CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 12

(1a) We have $[u, v]_{Q,P} = \partial_Q u \partial_P v - \partial_P u \partial_Q v$. Using that $q = \sqrt{2P/(m\omega)} \sin Q$ and $p = m\omega q \cot Q$, we obtain:

$$\partial_{Q}u = \partial_{q}u\partial_{Q}q + \partial_{p}u\partial_{Q}p = \partial_{q}\sqrt{2P/(m\omega)}\cos Q - \partial_{p}u\frac{m\omega q}{\sin^{2}Q}$$
(1)

and also

$$\partial_P v = \partial_q v \partial_P q + \partial_p v \partial_P p = \partial_q v \frac{\sin Q}{\sqrt{2m\omega P}}.$$
 (2)

In exactly the same way, one can obtain expressions for $\partial_Q v$ and $\partial_P u$. With these 4 quantities in hand, we can now evaluate:

$$[u,v]_{Q,P} = \left(\partial_q u \partial_p v - \partial_p u \partial_q v\right) \frac{m \omega q \sin Q}{\sin^2 Q \sqrt{2m \omega P}}$$
(3)

where the term inside the parantheses is seen to be $[u, v]_{q,p}$. The factor that appears afterwards is equal to 1, as seen when inserting for q. Thus, we have shown that

$$[u,v]_{q,p} = [u,v]_{Q,P}$$
(4)

for the harmonic oscillator.

(1b) In general, $F_{\mu\nu} = A_{\nu,\mu} - A_{\mu,\nu}$ with $A_{\mu} = (\mathbf{A}, i\phi/c)$. The full matrix form of both $F_{\mu\nu}$ and $L_{\mu\nu}$ is written in the compendium. Since *F* transforms as

$$F'_{\mu\nu} = L_{\mu\alpha} L_{\nu\beta} F_{\alpha\beta}, \qquad (5)$$

it follows that

$$E'_{1} = \gamma(E_{1} - \nu B_{2}),$$

$$E'_{2} = \gamma(E_{2} + \nu B_{1}),$$

$$E'_{3} = E_{3}.$$
 (6)

With $\gamma \simeq 1$, we then have $\mathbf{E}' = \mathbf{E} + \mathbf{v} \times \mathbf{B}$. Writing down the same type of equations for the components B_i of the magnetic field and then taking the limit $\gamma \simeq 1$, provides $\mathbf{B}' = \mathbf{B} - (\mathbf{v} \times \mathbf{E})/c^2$.

(1c) In the instantaneous rest-system we have $\mathbf{j} = \sigma \mathbf{E}$. Since the current density is finite, we must have $\mathbf{E}' \to 0$ when $\sigma \to \infty$. This means that $0 = \mathbf{E} + \mathbf{u} \times \mathbf{B}$, where the terms on the right-hand side are the fields in the lab-system. It follows that $\mathbf{E} = -\mathbf{u} \times \mathbf{B}$ inside the fluid in the lab-system. To lowest order, we may set $\mathbf{B} = \mathbf{B}_0 + O(u)$. See figure in Norwegian solution.