CLASSICAL MECHANICS TFY4345 - Exercise 11

(1a) The CO_{2} molecule is given, with masses M and m. The deviations from equilibrium are written as $\eta_{i}=\sum_{\alpha} \Delta_{i \alpha} \Theta_{\alpha}$, where $\theta_{\alpha}=\operatorname{Re}\left\{C_{\alpha} \mathrm{e}^{-\mathrm{i} \omega_{\alpha} t}\right\}$ are the normal coordinates. Write $V_{i j}$ and $T_{i j}$ on matrix form.
(1b) Identify the eigenfrequencies ω_{1}, ω_{s}, and ω_{a}.
(1c) Find the cofactors $\Delta_{i \alpha}$, for $i=1,2,3, \alpha=1, s, a$. Use the normalization $\sum_{i, j=1}^{3} T_{i j} \Delta_{i \alpha} \Delta_{j \beta}=\delta_{\alpha \beta}$.
(1d) Describe in words what kind of motion of the molecule the different solutions correspond to.
(2) Find the velocity components $\left(u_{x}, u_{y}, u_{z}\right)$ in the inertial system S expressed in terms of the corresponding components $\left(u_{x}^{\prime}, u_{y}^{\prime}, u_{z}^{\prime}\right)$ in S^{\prime}. The system S^{\prime} is moving with a speed v along the z-axis of S. Assume that a particle is instantaneously at rest in S^{\prime}, i.e. $\mathbf{u}^{\prime}=0$ at the time of the measurement, and that its acceleration in S^{\prime} at the same time is \mathbf{a}^{\prime}. Show that the acceleration components $a_{i}=d u_{i} / d t$ in S are:

$$
\begin{align*}
& a_{x}=\left(1-\beta^{2}\right) a_{x}^{\prime} \tag{1}\\
& a_{y}=\left(1-\beta^{2}\right) a_{y}^{\prime} \tag{2}\\
& a_{z}=\left(1-\beta^{2}\right)^{3 / 2} a_{z}^{\prime} . \tag{3}
\end{align*}
$$

(3) A radioactive ${ }^{57} \mathrm{Co}$ element is situated on the periphery of a rotating disk. The peripheral velocity is u. The radiation is received by an observer located in the center of the disk. Let v^{0} be the eigenfrequency of the radiation in the inertial system where the element is momentarily at rest. Find the frequency v of the observed radiation.

FIG. 1: (Color online). The system under consideration.

