CLASSICAL MECHANICS TFY4345 - Exercise 11

(1a) The CO₂ molecule is given, with masses *M* and *m*. The deviations from equilibrium are written as $\eta_i = \sum_{\alpha} \Delta_{i\alpha} \Theta_{\alpha}$, where $\theta_{\alpha} = \text{Re}\{C_{\alpha}e^{-i\omega_{\alpha}t}\}$ are the normal coordinates. Write V_{ij} and T_{ij} on matrix form.

(1b) Identify the eigenfrequencies ω_1, ω_s , and ω_a .

(1c) Find the cofactors $\Delta_{i\alpha}$, for i = 1, 2, 3, $\alpha = 1, s, a$. Use the normalization $\sum_{i,j=1}^{3} T_{ij} \Delta_{i\alpha} \Delta_{j\beta} = \delta_{\alpha\beta}$.

(1d) Describe in words what kind of motion of the molecule the different solutions correspond to.

(2) Find the velocity components (u_x, u_y, u_z) in the inertial system *S* expressed in terms of the corresponding components (u'_x, u'_y, u'_z) in *S'*. The system *S'* is moving with a speed *v* along the *z*-axis of *S*. Assume that a particle is instantaneously at rest in *S'*, i.e. $\mathbf{u}' = 0$ at the time of the measurement, and that its acceleration in *S'* at the same time is \mathbf{a}' . Show that the acceleration components $a_i = du_i/dt$ in *S* are:

$$a_x = (1 - \beta^2) a'_x \tag{1}$$

$$a_y = (1 - \beta^2) a'_y \tag{2}$$

$$a_z = (1 - \beta^2)^{3/2} a'_z.$$
(3)

(3) A radioactive ⁵⁷Co element is situated on the periphery of a rotating disk. The peripheral velocity is *u*. The radiation is received by an observer located in the center of the disk. Let v^0 be the eigenfrequency of the radiation in the inertial system where the element is momentarily at rest. Find the frequency v of the observed radiation.

FIG. 1: (Color online). The system under consideration.