
Today and tomorrow

Goodness of fit statistics
Score statistic (Tuesday)
Wald statistic (Tuesday)
Deviance (Today)

Hypothesis testing (Today)
Nested models

Chp 6 Normal Linear Models (Today and tomorrow)
Focus on GLM formulation, outlier detection and colinearity.
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Chapter 5, Inference

Goodness of fit statistics:
I Score statistic

UT=−1U ∼ χ2(p)

I Wald statistic, b MLE

(b − β)T=−1(b − β) ∼ χ2(p)

I Log-likelihood ratio statistic ⇒ Deviance

Hypothesis tests
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Shooting balloons

N trail subjects, i = 1, 2, . . . ,N
Each shot ni times, trying to hit balloons.
Count hits yi .
Explanatory variables:

I Experienced / non-experienced gunman
I Wind speed

Data:
Trail person 1 2 3 . . .
Experienced 1 0 0 . . .
Wind speed 2.13 0.59 1.03 . . .
ni 6 3 5 . . .
yi 2 1 1 . . .
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Shooting balloons, model

Yi ∼ bin(ni , πi ), i = 1, 2, . . . ,N
ηi = logit(πi )

1 η1 = β0 ⇒ Yi ∼ bin(ni , π)
2 ηi = β0 + β1x1 ⇒ Yi ∼ bin(ni , πi )
3 ηi = β0 + β2x2 ⇒ Yi ∼ bin(ni , πi )
4 ηi = β0 + β1x1 + β2x2 ⇒ Yi ∼ bin(ni , πi )

Where x1 = 1 for experienced gunman, otherwise x1 = 0 and x2 is wind
speed.
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Saturated model
The richest possible model. Each combination of (all possible known)
explanatory variables have their own θi . b = bmax

Example Balloons
N = 10 persons trying.
Yi ∼ bin(ni , pi ), pi unique for each yi

Model with one factor, and this factor has N levels; one for each
observation/person.

m = length(bmax) = 10
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Example: Chronically medical conditions

Women in rural area see GP less then women in urban area.
Why? Less sick or less accessible?

Data
Group 1: No. of chronically conditions for 26 town women with ≤ 3

GP visits.
Group 2: No. of chronically conditions for 23 country women with ≤ 3

GP visits.
Do women in the two groups with the same number of visits have the same
need?

Saturated model:

One explanatory variable (town/country), 26 towm replicates and 23
country replicates.
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5.3 Taylor series approximations for log-likelihood

Taylor approximations for l(β) near estimate b:

l(β) = l(b) + (β − b)U(b) +
1
2

(β − b)2U ′(b)

Approximate U ′(b) with E (U ′) = −=(b):

l(β) = l(b) + (β − b)U(b)− 1
2

(β − b)2=

For a vector b

l(β) = l(b) + (β − b)U(b)− 1
2

(β − b)T=(β − b)
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χ2() results ch 1.4 and 1.5
Definition χ2

If Z ∼ N(0, 1), then Z 2 ∼ χ2(1).
If Z1,Z2, . . .Zn are independent identical distributed Zi ∼ N(0, 1), the∑n

i=1 Z 2
i ∼ χ2(n)

Non iid
If Y ∼ MVN(µ,Σ), then (Y − µ)T Σ−1(Y − µ) ∼ χ2(n)

Definition non-central χ2

If Z1,Z2, . . .Zn are independent identical distributed Zi ∼ N(0, 1), the∑n
i=1(Zi − µi )

2 ∼ χ2(n, ν) with ν =
∑
µ2

i .

Subtraction
If X 2

1 ∼ χ2(m) and X 2
2 ∼ χ2(k), m > k , and X 2

1 and X 2
2 are independent,

we have: X 2 = X 2
1 − X 2

2 ∼ χ2(m − k)
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Chapter 6, Linear Normal Models
Properties:

As GLM
Maximum Likelihood Estimate (MLE)
Least Square Estimate
Deviance
Hypothesis testing

Models:
Multiple linear regression

I Outlier detection / influential observation
I Collinearity / multicollinearity

Analysis of variance (ANOVA)
I One factor ANOVA
I Two factor ANOVA

Analysis of covariance
General linear model
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Deviance
Let βmax be the parameter vector for the saturated modeled, and β for the
model of our interest. Let l(β; y) be the log-likelihood function. The
deviance of the model is

D = 2(l(bmax ; y)− l(b; y)

where b and bmax are (ML) estimates.

Gaussian pdf

f (y ;µ, σ2) =
1√
2πσ

exp(−0.5(y − µ)2

σ2 )
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