Exercise 9: Non-premixed combustion, Turbulent combustion

Problem 1:

A combustion chamber has two inlets. Methane, CH_4 , is supplied in Inlet (1), while air is supplied in Inlet (2).

Determine the stoichiometric mixture fraction, ξ_s , that is, the mixture fraction for a stoichiometric mixture.

Answer: $\xi_s = 0.055$

Problem 2:

For the combustion chamber in Problem 1, we let the temperature be a function of the mixture fraction:

$$T = T(\xi) = \begin{cases} T_2 + (T_s - T_2)\frac{\xi}{\xi_s} & \text{when } 0 \le \xi \le \xi_s \\ \\ T_1 + (T_s - T_1)\frac{\xi - 1}{\xi_s - 1} & \text{when } \xi_s \le \xi \le 1 \end{cases}$$

Here, T_1 is the temperature of Inlet (1) (fuel) and T_2 is the temperature of Inlet (2) (air). ξ_s is the stoichiometric mixture fraction (Problem 1) and T_s is the temperature for the stoichiometric mixture; $T_s = T(\xi_s)$.

Data: $T_1 = T_2 = 300$ K and $T_s = 2000$ K

At a location, we have determined that $\overline{\xi} = 0.5$ and $\overline{\xi'}^2 = 0.05$. Use the β probability density function and determine the mean temperature of this location.

Hint: First, determine the parameters a and b (Answer: a = b = 2)

Answer: $\overline{T} = 1194 \text{ K}$

Problem 3:

For the combustion chamber in Problems 1 and 2: Determine the mass fractions of fuel, air (oxidizer) and product as functions of the mixing fraction. That is $Y_{\rm br} = Y_{\rm br}(\xi)$, $Y_{\rm oks} = Y_{\rm oks}(\xi)$ and $Y_{\rm pr} = Y_{\rm pr}(\xi)$, similar to $T = T(\xi)$ in Problem 2.

We can assume the reactions as complete and fast.

Problem 4:

We are going to model turbulent combustion (non-premixed) with

a) the Eddy Dissipation Model (1976 verision)

b) a prescribed-pdf model.

In both models we assume that the reactions can be modeled as

fuel + oxidizer to product, where reactions are fast and complete.

- List <u>all</u> the equations for which we have to solve partial differential equations (PEDs) for a) and b).

– List other equations needed (non-PDE) and other quantities that have to be modeled/expressed. Include mean motion, turbulence, reactions and material properties.