CLASSICAL MECHANICS TFY4345 - Exercise 4

(1a) Two particles 1 and 2, each with mass m, are connected with a massless line of constant length s. The line can move without friction through a small opening in the horiztonal table ABCD. Particle 2 can move vertically, whereas particle 1 moves horizontally (without friction) on the table. The movement of particle 1 is in general composed of a radial and azimuthal part. Let the potential energy be zero in the plane of the table. Write down the Lagrangian of the system.

(1b) Show that the *z*-component of the angular momentum, $l_z = l$, is constant. Moreover, show that

$$2m\ddot{r} - l^2 / (mr^3) + mg = 0 \tag{1}$$

One solution of this equation is that particle 1 is in circular motion, $r = r_0$. Find r_0 .

(1c) Assume that the circular orbit $r = r_0$ is exposed to a small radial perturbation, $r \rightarrow r_0 + x$ where x = x(t). Find the equation of motion for *x*. Include only first order terms in x/r_0 . If the initial conditions are $x(t = 0) = x_0$, $\dot{x}(t = 0) = 0$, the solution will have the form $x = x_0 \cos \omega t$. Find the angular frequency ω .

FIG. 1: (Color online). The system under consideration.

(2) A particle with mass *m* and constant velocity \mathbf{v}_0 is incident from a region x < 0 with zero potential, V = 0. At the position x = 0 there is a potential jump, such that for x > 0 the potential is constant and equal to $V = V_0$. Assume that $V_0 < E$ where *E* is the energy of the particle. Comment on whether energy and momentum are conserved or not. Assume that the particle is incident from x < 0 at an angle α with respect to the normal of the interface region and that it propagates with an angle β inside the region x > 0. Show that one may write

$$\sin\alpha/\sin\beta = f(E, V_0) \tag{2}$$

and identify the function $f(E, V_0)$.

(3) The particle m_2 moves vertically without friction on a rod coincident with the *z*-axis. There are four massless arms, each

FIG. 2: (Color online). The system under consideration.

of length *a*. The suspension point *A* is fixed. The whole system rotates around the *z*-axis with a constant angular frequency Ω . Find the Lagrangian of the system. Explain qualitatively how $\theta = \theta(t)$ evolves with time under the assumption that the initial condition is $\theta(t = 0) = 0$. Also write down Lagrange's equations and determine for which angle $\theta = \theta_0$ the system is at equilibrium. Comment on how you arrived at this result and show that the same result for θ_0 can be obtained by balancing the forces acting on the system. Finally, consider the problem as equivalent to a 1D problem with θ as the variable and with effective potential

$$\tilde{V}(\theta) = -ma^2(\Omega^2 \sin^2 \theta + 2\omega_0^2 \cos \theta)$$
(3)

under the assumption that $m_1 = m_2 = m$. We have introduced $\omega_0^2 = 2g/a$. Assume now that $\Omega > \omega_0$ and show how \tilde{V} has a minimum when $\theta = \theta_0$.

FIG. 3: (Color online). The system under consideration.