Department of Energy and Process Engineering TEP4170 Heat and combustion technology

Exercise 1: Introduction and repetition

Tensor notation

Problem 1: Write in Cartesian tensor notation: a) $\rho \frac{\partial u}{\partial x} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial v}{\partial y} + v \frac{\partial \rho}{\partial y} + \rho \frac{\partial w}{\partial z} + w \frac{\partial \rho}{\partial z} = 0$ b) $\varepsilon_{ij} = \begin{cases} \frac{2}{3}\varepsilon & \text{when } i=j\\ 0 & \text{otherwise} \end{cases}$ c) $\Phi_{11} = -C_2(P_{11} - \frac{2}{3}P) \qquad \Phi_{12} = -C_2P_{12}$ $\Phi_{22} = -C_2(P_{22} - \frac{2}{3}P) \qquad \Phi_{23} = -C_2P_{23}$ P_{13}

$$\Phi_{33} = -C_2(P_{33} - \frac{2}{3}P) \qquad \Phi_{13} = -C_2$$
where $P = \frac{1}{2}(P_{23} + P_{23} + P_{23})$

where $P = \frac{1}{2}(P_{11} + P_{22} + P_{33})$

Problem 2: Write in normal notation: a) The momentum equation

$$\frac{\partial}{\partial t}(\rho u_i) + \frac{\partial}{\partial x_j}(\rho u_i u_j) = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} + \rho f_i$$

with the stress tensor

$$\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + (\mu_B - \frac{2}{3}\mu) \frac{\partial u_k}{\partial x_k} \delta_{ij}$$

b) The dissipation function

$$\Phi = \tau_{ij} \frac{\partial u_i}{\partial x_j}$$

Problem 3: Show that

$$C_{\varphi} = \frac{\partial}{\partial t}(\rho\varphi) + \frac{\partial}{\partial x_{j}}(\rho u_{j}\varphi)$$

also can be formulated as

$$C_{\varphi} = \rho \frac{\partial \varphi}{\partial t} + \rho u_j \frac{\partial \varphi}{\partial x_j}$$

Are there assumptions that have to be made in doing this?

Problem 4: Why do we use tensor notation?

Basic equations

<u>Problem 5</u>:

In Thermodynamics you have learned that the 1st law can be formulated mathematically as

$$\dot{m}_{\rm in} \left(h + \frac{1}{2}u^2 + gz \right)_{\rm in} - \dot{m}_{\rm out} \left(h + \frac{1}{2}u^2 + gz \right)_{\rm out} + \dot{Q} - \dot{W} = \frac{d}{dt} \left(m \cdot \left(e + e_{\rm kin} + e_{\rm pot} \right) \right)_{\rm cv}$$
(1)

The notation is as in the textbook: u is velocity, e is internal energy.

In the textbook this equation is written on differential form, Eq. (A.42) p. 207:

$$\frac{\partial}{\partial t}(\rho e_{t}) + \frac{\partial}{\partial x_{j}}(\rho e_{t}u_{j}) = -\frac{\partial q_{j}}{\partial x_{j}} + \dot{Q} - \frac{\partial}{\partial x_{j}}(pu_{j}) + \frac{\partial}{\partial x_{j}}(\tau_{ij}u_{i}) + \rho \sum_{k} Y_{k}f_{k,i}(u_{i} + V_{k,i}),$$
(2)

where $e_t = e + \frac{1}{2}u_i u_i$ is (specific) internal energy and kinetic energy.

- What is the relation between the two equations? Which terms correspond to each other?

Notice: The terms with gravitational acceleration are not straightforward to reformulate. Do not spend much time on that part of the problem.

Problem 6:

Do as in Problem 5 with the mass balance (continuity equation) and the mass balance for species k.

Hint for Problems 5-6: the solutions are found in books on fluid mechanics and heat and mass transfer.

