Department of Energy and Process Engineering TEP4170 Heat and combustion technology

Exercise 1: Introduction and repetition

Tensor notation

Problem 1:
Write in Cartesian tensor notation:
a)

$$
\rho \frac{\partial u}{\partial x}+u \frac{\partial \rho}{\partial x}+\rho \frac{\partial v}{\partial y}+v \frac{\partial \rho}{\partial y}+\rho \frac{\partial w}{\partial z}+w \frac{\partial \rho}{\partial z}=0
$$

b)

$$
\varepsilon_{i j}= \begin{cases}\frac{2}{3} \varepsilon & \text { when } i=j \\ 0 & \text { otherwise }\end{cases}
$$

c)

$$
\begin{array}{lll}
& \Phi_{11}=-C_{2}\left(P_{11}-\frac{2}{3} P\right) & \Phi_{12}=-C_{2} P_{12} \\
& \Phi_{22}=-C_{2}\left(P_{22}-\frac{2}{3} P\right) & \Phi_{23}=-C_{2} P_{23} \\
& \Phi_{33}=-C_{2}\left(P_{33}-\frac{2}{3} P\right) & \Phi_{13}=-C_{2} P_{13} \\
\text { where } & P=\frac{1}{2}\left(P_{11}+P_{22}+P_{33}\right) &
\end{array}
$$

Problem 2:
Write in normal notation:
a) The momentum equation

$$
\frac{\partial}{\partial t}\left(\rho u_{i}\right)+\frac{\partial}{\partial x_{j}}\left(\rho u_{i} u_{j}\right)=-\frac{\partial p}{\partial x_{i}}+\frac{\partial \tau_{i j}}{\partial x_{j}}+\rho f_{i}
$$

with the stress tensor

$$
\tau_{i j}=\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)+\left(\mu_{B}-\frac{2}{3} \mu\right) \frac{\partial u_{k}}{\partial x_{k}} \delta_{i j}
$$

b) The dissipation function

$$
\Phi=\tau_{i j} \frac{\partial u_{i}}{\partial x_{j}}
$$

Problem 3:
Show that

$$
C_{\varphi}=\frac{\partial}{\partial t}(\rho \varphi)+\frac{\partial}{\partial x_{j}}\left(\rho u_{j} \varphi\right)
$$

also can be formulated as

$$
C_{\varphi}=\rho \frac{\partial \varphi}{\partial t}+\rho u_{j} \frac{\partial \varphi}{\partial x_{j}}
$$

Are there assumptions that have to be made in doing this?

Problem 4:
Why do we use tensor notation?

Basic equations

Problem 5:

In Thermodynamics you have learned that the 1st law can be formulated mathematically as
$\dot{m}_{\mathrm{in}}\left(h+\frac{1}{2} u^{2}+g z\right)_{\mathrm{in}}-\dot{m}_{\mathrm{out}}\left(h+\frac{1}{2} u^{2}+g z\right)_{\mathrm{out}}+\dot{Q}-\dot{W}=\frac{d}{d t}\left(m \cdot\left(e+e_{\mathrm{kin}}+e_{\mathrm{pot}}\right)\right)_{\mathrm{cv}}$
The notation is as in the textbook: u is velocity, e is internal energy.
In the textbook this equation is written on differential form, Eq. (A.42) p. 207:
$\frac{\partial}{\partial t}\left(\rho e_{\mathrm{t}}\right)+\frac{\partial}{\partial x_{j}}\left(\rho e_{\mathrm{t}} u_{j}\right)=-\frac{\partial q_{j}}{\partial x_{j}}+\dot{Q}-\frac{\partial}{\partial x_{j}}\left(p u_{j}\right)+\frac{\partial}{\partial x_{j}}\left(\tau_{i j} u_{i}\right)+\rho \sum_{k} Y_{k} f_{k, i}\left(u_{i}+V_{k, i}\right)$,
where $e_{\mathrm{t}}=e+\frac{1}{2} u_{i} u_{i}$ is (specific) internal energy and kinetic energy.

- What is the relation between the two equations? Which terms correspond to each other?

Notice: The terms with gravitational acceleration are not straightforward to reformulate. Do not spend much time on that part of the problem.

Problem 6:

Do as in Problem 5 with the mass balance (continuity equation) and the mass balance for species k.

Hint for Problems 5-6: the solutions are found in books on fluid mechanics and heat and mass transfer.

Thermodynamics and thermochemistry

Problems from Turns: "An introduction to combustion":
$2.2,2.4,2.8,2.9,2.11,2.20$
2.9 Propane burns in a premixed flame at an air-fuel ratio (mass) of 18:1. Determine the equivalence ratio Φ.
2.10 For an equivalence ratio of $\Phi=0.6$, determine the associated air-fuel ratios (mass) for methane, propane, and decane $\left(\mathrm{C}_{10} \mathrm{H}_{22}\right)$.

