CLASSICAL MECHANICS TFY4345 - Exercise 10

A ridig strong rod with uniform mass density hangs in a stationary position from a fixed point at the equator, directed upwards, without being suspended at any point (the rod thus follows the rotation of Earth). The radius R of the Earth can be set to 6400 km .
(1a) What is the length L of the rod? Explain which physical principle you are using to solve the problem.
(1b) Imagine now that the rod still is fixed at the equator, but that its length L is shorter than the answer in a). What would happen with the rod? What happens if L is longer than the answer in a)?

FIG. 1: (Color online). The system under consideration.
(2) A rigid body is symmetric around the x_{3} axis. The moments of inertia are $I_{1}, I_{2}=I_{1}$ and I_{3}. There are no external forces. Use the formulas

$$
\begin{array}{r}
\omega_{1}=\dot{\phi} \sin \theta \sin \psi+\dot{\theta} \cos \psi \\
\omega_{2}=\dot{\phi} \sin \theta \cos \psi-\dot{\theta} \sin \psi \\
\omega_{3}=\dot{\phi} \cos \theta+\dot{\psi} \tag{3}
\end{array}
$$

to show that the rotational energy around the CM is:

$$
\begin{equation*}
T=\frac{1}{2} I_{1}\left(\dot{\theta}^{2}+\dot{\phi}^{2} \sin ^{2} \theta\right)+\frac{1}{2} I_{3}(\dot{\psi}+\dot{\phi} \cos \theta)^{2} \tag{4}
\end{equation*}
$$

Use Lagrangian theory to show that the canonical momentum components p_{ϕ} and p_{ψ} are constants, equal respectively to L_{z} (in the fixed lab-frame), and L_{3}. Find $\dot{\phi}=\dot{\phi}\left(\theta, L_{z}, L_{3}\right)$ and $\dot{\psi}=\dot{\psi}\left(\theta, L_{z}, L_{3}\right)$ and also the energy E expressed by means of $\theta, \dot{\theta}, L_{z}$, and L_{3}.

