CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 12

(1a) We have $[u, v]_{Q, P}=\partial_{Q} u \partial_{P} v-\partial_{P} u \partial_{Q} v$. Using that $q=$ $\sqrt{2 P /(m \omega)} \sin Q$ and $p=m \omega q \cot Q$, we obtain:
$\partial_{Q} u=\partial_{q} u \partial_{Q} q+\partial_{p} u \partial_{Q} p=\partial_{q} \sqrt{2 P /(m \omega)} \cos Q-\partial_{p} u \frac{m \omega q}{\sin ^{2} Q}$
and also

$$
\begin{equation*}
\partial_{P} v=\partial_{q} v \partial_{P} q+\partial_{p} v \partial_{P} p=\partial_{q} v \frac{\sin Q}{\sqrt{2 m \omega P}} \tag{2}
\end{equation*}
$$

In exactly the same way, one can obtain expressions for $\partial_{Q} v$ and $\partial_{P} u$. With these 4 quantities in hand, we can now evaluate:

$$
\begin{equation*}
[u, v]_{Q, P}=\left(\partial_{q} u \partial_{p} v-\partial_{p} u \partial_{q} v\right) \frac{m \omega q \sin Q}{\sin ^{2} Q \sqrt{2 m \omega P}} \tag{3}
\end{equation*}
$$

where the term inside the parantheses is seen to be $[u, v]_{q, p}$. The factor that appears afterwards is equal to 1 , as seen when inserting for q. Thus, we have shown that

$$
\begin{equation*}
[u, v]_{q, p}=[u, v]_{Q, P} \tag{4}
\end{equation*}
$$

for the harmonic oscillator.
(1b) In general, $F_{\mu v}=A_{v, \mu}-A_{\mu, v}$ with $A_{\mu}=(\mathbf{A}, \mathrm{i} \phi / c)$. The full matrix form of both $F_{\mu \nu}$ and $L_{\mu \nu}$ is written in the compendium. Since F transforms as

$$
\begin{equation*}
F_{\mu v}^{\prime}=L_{\mu \alpha} L_{v \beta} F_{\alpha \beta} \tag{5}
\end{equation*}
$$

it follows that

$$
\begin{align*}
& E_{1}^{\prime}=\gamma\left(E_{1}-v B_{2}\right) \\
& E_{2}^{\prime}=\gamma\left(E_{2}+v B_{1}\right) \\
& E_{3}^{\prime}=E_{3} \tag{6}
\end{align*}
$$

With $\gamma \simeq 1$, we then have $\mathbf{E}^{\prime}=\mathbf{E}+\mathbf{v} \times \mathbf{B}$. Writing down the same type of equations for the components B_{i} of the magnetic field and then taking the limit $\gamma \simeq 1$, provides $\mathbf{B}^{\prime}=\mathbf{B}-(\mathbf{v} \times$ E) $/ c^{2}$.
(1c) In the instantaneous rest-system we have $\mathbf{j}=\sigma \mathbf{E}$. Since the current density is finite, we must have $\mathbf{E}^{\prime} \rightarrow 0$ when $\sigma \rightarrow$ ∞. This means that $0=\mathbf{E}+\mathbf{u} \times \mathbf{B}$, where the terms on the right-hand side are the fields in the lab-system. It follows that $\mathbf{E}=-\mathbf{u} \times \mathbf{B}$ inside the fluid in the lab-system. To lowest order, we may set $\mathbf{B}=\mathbf{B}_{0}+O(u)$. See figure in Norwegian solution.