In a propane-fueled truck, 3 percent (by volume) oxygen is measured in the exhaust stream of the running engine. Assuming "complete" combustion without dissociation, determine the air-fuel ratio (mass) supplied to the engine.

Assuming "complete" combustion, write out a stoichiometric balance equation, like Eqn. 2.30, for 1 mol of an arbitrary alcohol $\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{O}_{z}$. Determine the number of moles of air required to burn 1 mol of fuel.

Using the results of problem 2.12 , determine the stoichiometric air-fuel ratio (mass) for methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$. Compare your result with the stoichiometric ratio for methane $\left(\mathrm{CH}_{4}\right)$. What implications does this comparison have? Consider a stoichiometric mixture of isooctane and air. Calculate the enthalpy of the mixture at the standard-state temperature (298.15 K) on a per-kmol-offuel basis $\left(\mathrm{kJ}^{\prime} / \mathrm{kmol}_{\text {fuel }}\right.$), on a per-kmol-of-mixture basis $\left(\mathrm{kJ} / \mathrm{kmol}_{\text {mix }}\right)$, and on a per-mass-of-mixture basis $\left(\mathrm{kJ} / \mathrm{kg}_{\text {mix }}\right.$).

Repeat problem 2.14 for a temperature of 500 K .

Repeat problem 2.15 , but now let the equivalence ratio $\Phi=0.7$. How do
these results compare with those of problem 2.15 ?
Consider a fuel which is an equimolar mixture of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ and natural gas $\left(\mathrm{CH}_{4}\right)$. Write out the complete stoichiometric combustion reaction for this fuel burning with air and determine the stoichiometric fuel-air ratio on a molar basis. Also, determine the molar air-fuel ratio for combustion at an equivalence ratio, Φ, of 0.8.

Determine the enthalpy of the products of "ideal" combustion, is . dissociation, resulting from the combustion of an isooctane-air mixture for an equivalence ratio of 0.7 . The products are at 1000 K and 1 atm . Express your result using the following three bases: per kmol-of-fuel, per kg-offuel, and per kg-of-mixture. Hint: You may find Eqns. 2.68 and 2.69 useful; however, you should be able to derive these from atom-conservation considerations.

Butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ burns with air at an equivalence ratio of 0.75 . Determine the number of moles of air required per mole of fuel.

A glass melting furnace is burning ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ in pure oxygen (not air). The furnace operates at an equivalence ratio of 0.9 and consumes $30 \mathrm{kmol} / \mathrm{hr}$ of ethene.
A. Determine the energy input rate based on the LHV of the fuel. Express your result in both kW and $\mathrm{Btu} / \mathrm{hr}$.
B. Determine the O_{2} consumption rate in $\mathrm{kmol} / \mathrm{hr}$ and kg / s.
Describe the effect of increasing pressure on the equilibrium composition of combustion products.
12. Why does flue-gas recirculation decrease flame temperatures? What hap pens if the flue gas recirculated is at the flame temperature? for Exercise 1
"

PROBLEMS

2.1 Determine the mass fraction of O_{2} and N_{2} in air, assuming the molar com-
position is 21 percent O_{2} and 79 percent N_{2}.

No. for moles of various species. 0.095
6
7
34
0.005
Turns; An introduction to Combustion, Braled, Chpt. 2
No. of moles

Species
 CO_{2}

3
 express your result as mole percent, and as parts-per-million. Determine the mass fraction of the mixture. C. Determine the mass fraction of each constituent. Determine the H_{2} and O_{2} mole fractions, the molecular weight of the mixture, and the H_{2} and O_{2} mass fractions. fraction is 0.2 . The mixture is at 300 K and 100 kPa . Determine the methane mass fraction in the mixture and the methane molar concentration in kmol of methane per m^{3} of mixture.
2.5 Consider a mixture of N_{2} and Ar in which there are three times as moles of N_{2} as there are moles of Ar. Determine the mole fractions of N_{2} and Ar , the molecular weight of the mixture, the mass fractions of N_{2} and Ar , and the molar concentration of N_{2} in $\mathrm{kmol} / \mathrm{m}^{3}$ for a temperature of 500 K and a pressure of 250 kPa .
2.6 Determine the standardized enthalpy in $\mathrm{J} / \mathrm{kmol}$ of a mixture of CO_{2} and O_{2} where $\chi_{\mathrm{CO}_{2}}=0.10$ and $\chi_{\mathrm{O}_{2}}=0.90$ at a temperature of 400 K .
2.7 Determine the molecular weight of a stoichiometric $(\Phi=1.0)$ methane-air mixture.
2.8 Determine the stoichiometric air-fuel ratio (mass) for propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$.

