CLASSICAL MECHANICS TFY4345 - Exercise 7

(1a) A plane pendulum has mass m_{2}. The rod has length l. The suspension point (mass m_{1}) can slide without friction along a horizontal line in the x direction. Find the Lagrangian $L=L(\dot{x}, \theta, \dot{\theta})$ for the system.
(1b) Suppose that the CM is at rest in the x-direction. Show that the time $t=t(\theta)$ can be written as:

$$
\begin{equation*}
t=l \sqrt{\frac{m_{2}}{2\left(m_{1}+m_{2}\right)}} \int \sqrt{\frac{m_{1}+m_{2} \sin ^{2} \theta}{E+m_{2} g l \cos \theta}} \mathrm{~d} \theta \tag{1}
\end{equation*}
$$

where E is the total energy. Choose the potential to be zero at the height of m_{1}.

FIG. 1: (Color online). The system under consideration.
(2) A charged particle in an electromagnetic field has the Hamiltonian

$$
\begin{equation*}
H=\frac{1}{2 m}(\mathbf{p}-q \mathbf{A})^{2}+q \varphi \tag{2}
\end{equation*}
$$

Find Hamilton's equations. Use these to find the expression for the Lorentz force

$$
\begin{equation*}
\mathbf{F}=q \mathbf{E}+q \mathbf{v} \times \mathbf{B} \tag{3}
\end{equation*}
$$

Use, for instance, the Levi-Civita symbol to rewrite $[\mathbf{v} \times(\nabla \times$ A) $]_{i}$.

