(1a) Choose the zero reference level for potential energy $V=0$ at $r \rightarrow \infty$. In that case, $T+V=E=0$ for a particle that barely escapes the gravitational pull of Earth. The graviational potential is:

$$
\begin{equation*}
V(r)=-\gamma \frac{M m}{r} \tag{1}
\end{equation*}
$$

where M is the mass of Earth and m is the particle mass. The escape velocity is then provided by:

$$
\begin{equation*}
\frac{1}{2} m v_{0}^{2}-\gamma \frac{M m}{r}=0 \tag{2}
\end{equation*}
$$

so that $v_{0}^{2}=2 \gamma M / R$. Inserting numbers, we obtain $v_{0}=11.2$ km / s.
(1b) Assuming a constant mass gives us $\mathbf{F}=m \dot{\mathbf{v}}$, so that $\mathbf{F} \cdot \mathbf{v}=$ $d\left(m v^{2} / 2\right) / d t=d T / d t$. With a variable mass we have $\mathbf{F}=\dot{\mathbf{p}}$
and thus $\mathbf{F} \cdot \mathbf{p}=d\left(p^{2} / 2\right) / d t=d(m T) / d t$ since $T=p^{2} / 2 m$.
(c) We have $V\left(x_{1}, x_{2}\right)=k(x-l)^{2} / 2$. Lagrange's equations used on x_{1} and x_{2} give us:

$$
\begin{array}{r}
\ddot{x}_{1}=-k(x-l) / m_{1}, \\
\ddot{x}_{2}=k(x-l) / m_{2} . \tag{3}
\end{array}
$$

Combining these equations gives $\ddot{R}=0$ and $\ddot{x}=-k(x-l) / \mu$ where $\mu^{-1}=m_{1}^{-1}+m_{2}^{-1}$. The solution for $x-l$ then reads $x-l=A \sin \sqrt{k / m u}\left(t-t_{0}\right)$ where A is a constant. The energy E at the maximum amplitude of the oscillation will consist of purely potential energy (since the particle has no velocity at the turning point), so that $E=k A^{2} / 2$. In effect, $x-l=$ $\sqrt{2 E / k} \sin \sqrt{k / \mu}\left(t-t_{0}\right)$. For $k \rightarrow \infty$, the angular frequency diverges so that $x \rightarrow l$. This means that the particles are frozen at a distance l from each other.

