Problems on EDC given at exams in "Turbulent combustion, mass and heat transfer", 1993-2000.
Compiled and translated May 2016, Ivar S. Ertesvåg
Chapter 11 Magnussen's Eddy Dissipation Concept was not included in the reading list of TEP4170/SIO1073 Heat and Combustion Technology in the years 2001-2015, but included from 2016. The chapter (or a draft version) was included in 61161Turbulent combustion, mass and heat transfer from 1993 to 2000.

All exams were 4 h and had 12 problems (except 1993). Problems were given in Norwegian.

May2000,1c:

Two models that are in use for turbulent combustion are Magnussen's Eddy Dissipation Concept (EDC) and Flamelet models.

- Mention important and characteristic aspects of EDC
(and 1d: Explain main points of flamelet models)

May 1999, 3c-d:

c) In Magnussen's combustion model. EDC, the following expression appears:

$$
-R_{k}^{*}=\rho^{*} \dot{m}^{*} \chi\left(Y_{k}^{o}-Y_{k}^{*}\right)
$$

- Show how this is achieved and explain the meaning of each symbol.
d) With some development, Magnussen arrives at

$$
-\bar{R}_{k}=\frac{\bar{\rho} \dot{m} \chi}{1-\gamma^{*} \chi}\left(\tilde{Y}_{k}-Y_{k}^{*}\right)
$$

-Show how this expression will become when we assume "(infinitely) fast reaction" and that we account fuel, oxidizer and product as the "species" of the reaction.

May 1998: no questions on EDC
May 1997, 3a:
In Magnussen's combustion model EDC, the reaction rate is modeled as
$-\bar{R}_{k}=\frac{\bar{\rho} \dot{m} \chi}{1-\gamma^{*} \chi}\left(\tilde{Y}_{k}-Y_{k}^{*}\right)$
-What are $\dot{m}, \gamma^{*}, \chi$ and Y_{k}^{*} ?
-How do we determine Y_{k}^{*} for infinitely fast chemistry and for finite-rate chemistry?

May 1996, 3c-d:

c) Explain about the reactor model of Magnussen's Eddy Dissipation Concept.
d) Explain how the expression

$$
\bar{R}_{\mathrm{fu}} \sim \tilde{Y}_{\min }, \quad \text { where } \tilde{Y}_{\min }=\min \left[\tilde{Y}_{f u}, \tilde{Y}_{o x} / r\right]
$$

is achieved. (The symbol ~ denotes "proportional to").

June 1995: no questions on EDC
June 1994, 3c-d = May 2000 1c-d
June 1993, 3a-d (4 of 16 problems, 4 hours)
Magnussen's combustion model Eddy Dissipation Concept (EDC)
a)Mention the main points of EDC
b)Show how he by a reactor model achieved
$-\bar{R}_{k}=\frac{\bar{\rho} \dot{m} \chi}{1-\gamma^{*} \chi}\left(\tilde{Y}_{k}-Y_{k}^{*}\right), \quad$ given $\quad\left(Y_{k}^{o}-Y_{k}^{*}\right)=\frac{\left(\tilde{Y}_{k}-Y_{k}^{*}\right)}{1-\gamma^{*} \chi}$
c) Show how this model is simplified if an infinitely fast, one-step reaction is assumed
d) How is extinction modeled in EDC?

