## CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 13

The starting point is

$$
\begin{equation*}
H=p_{r}^{2} /(2 m)+p_{\theta}^{2} /\left(2 m r^{2}\right)+p_{z}^{2} /(2 m)+a(r)+b(z) . \tag{1}
\end{equation*}
$$

With $p_{i}=\partial_{q_{i}} S$ and $S=W-\alpha t$, along with the ansatz $W=$ $p_{\theta} \theta+S_{1}(r)+S_{2}(z)$, we obtain

$$
\begin{equation*}
\frac{1}{2 m}\left[S_{1}^{\prime}(r)\right]^{2}+p_{\theta}^{2} /\left(2 m r^{2}\right)+a(r)-E=-b(z)-\frac{1}{2 m}\left[S_{2}^{\prime}(z)\right]^{2} \tag{2}
\end{equation*}
$$

Now, the left side is a function of $r$ whereas the right side is a function of $z$, hence they must be constants:

$$
\begin{equation*}
\beta \equiv b(z)+\frac{1}{2 m}\left[S_{2}^{\prime}(z)\right]^{2}=\text { constant } \tag{3}
\end{equation*}
$$

This gives us $S_{2}(z)=\int \sqrt{2 m[\beta-b(z)]} d z$ from the right hand side, whereas from the left hand side

$$
\begin{equation*}
S_{1}(r)=\int \sqrt{2 m\left[E-\beta-a(r)-p_{\theta}^{2} /\left(2 m r^{2}\right)\right]} d r \tag{4}
\end{equation*}
$$

We have then found an expression for all terms in Hamilton's principal function $S$.

