CLASSICAL MECHANICS TFY4345 - Exercise 8

(1a) Find the differential cross section $\sigma(\Theta)$ for scattering against a hard sphere of radius a. The potential for this sphere can be written as $V \rightarrow \infty$ for $r<a$ and $V=0$ for $r>a$. Find from this the total cross section σ. Why is the final expression for σ reasonable?
(1b) Suppose now that the scattering occurs in a central field where the central force $f=-d V / d r$ is repulsive and equal to $f=k / r^{3}(k>0)$. Show that in this case the formula

$$
\begin{equation*}
\Theta=\pi-2 \int_{0}^{u_{m}} \frac{s \mathrm{~d} u}{\sqrt{1-V(u) / E-s^{2} u^{2}}}, \tag{1}
\end{equation*}
$$

where $u=1 / r$, yields the result

$$
\begin{equation*}
\sigma(\Theta)=\frac{k}{2 \pi E} \frac{1-x}{x^{2}(2-x)^{2} \sin (\pi x)}, \text { where } x=\Theta / \pi \tag{2}
\end{equation*}
$$

You may use that

$$
\begin{equation*}
\int \frac{\mathrm{d} x}{\sqrt{1-x^{2}}}=\arcsin (x) \tag{3}
\end{equation*}
$$

(1c) Explain in words the physical meaning of the differential scattering cross section and the total scattering cross section, accentuating the distinction between them.

FIG. 1: (Color online). The system under consideration.

