CLASSICAL MECHANICS TFY4345 - Exercise 2

(1a) Show by direct substitution that

$$
\begin{equation*}
L^{\prime}(q, \dot{q}, t)=L(q, \dot{q}, t)+\frac{d F(q, t)}{d t} \tag{1}
\end{equation*}
$$

where F is an arbitrary function leads to the same Lagrangian equation as $L(q, \dot{q}, t)$.
(1b) Use the Levi-Civita tensor to prove the following vectorrelations:

$$
\begin{align*}
\nabla \times(\nabla \times \mathbf{A}) & =\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}, \\
\mathbf{v} \times(\nabla \times \mathbf{v}) & =\frac{1}{2} \nabla v^{2}-(\mathbf{v} \cdot \nabla) \mathbf{v}, \\
\nabla \cdot(\mathbf{A} \times \mathbf{B}) & =\mathbf{B} \cdot(\nabla \times \mathbf{A})-\mathbf{A} \cdot(\nabla \times \mathbf{B}) \tag{2}
\end{align*}
$$

where $v=|\mathbf{v}|$.
(1c) A particle with mass m moves with low velocity $\dot{x}=v$.

The frictional force is $F_{f}=-\partial \mathcal{F} / \partial v$, where \mathcal{F} is Rayleigh's dissipation function. Show that if $\mathcal{F} \propto v^{2}$, the viscous energy loss \dot{W}_{f} per unit time can be written as $\dot{W}_{f}=2 \mathcal{F}$. Assume that the particle is a damped oscillator with centre in the origin. The spring constant is k. Assume also that $\mathcal{F}=3 \pi \mu a v^{2}$ where μ is the dynamic viscosity and a is the particle radius. Start from Lagrange's equation and show that the equation of motion can be written as:

$$
\begin{equation*}
\ddot{x}+2 \lambda \dot{x}+\omega_{0}^{2} x=0 . \tag{3}
\end{equation*}
$$

Express λ and ω_{0} in terms of the above constants. Solve the equation for $x(t)$ assuming that $\dot{x}(0)=0$ when $\lambda / \omega_{0} \ll 1$ and show that one approximately has

$$
\begin{equation*}
\overline{\dot{W}_{f}}=m \lambda\left(\omega_{0} x_{0}\right)^{2} \mathrm{e}^{-2 \lambda t} . \tag{4}
\end{equation*}
$$