Thermodynamics and thermochemistry

Problems from Turns: "An introduction to combustion": 2.2, 2.4, 2.8, 2.9, 2.11, 2.20

 2.9 Propane burns in a premixed flame at an air-fuel ratio (mass) of 18:1. Determine the equivalence ratio Φ. 2.10 For an equivalence ratio of Φ = 0.6, determine the associated air-fuel ratios (mass) for methane, propane, and decane (C₁₀H₂₂). 2.11 In a propane-fueled truck. 3 percent (by volume) oxygen is measured in the exhaust stream of the running engine. Assuming "complete" combustion without dissociation, determine the air-fuel ratio (mass) supplied to the engine. 	 2.12 Assuming "complete" combustion, write out a stoichiometric balance equation, like Eqn. 2.30, for 1 mol of an arbitrary alcohol C_xH_yO₂. Determine the number of moles of air required to burn 1 mol of fuel. 2.13 Using the results of problem 2.12, determine the stoichiometric air-fuel ratio (mass) for methanol (CH₃OH). Compare your result with the stoichiometric ratio for methane (CH₄). What implications does this comparison have? 		2.16 Kepeat problem 2.15, but now let the equivalence ratio $\Phi = 0.7$. How do these results compare with those of problem 2.15? 2.17 Consider a fuel which is an equimolar mixture of propane (C_3H_8) and natural gas (CH ₄). Write out the complete stoichiometric combustion reaction for this fuel burning with air and determine the stoichiometric fuel-air ratio on a molar basis. Also, determine the molar air-fuel ratio for combustion at an equivalence ratio, Φ , of 0.8.	 2.18 Determine the enthalpy of the products of "ideal" combustion, i.e., no dissociation, resulting from the combustion of an isooctane-air mixture for an equivalence ratio of 0.7. The products are at 1000 K and 1 atm. Express your result using the following three bases: per kmol-of-fuel, per kg-of-fuel, and per kg-of-fuel, and per kg-of-fuel, and per kg-of-fuel, wower, you should be able to derive these from atom-conservation considerations. 2.19 Butane (C₄H₁₀) burns with air at an equivalence ratio of 0.75. Determine the number of moles of air required per mole of fuel. 	 2.20 A glass melting furnace is burning ethene (C₂H₄) in pure oxygen (not air). The furnace operates at an equivalence ratio of 0.9 and consumes 30 kmol/hr of ethene. A. Determine the energy input rate based on the LHV of the fuel. Express your result in both kW and Btu/hr. 	B. Determine the O_2 consumption rate in kmol/hr and kg/s. SS_3
 11. Describe the effect of increasing pressure on the equilibrium composition of combustion products. 12. Why does flue-gas recirculation decrease flame temperatures? What happens if the flue gas recirculated is at the flame temperature? <i>furms</i>; An intraduction to Combustion, 3rd ed, Chot, 2 PROBLEMS 	 2.1 Determine the mass fraction of O₂ and N₂ in air, assuming the molar composition is 21 percent O₂ and 79 percent N₂. 2.2 A mixture is composed of the following number of moles of various species; <i>Species No. of moles</i> CO 0.095 	CO ₂ 6 H ₂ O 7 N ₂ 34 NO 0.005		 2.4 Consider a binary mixture of oxygen and methane. The methane mole fraction is 0.2. The mixture is at 300 K and 100 kPa. Determine the methane molar fraction is 0.2. The mixture and the methane molar concentration in kmol of methane per m³ of mixture. 2.5 Consider a mixture of N₂ and Ar in which there are three times as many moles of N₂ as there are moles of Ar. Determine the mole fractions of N₂ and Ar, the molecular weight of the mixture, the mass fractions of N₂ and Ar, and the moler concentration of N₂ in kmol/m³ for a temperature of 500 K and a pressure of 250 kPa. 	 2.6 Determine the standardized enthalpy in J/kmol_{mix} of a mixture of CO₂ and O₂ where χ_{CO2} = 0.10 and χ_{O2} = 0.90 at a temperature of 400 K. 2.7 Determine the molecular weight of a stoichiometric (Φ = 1.0) methane-air mixture. 2.8 Determine the stoichiometric c.1 	\mathbf{r} . Determine the stolentometric air-fuel ratio (mass) for propane (C_3H_8).