CLASSICAL MECHANICS TFY4345 - Exercise 6

(1a) A particle with mass m moves in a central field with force $f(r)=-k / r^{2}+\beta / r^{3}, \beta=$ constant. Here, the last β term gives the deviation from Kepler. Show that the trajectory may be written as the form:

$$
\begin{equation*}
p / r=1+\varepsilon \cos (\gamma \theta) \tag{1}
\end{equation*}
$$

where $\gamma \neq 1$ corresponds to an ellipse with precession $(\gamma=1$ gives a stable ellipse). Find p, ε, and γ expressed in terms of the original parameters in the problem, such as mass m, angular momentum l, energy E et.c.
(1b) Given a spherical pendulum, mass m, length l. The polar angle is θ while ϕ is the azimuthal angle. Choose the zero level for potential energy at $\theta=\pi / 2$. Show that Lagrange's equations yield

$$
\begin{equation*}
p_{\phi}=m l^{2} \sin ^{2} \theta \dot{\phi}=\text { constant, } \ddot{\theta}-\frac{1}{2} \sin 2 \theta \dot{\phi}^{2}+g \sin \theta / l=0 . \tag{2}
\end{equation*}
$$

Also show that the total energy is

$$
\begin{equation*}
E=\frac{1}{2} m l^{2} \dot{\theta}^{2}+V_{\mathrm{eff}}(\theta), \tag{3}
\end{equation*}
$$

and how the time and angle can be written on integral form as

$$
\begin{align*}
t & =\sqrt{m l^{2} / 2} \int \mathrm{~d} \theta / \sqrt{E-V_{\text {eff }}(\theta)}, \\
\phi & =\frac{p_{\phi}}{\sqrt{2 m l^{2}}} \int \mathrm{~d} \theta /\left(\sin ^{2} \theta \sqrt{E-V_{\text {eff }}(\theta)}\right) . \tag{4}
\end{align*}
$$

What kind of motion corresponds to $p_{\phi}=0$?

FIG. 1: (Color online). The system under consideration.

