left(2 r_{0}\right)}$.
(2) See figures in the Norwegian version of the solution. Since we have translational invariance in the y-direction, this component of the momentum is conserved. It must be the same on both sides of the barrier. Therefore, $m v_{0, y}=m v_{y}$ such that $v_{0} \sin \alpha=v \sin \beta$. In order to relate this to the potential and energy, we need to express the ratio of v and $v 0$ in terms of these quantities. Since energy is conserved (no explicit timedependence in the system), we have $m v_{0}^{2} / 2=m v^{2} / 2+V_{0}=E$. This gives us $v^{2} / v_{0}^{2}=1-V_{0} / E$ which inserted back into the conservation of momentum in the y-direction gives

$$
\begin{equation*}
\sin \alpha / \sin \beta=\sqrt{1-V_{0} / E}=n \tag{6}
\end{equation*}
$$

(3) See figures in the Norwegian version of the solution. Let us first identify the kinetic energy for the m_{1} particles.

There is a contribution from the motion in the plane where θ varies: $\frac{1}{2} m_{1} a^{2} \dot{\theta}^{2}$. There is also a contribution from the azimuthal motion associated with the angular frequency Ω : $\frac{1}{2} m_{1}(a \sin \theta)^{2} \Omega^{2}$. As for particle m_{2}, this one slides vertically. The distance from A is $2 a \cos \theta$ so that the kinetic energy reads $T_{2}=2 m_{2} a^{2} \dot{\theta}^{2} \sin ^{2} \theta$. The potential energies, measured with reference level $V=0$ when $\cos \theta=0$, have the form:

$$
\begin{equation*}
V_{1}=-2 m_{1} g a \cos \theta, V_{2}=-2 m_{2} g a \cos \theta . \tag{7}
\end{equation*}
$$

In total, we then have the following Lagrangian:

$$
\begin{align*}
L & =m_{1} a^{2}\left(\dot{\theta}^{2}+\Omega^{2} \sin ^{2} \theta\right)+2 m_{2} a^{2} \dot{\theta}^{2} \sin ^{2} \theta \\
& +2\left(m_{1}+m_{2}\right) g a \cos \theta . \tag{8}
\end{align*}
$$

If $\theta=0$ at $t=0$, then we should expect θ to increase as time passes by until an equilibrium configuration is obtained. For $\Omega \rightarrow \infty$, we should have $\theta \rightarrow \pi / 2$.

Computing the objects $\partial L / \partial \theta$ and $\partial L / \partial \dot{\theta}$ gives us the following equation of motion:

$$
\begin{align*}
& 2 \ddot{\theta}\left(m_{1}+2 m_{2} \sin ^{2} \theta\right)+4 m_{2} \dot{\theta}^{2} \sin (2 \theta)-\left(m_{1} \Omega^{2}\right. \\
& \left.\quad+2 m_{2} \dot{\theta}^{2}\right) \sin (2 \theta)+\omega_{0}^{2}\left(m_{1}+m_{2}\right) \sin \theta=0, \tag{9}
\end{align*}
$$

where $\omega_{0}^{2}=2 g / a$. In the equilibrium configuration, there should be no time-dependence on θ so that $\theta=\theta_{0}$ and $\ddot{\theta}=$ $\dot{\theta}=0$. In that case, the equation of motion simplifies greatly to:

$$
\begin{equation*}
-\left(m_{1} \Omega^{2}\right) \sin \left(2 \theta_{0}\right)+\omega_{0}^{2}\left(m_{1}+m_{2}\right) \sin \theta_{0} . \tag{10}
\end{equation*}
$$

From this, we identify that [after using a trigonometric identity to rewrite $\sin \left(2 \theta_{0}\right)$]

$$
\begin{equation*}
\cos \theta_{0}=\frac{m_{1}+m_{2}}{2 m_{1}} \frac{\omega_{0}^{2}}{\Omega^{2}} . \tag{11}
\end{equation*}
$$

If $m_{1}=m_{2}=m$, we can write the Lagrangian for this system as an effective one-particle problem where

$$
\begin{equation*}
L=m a^{2}\left(1+2 \sin ^{2} \theta\right) \dot{\theta}^{2}-V^{\prime}(\theta) \tag{12}
\end{equation*}
$$

with an effective potential

$$
\begin{equation*}
V^{\prime}(\theta)=-m a^{2}\left(\Omega^{2} \sin ^{2} \theta+2 \omega_{0}^{2} \cos \theta\right) \tag{13}
\end{equation*}
$$

Assume $\Omega>\omega_{0}$. In that case, one can verify that $d V^{\prime} / d \theta=$ 0 when $\cos \theta=\omega_{0}^{2} / \Omega^{2}$ just as required for the equilibrium solution. This is a minimum since

$$
\begin{equation*}
\left.\frac{d^{2} V^{\prime}(\theta)}{d \theta^{2}}\right|_{\theta=\theta_{0}}>0 \tag{14}
\end{equation*}
$$

