CLASSICAL MECHANICS TFY4345 - Exercise 6

(1a) A particle with mass m moves in a central field with force $f(r) = -k/r^2 + \beta/r^3$, β =constant. Here, the last β -term gives the deviation from Kepler. Show that the trajectory may be written as the form:

$$p/r = 1 + \varepsilon \cos(\gamma \theta) \tag{1}$$

where $\gamma \neq 1$ corresponds to an ellipse with precession ($\gamma = 1$ gives a stable ellipse). Find p, ε , and γ expressed in terms of the original parameters in the problem, such as mass m, angular momentum l, energy E et.c.

(1b) Given a spherical pendulum, mass m, length l. The polar angle is θ while ϕ is the azimuthal angle. Choose the zero level for potential energy at $\theta = \pi/2$. Show that Lagrange's equations yield

$$p_{\phi} = ml^2 \sin^2 \theta \dot{\phi} = \text{constant}, \ \ddot{\theta} - \frac{1}{2} \sin 2\theta \dot{\phi}^2 + g \sin \theta / l = 0.$$
(2)

Also show that the total energy is

$$E = \frac{1}{2}ml^2\dot{\theta}^2 + V_{\text{eff}}(\theta), \tag{3}$$

and how the time and angle can be written on integral form as

$$t = \sqrt{ml^2/2} \int d\theta / \sqrt{E - V_{\text{eff}}(\theta)},$$

$$\phi = \frac{p_{\phi}}{\sqrt{2ml^2}} \int d\theta / (\sin^2 \theta \sqrt{E - V_{\text{eff}}(\theta)}).$$
(4)

What kind of motion corresponds to $p_{\phi} = 0$?

FIG. 1: (Color online). The system under consideration.