CLASSICAL MECHANICS TFY4345 - Exercise 9

(1) A particle with mass m moves in an attractive potential $V(r)$. Show, on the basis of energy conservation, how the problem can be looked upon as a one-dimensional problem with effective potential $\tilde{V}(r)$. What is the condition for the particle to reach the scattering centre, $r=0$?
(2) A hard sphere has radius a. For $r>a$, the sphere yields a Kepler potential $V=-k / r$, where $k>0$. Particles coming in
from infinity have mass m and original velocity v_{0}. The part of the particles having impact parameter $s \leq s_{\max }$, will hit the sphere's surface. Find $s_{\max }$ and the corresponding "effective" scattering cross section $\sigma_{\text {eff }}=\pi s_{\text {max }}^{2}$.
(3) Find Lagrange's and Hamilton's equations in cylindrical coordinates $q_{i}=(r, \theta, z)$ for a particle with mass m in a potential $V=V\left(q_{i}\right)$.

