(1a) Two particles 1 and 2, each with mass m, are connected with a massless line of constant length s. The line can move without friction through a small opening in the horiztonal table ABCD . Particle 2 can move vertically, whereas particle 1 moves horizontally (without friction) on the table. The movement of particle 1 is in general composed of a radial and azimuthal part. Let the potential energy be zero in the plane of the table. Write down the Lagrangian of the system.
(1b) Show that the z-component of the angular momentum, $l_{z}=l$, is constant. Moreover, show that

$$
\begin{equation*}
2 m \ddot{r}-l^{2} /\left(m r^{3}\right)+m g=0 \tag{1}
\end{equation*}
$$

One solution of this equation is that particle 1 is in circular motion, $r=r_{0}$. Find r_{0}.
(1c) Assume that the circular orbit $r=r_{0}$ is exposed to a small radial perturbation, $r \rightarrow r_{0}+x$ where $x=x(t)$. Find the equation of motion for x. Include only first order terms in x / r_{0}. If the intitial conditions are $x(t=0)=x_{0}, \dot{x}(t=0)=0$, the solution will have the form $x=x_{0} \cos \omega t$. Find the angular frequency ω.

FIG. 1: (Color online). The system under consideration.
(2) A particle with mass m and constant velocity $\mathbf{v}_{\mathbf{0}}$ is incident from a region $x<0$ with zero potential, $V=0$. At the position $x=0$ there is a potential jump, such that for $x>0$ the potential is constant and equal to $V=V_{0}$. Assume that $V_{0}<E$ where E is the energy of the particle. Comment on whether energy and momentum are conserved or not. Assume that the particle is incident from $x<0$ at an angle α with respect to the normal of the interface region and that it propagates with an angle β inside the region $x>0$. Show that one may write

$$
\begin{equation*}
\sin \alpha / \sin \beta=f\left(E, V_{0}\right) \tag{2}
\end{equation*}
$$

and identify the function $f\left(E, V_{0}\right)$.
(3) The particle m_{2} moves vertically without friction on a rod coincident with the z-axis. There are four massless arms, each

FIG. 2: (Color online). The system under consideration.
of length a. The suspension point A is fixed. The whole system rotates around the z-axis with a constant angular frequency Ω. Find the Lagrangian of the system. Explain qualitatively how $\theta=\theta(t)$ evolves with time under the assumption that the initial condition is $\theta(t=0)=0$. Also write down Lagrange's equations and determine for which angle $\theta=\theta_{0}$ the system is at equilibrium. Comment on how you arrived at this result and show that the same result for θ_{0} can be obtained by balancing the forces acting on the system. Finally, consider the problem as equivalent to a 1 D problem with θ as the variable and with effective potential

$$
\begin{equation*}
\tilde{V}(\theta)=-m a^{2}\left(\Omega^{2} \sin ^{2} \theta+2 \omega_{0}^{2} \cos \theta\right) \tag{3}
\end{equation*}
$$

under the assumption that $m_{1}=m_{2}=m$. We have introduced $\omega_{0}^{2}=2 g / a$. Assume now that $\Omega>\omega_{0}$ and show how \tilde{V} has a minimum when $\theta=\theta_{0}$.

FIG. 3: (Color online). The system under consideration.

