CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 10

(1a) See figure in the Norwegian version of the solution. In the rotating coordinate system, the centrifugal force acting on an element of length $d r$ in a distance r from the center equal to $r \omega^{2} \rho \cdot d r$. Here, ρ is the mass of the rod per unit length. The gravitational pull on the same element $d r$ is $G M \rho \cdot d r / r^{2}=g_{0} R^{2} \rho \cdot d r / r^{2}$ where g_{0} is the gravitational acceleration at the surface of the Earth. Balancing the total graviational and centrifugal force in order to obtain an equilibrium situation, then provides us with:

$$
\begin{equation*}
\int_{R}^{R+L} r \omega^{2} \rho \cdot d r=g_{0} R^{2} \rho \int_{R}^{R+L} d r / r^{2} \tag{1}
\end{equation*}
$$

Performing the integration results in:

$$
\begin{equation*}
L^{2}+3 R L+\left(2 R^{2}-2 g_{0} R / \omega^{2}\right)=0 \tag{2}
\end{equation*}
$$

This is a 2 nd order equation for L whose positive solution reads:

$$
\begin{equation*}
L=-3 R / 2+\sqrt{R^{2}+8 g_{0} R / \omega^{2}} / 2 \tag{3}
\end{equation*}
$$

Putting in numbers $R=6.4 \mathrm{~km}, \omega=2 \pi /(1$ day $)$, and $g_{0}=9.8$ $\mathrm{m} / \mathrm{s}^{2}$ gives $L=1.5 \times 10^{5} \mathrm{~km}$ (about halfway to the moon).
(1b) Let $x^{\prime} y^{\prime} z^{\prime} \rightarrow 123$. From the relations derived in the compendium/lecture:

$$
\begin{align*}
& \omega_{1}=\dot{\phi} \sin \theta \sin \psi+\dot{\theta} \cos \psi, \\
& \omega_{2}=\dot{\phi} \sin \theta \cos \psi-\dot{\theta} \sin \psi, \\
& \omega_{3}=\dot{\phi} \cos \theta+\dot{\psi}, \tag{4}
\end{align*}
$$

we obtain that

$$
\begin{equation*}
T=I_{1}\left(\omega_{1}^{2}+\omega_{2}^{2}\right) / 2+I_{3} \omega_{3}^{2} / 2 \tag{5}
\end{equation*}
$$

is the total energy content as there is no gravity potential, in effect $L=T=E$. Since ϕ and ψ are cyclic coordinates for our Lagrangian, we have that the corresponding canonical momenta are constants:

$$
\begin{align*}
& p_{\phi}=\partial_{\dot{\phi}} L=\left(I_{1} \sin ^{2} \theta+I_{3} \cos ^{2} \theta\right) \dot{\phi}+I_{3} \dot{\psi} \cos \theta \equiv L_{z} \\
& p_{\psi}=\partial_{\dot{\psi}} L=I_{3}(\dot{\psi}+\dot{\phi} \cos \theta) \equiv L_{3} \tag{6}
\end{align*}
$$

From these equations, we can eliminate the time derivatives of ϕ and ψ in favor of their corresponding canonical momenta (which are constant and renamed L_{z} and L_{3}). Inserting this into the energy, we finally arrive at:

$$
\begin{equation*}
E=\frac{1}{2} I_{1} \dot{\theta}^{2}+\frac{\left(L_{z}-L_{3} \cos \theta\right)^{2}}{2 I_{1} \sin ^{2} \theta}+\frac{L_{3}^{2}}{2 I_{3}} . \tag{7}
\end{equation*}
$$

