CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 2

(1a) L^{\prime} and L are equivalent if F satisfies:

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial}{\partial \dot{q}} \frac{d}{d t} F(q, t)-\frac{\partial}{\partial q} \frac{d}{d t} F(q, t)=0 . \tag{1}
\end{equation*}
$$

Now, we know that

$$
\begin{equation*}
\frac{d F}{d t}=\frac{\partial F}{\partial t}+\frac{\partial F}{\partial q} \dot{q} . \tag{2}
\end{equation*}
$$

Inserting this into the first equation, we obtain:

$$
\begin{equation*}
\frac{\partial^{2} F}{\partial q \partial t}+\frac{\partial^{2} F}{\partial q^{2}} \dot{q}-\frac{\partial^{2} F}{\partial q \partial t}-\frac{\partial^{2} F}{\partial q^{2}} \dot{q}=0 . \tag{3}
\end{equation*}
$$

(1b) We have that:

$$
\begin{align*}
{[\nabla \times(\nabla \times \mathbf{A})]_{i} } & =\varepsilon_{i j k} \partial_{j}(\nabla \times \mathbf{A})_{k} \\
& =\varepsilon_{i j k} \partial_{j} \varepsilon_{k l m} \partial_{l} A_{m} \\
& =\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) \partial_{j} \partial_{l} A_{m} \\
& =\partial_{i}(\nabla \cdot \mathbf{A})-\nabla^{2} A_{i} . \tag{4}
\end{align*}
$$

We have then shown that $\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}$.
Exactly the same approach as above for the other cases.
(1c) Frictional force $F_{f}=-\partial \mathcal{F} / \partial v$. The work performed by the system against friction, per unit time, is $\dot{W}=-F_{f} v$ which with $\mathcal{F}=C v^{2}$ becomes $\dot{W}=2 \mathcal{F}$. The Lagrange equations read:

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial v}-\frac{\partial L}{\partial x}+\frac{\partial \mathcal{F}}{\partial v}=0 \tag{5}
\end{equation*}
$$

Insert the Lagrangian $L=T-V=m v^{2} / 2-k x^{2} / 2$ and $\mathcal{F}=$ $3 \pi \mu a v^{2}$ to obtain:

$$
\begin{equation*}
\ddot{x}+2 \lambda \dot{x}+\omega_{0}^{2} x=0 \tag{6}
\end{equation*}
$$

where $\lambda=3 \pi \mu a / m$ and $\omega_{0}=\sqrt{k / m}$. Assuming $\lambda / \omega_{0} \ll 1$, the solution is:

$$
\begin{equation*}
x(t)=x_{0} \mathrm{e}^{-\lambda t} \cos \omega_{0} t \tag{7}
\end{equation*}
$$

and the average energy dissipation \bar{W} over a period $2 \pi / \omega_{0}$ can be computed by treating $\mathrm{e}^{-\lambda t}$ as a constant since it remains virtually unchanged over a time-interval $2 \pi / \omega$:

$$
\begin{equation*}
\bar{W} \simeq m \lambda\left(\omega_{0} x_{0}\right)^{2} \mathrm{e}^{-2 \lambda t} . \tag{8}
\end{equation*}
$$

