Chapter 5, Inference

- Goodness of fit statistics:
 - Score statistic

$$U^T \Im^{-1} U \sim \chi^2(p)$$

Wald statistic, b MLE

$$(b-\beta)^T \Im^{-1}(b-\beta) \sim \chi^2(p)$$

- Log-likelihood ratio statistic ⇒ Deviance
- Hypothesis tests

Shooting balloons

- *N* trail subjects, i = 1, 2, ..., N
- Each shot n_i times, trying to hit balloons.
- Count hits y_i.
- Explanatory variables:
 - Experienced / non-experienced gunman
 - Wind speed

Data:

Trail person	1	2	3	
Experienced	1	0	0	
Wind speed	2.13	0.59	1.03	
n_i	6	3	5	
Уi	2	1	1	

Shooting balloons, model

- $Y_i \sim bin(n_i, \pi_i), i = 1, 2, ..., N$
- $\eta_i = logit(\pi_i)$
- $\mathbf{0}$ $\eta_1 = \beta_0 \Rightarrow Y_i \sim bin(n_i, \pi)$
 - **2** $\eta_i = \beta_0 + \beta_1 x_1$

Where $x_1 = 1$ for experienced gunman, otherwise $x_1 = 0$ and x_2 is wind speed.

Saturated model

The richest possible model. Each combination of (all possible known) explanatory variables have their own θ_i . $b = b_{max}$

Example Balloons

N = 10 persons trying.

 $Y_i \sim bin(n_i, p_i)$, p_i unique for each y_i

 Model with one factor, and this factor has N levels; one for each observation.

$$m = length(b_{max}) = 10$$

5.3 Taylor series approximations for log-likelihood

Taylor approximations for $I(\beta)$ near estimate b:

$$I(\beta) = I(b) + (\beta - b)U(b) + \frac{1}{2}(\beta - b)^2U'(b)$$

Approximate U'(b) with $E(U') = -\Im(b)$:

$$I(\beta) = I(b) + (\beta - b)U(b) - \frac{1}{2}(\beta - b)^2$$

For a vector b

$$I(\beta) = I(b) + (\beta - b)U(b) - \frac{1}{2}(\beta - b)^{\mathsf{T}}\Im(\beta - b)$$

$\chi^2()$ results ch 1.4 and 1.5

Definition χ^2

If $Z \sim N(0,1)$, then $Z^2 \sim \chi^2(1)$. If $Z_1, Z_2, \dots Z_n$ are independent identical distributed $Z_i \sim N(0,1)$, the $\sum_{i=1}^n Z_i^2 \sim \chi^2(n)$

Non iid

If $Y \sim MVN(\mu, \Sigma)$, then $(Y - \mu)^T \Sigma^{-1}(Y - \mu) \sim \chi^2(n)$

Definition non-central χ^2

If $Z_1, Z_2, \dots Z_n$ are independent identical distributed $Z_i \sim N(0, 1)$, the $\sum_{i=1}^n (Z_i - \mu_i)^2 \sim \chi^2(n, \nu)$ with $\nu = \sum \mu_i^2$.

Subtraction

If $X_1^2 \sim \chi^2(m)$ and $X_2^2 \sim \chi^2(k)$, m > k, and X_1^2 and X_2^2 are independent, we have: $X^2 = X_1^2 - X_2^2 \sim \chi^2(m-k)$