Norwegian University of Science and Technology Department of Energy and Process Engineering

Contact during exam: Ivar S. Ertesvåg, phone (735)93839

EXAM IN SUBJECT TEP4170 HEAT AND COMBUSTION TECHNOLOGY (Varme- og forbrenningsteknikk) 9 August 2010 Time: 0900 – 1300

The exam is only available in English. The answers can be written in Norwegian or English.

Permitted aids: D – No printed or handwritten aids. Certain simple calculator.

- Please do not use red pencil/pen, as this is reserved for the censors.
- Read through the problems first. Begin with the problem where you feel that you have the best insight. If possible, do not leave any problems blank. <u>Formulate clearly</u>, it pays off!

NOTE: The decimal sign is comma.

Problems:

1)

--Write the transport equation for a species (mass fraction, Y_k) for a 2-dimensional, turbulent boundary layer along a wall (the wall is normal to the x_2 direction; the main flow is in the x_1 direction).

-- Explain the approximations you did here .

2)

In the equation in Problem 1, there is a term containing the quantity $-\rho \overline{Y'_k u'_2}$.

-- Make use of Prandtl's mixing length model (Norw: blandingsvegmodell) to develop a model for this quantity.

-- If you, for some reason, have an (other) model for the turbulence viscosity: How can the quantity above be modeled? Explain.

3)

-- Show that the relation $u_1^+ = \frac{1}{\kappa} \ln x_2^+ + C$ is valid for a region of a boundary layer along a wall (the x_1 and x_2 directions as in Problem1).

4)

For the region where the expression given in Problem 3 is valid:

-- Develop an expression for Prandtl's mixing length (Norw: blandingsveg).

-- Develop an expression for the dissipation (dissipation rate of turbulence energy, ε).

5)

The Borghi diagram is a two-dimensional presentation of different "regimes" of combustion. The axes are the logarithms of u'/u_L (vertical) and l'/δ_L (horizontal).

The diagram have lines for the Reynolds number $\operatorname{Re}_{l'} = u'l'/\upsilon$ and the Damköhler numbers

 $Da = \theta / \tau_c$ and $Da_K = \tau / \tau_c$.

-- Define/explain the mentioned quantities and sketch the Borghi diagram with the lines mentioned.

6)

Explain the differences between premixed and non-premixed flames (key words: form, outlook, physical/chemical processes, analysis, pollution/emissions, etc.)

7)

Put up the conceptual reaction balances for unimolecular (single-), bimolecular (two-) and termolecular (three-) reactions. Describe/discuss these with respect to important characteristica such as reaction order.

8)

In a counterflow non-premixed (diffusion) flame, the oxidizer (air) and fuel (pure methane) are supplied through axisymmetric nozzles.

- Sketch the nozzles, the flow, and the flame.
- Sketch the profiles of temperature and mole fractions of CH₄, H₂, CO, CO₂, H₂O O₂ and N₂ along the axis of the nozzles.

9)

HCCI or homogeneous charge compression ignition engines is a new type of engine concept. --Describe the HCCI concept in comparison with the Diesel and Otto (gasoline) engine concepts.

10)

A gas mixture contains 90% methane and 10% ethane on a molar base. It burns with 250% theoretical air ($\lambda = 2,5$), and the combustion is virtually complete. There is, however, a small amount of NO in the exhaust, measured to 15 ppm (mole fraction $15 \cdot 10^{-6}$) on a "dry" basis. The combustion takes place in a gas turbine with thermal efficiency of 40%.

- Determine the emission index for NO, *EI*_{NO}, in this case.

- Determine the mass specific emission for NO, (MSE)_{NO}, in this case

Air can be assumed as $21\% O_2$ and $79\% N_2$. Molar masses (kg/kmol): CH₄: 16; C₂H₆: 30; CO₂: 44; H₂O: 18; N₂: 28; O₂: 30, NO: 30. Lower heating values (MJ/kmol): CH₄: 802; C₂H₆: 1429.

11)

--What are the 4 global surface (heterogeneous) reactions within the reacting boundary layer of a carbon particle burning in air?

-- What is the main difference between the film model and shrinking-core model for carbon combustion?

12)

Consider a spherical solid fuel particle burning in an oxygen stream with a constant size mode. On doubling the particle size from *R* to 2*R*, the time for complete conversion (τ) triples. Given Table 25.1 (next page) and assumed that film diffusion does not give any resistance, what is the contribution (%) of ash diffusion to the overall resistance for particles of size *R*?

1	Table 25.1	Conversion-Time Expr	essions	for Various Shapes of Particles, Sh	rinking	-Core Model	
		Film Diffusion Cont	rols	Ash Diffusion Controls		Reaction Contro	slo
	Flat plate $X_n = 1 - \frac{1}{2}$	$\frac{t}{\tau} = X_{\rm B}$		$\frac{t}{\tau} = X_{\rm B}^2$		$\frac{l}{\tau} = X_{\rm B}$	
ricles	L = half thickness	$\tau = \frac{\rho_{\rm B}L}{bk_{\rm g}C_{\rm Ag}}$		$\boldsymbol{\tau} = \frac{\rho_{\rm B}L^2}{2b\mathscr{D}_{\rm c}C_{\rm Ag}}$		$\tau = \frac{\rho_{\rm B}L}{bk''C_{\rm Ag}}$	
ng sziö	Cylinder	$\frac{t}{\tau} = X_{\rm B}$		$\frac{t}{\tau} = X_{\rm B} + (1 - X_{\rm B}) \ln(1 - X_{\rm B})$		$rac{t}{ au} = 1 - (1 - X_{ m B})^{1/2}$	
5 tuvisu	$X_{\rm B} = 1 - \left(\frac{r_{\rm c}}{R}\right)$	$\boldsymbol{\tau} = \frac{\rho_{\rm B}R}{2bk_{\rm s}C_{\rm Ag}}$		$\tau = \frac{\rho_{\rm B}R^2}{4b\mathscr{D}_{\rm e}C_{\rm Ag}}$		$\boldsymbol{\tau} = \frac{\rho_{\rm B}R}{bk^n C_{\rm Ag}}$	
20	Sphere (* \3	$\frac{t}{\tau} = X_{\rm B}$	Ē	$\frac{t}{\tau} = 1 - 3(1 - X_{\rm B})^{2/3} + 2(1 - X_{\rm B})$	(18)	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/3}$	3
	$X_{\rm B} = 1 - \left(\frac{r_c}{R}\right)$	$\tau = \frac{\rho_{\rm B}R}{3bk_{\rm g}C_{\rm Ag}}$	(10)	$\tau = \frac{\rho_{\rm B}R^2}{(b \mathcal{D}_{\rm e}C_{\rm Ag})}$	(17)	$\boldsymbol{\tau} = \frac{\rho_{\rm B}R}{bk''C_{\rm Ag}}$	(23)
i	Small particle Stokes regime	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{2/3}$	(96)			$rac{t}{ au} = 1 - (1 - X_{ m B})^{1/3}$	
оләцас 8		$\boldsymbol{\tau} = \frac{\rho_{\rm B}R_0^2}{2b\mathscr{D}C_{\rm Ag}}$	(29)	Not applicable		$\tau = \frac{\rho_{\rm B}R_0}{bk''C_{\rm Ag}}$	
uiyuin	Large particle $(u = constant)$	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/2}$	(31)			$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/3}$	
45		$\tau = (\text{const}) \frac{R_0^{3/2}}{C_{Ag}}$		Not applicable		$\tau = \frac{\rho_{\rm B}R}{bk''C_{\rm Ag}}$	

Page 3 of 3/eng

Table 25.1 from Levenspiel