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These constitute rwe independent equations, for the first equation is
simply the sum of the two following equations (just as the first chenucal
reaction is the net result of the two succeeding reactions). The amounts of
hydrogen, oxygen, and carbon introduced into the system (in whatever
chemical combinations) specify three additional constraints. There are
thus five constraints, and there are precisely five mole numbers to be
found (the quantities of H,, O,, H,0, CO,, and CO). The problem is
thereby solved in principle.

As we observed earlier, chemical reactions more typically occur in open
vessels with only the final pressure and temperature determined. The
number of variables is then increased by two (the energy and the volume)
but the specification of T and P provides two additional constraints.
Again the problem is determinate.

We shall return to a more thorough discussion of chemical reactions in
Section 6.4. For now it is sufficient to stress that the chemical potential
plays a role in matter transfer or chemical reactions fully analogous to the
role of temperature in heat transfer or pressure in volume transfer.

PROBLEMS

2.9-1. The hydrogenation of propane (C,H¢)} to form methane (CH,) proceeds
by the reaction

C.H; + 2H, = 3CH,
Find the relationship among the chemical potentials and show that both the
problem and the solution are formally identical to Example 1 on mechanical
equilibrium.

SOME FORMAL RELATIONSHIPS,
AND SAMPLE SYSTEMS

3-1 THE EULER EQUATION

Having seen how the fundamental postulates lead to a solution of the
equilibrium problem, we now pause to examine in somewhat greater detail
the mathematical properties of fundamental equations.

‘The homogeneous first-order property of the fundamental relation
permits that equation to be written in a particularly convenient form,
called the Euler form.

From the definition of the homogeneous first-order property we have,
for any A

I

UAS,AX, ..., AX )} =AU(S, X,,..., X)) (3.1)
Differentiating with respect to A

JU(...,AX,,...) 3(AS) U(... AX,,...) 3(AX)

IT
I(AS) 2 (N X,) N
+ o = U8, X, X,) (3.2)
or
U(...,AX,,...) Loou(L. X, )
S+ “ :
d(\S) st I(AX,) %
= U(S, X,,..., X)) (3.3)
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it takes the form

U LU
%.wum.‘..ﬂ Wtumt,.Nw.T...aaq (3.4)
i
U=TS+ ) PX, (3.5)
i=1

For a simple system in particular we have
U=TS - PV +uN + -« +pu.N, (3.6)

The relation 3.5 or 3.6 is the particularization to thermodynamics of the
Euler theorem on homogeneous first-order forms. The foregoing develop-
ment merely reproduces the standard mathematical derivation. We refer
to equation 3.5 or 3.6 as the Euler relation.

In the entropy representation the Euler relation takes the form

S=Y FX (3.7)

or

s-(3e{Zy g4 o

PROBLEMS

3.1-1. Write each of the five physically acceptable fundamental equations of
Problem 1.9-1 in the Euler form.

3.2 THE GIBBS-DUHEM RELATION

In Chapter 2 we arrived at equilibrium criteria involving the tempera-
ture, pressure, and chemical potentials. Each of the intensive parameters
entered the theory in a similar way, and the formalism is, in fact,
symmetric in the several intensive parameters. Despite this symmetry,
however, the reader is apt to feel an intuitive response to the concepts of
temperature and pressure, which is lacking, at least to some degree, in the
case of the chemical potential. It is of interest, then, to note that the
intencive narameters are not all inmdenendent There is a relation amone
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the intensive parameters, and for a single-component system p is a
function of T and P,

The existence of a relationship among the various intensive parameters
is a consequence of the homogeneous first-order property of the funda-
mental relation. For a single-component system this property permits the
fundamental relation to be written in the form u = u{s, v}, as in equation
2.19; each of the three intensive parameters is then also a function of s
and v. Elimination of s and v from among the three equations of state
yiclds a relation among T, P, and p.

The argument can easily be extended to the more general case, and it
again consists of a straightforward counting of variables. Suppose we have
a fundamental equation in (¢ + 1) extensive variables

U=U(S, X,X%,....X,) (3.9)

yielding, in turn, z + 1 equations of state
P.=P(S, X, X;,..., X,) {3.10)
If we choose the parameter A of equation 2.14 as A = 1 /X, we then have
P.=P(S/X.X,/X,,.... X._,/X,,1) (3.11)

Thus each of the (¢ + 1) intensive parameters is a function of just ¢
variables. Elimination of these ¢ variables among the (r -+ 1) equations
yields the desired relation among the intensive parameters.

To find the explicit functional relationship that exists among the set of
intensive parameters would require knowledge of the explicit fundamental
equation of the system. That is, the analytic form of the relationship varies
from system to system. Given the fundamental relation, the procedure is
evident and follows the sequence of steps indicated by equations 3.9
through 3.11.

A differential form of the relation among the intensive parameters can
be obtained directly from the Euler relation and is known as the
Gibbs—Duhem relation. Taking the infinitesimal variation of equation 3.5,
we find

t I3
dU = TdS + SdT + Y P, dX,+ ), X, dP, (3.12)
Je=1 =1
But, in accordance with equation 2.6, we certainly know that

!
dU =TdS + ) P,dX, (3.13)

L |
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whence, by subtraction we find the Gibbs—-Duhem relation

I
SdT+ ), X;dP,=0 (3.14)
j=1

For a single-component simple system, in particular, we have

SdT — VdP + Ndp = 0 (3.15)
or

, du = —sdT + vdP (3.16)

The variation in chemical potential is not independent of the variations in
ternperature and pressure, but the variation of any one can be computed
in terms of the variations of the other two.

The Gibbs—Duhem relation presents the relationship among the inten-
sive parameters in differential form. Integration of this equation yields the
relation in explicit form, and this is a procedure alternative to that
presented in equations 3.9 through 3.11. In order to integrate the
Gibbs-Duhem relation, one must know the equations of state that enable
one to write the X’s in terms of the wﬂm“ OF VICE Versa.

The number of intensive parameters capable of independent variation is
called the number of thermodynamic degrees of freedom of a given system.
A simple system of r components has r + 1 thermodynamic degrees of
freedom,

In the entropy representation the Gibbs—Duhem relation again states
that the sum of products of the extensive parameters and the differentials
of the corresponding intensive parameters vanishes.

¢
> X, dF, =0 (3.17)
=0
or
1 Py_ ¥ Ba) _
ci L + SA L WHSQA < v =0 (3.18)
PROBLEMS

3.2-1. Find the relation among 7, P, and p for the system with the fundamental

equation
- [0 5"
rRY | nyp2

Summary of Formal Structure 63

3-3 SUMMARY OF FORMAL STRUCTURE

Let us now summarize the structure of the thermodynamic formalism in
the energy representation. For the sake of clarity, and in order to be
explicit, we consider a single-component simple system. The fundamental
equation

U= U(S,V,N) (3.19)
contains a/l thermodynamic information about a system. With the defini-

tions 7 = dU /43S, and so forth, the fundamental equation implies three
equations of state

T=T(S,V,N) = T(s,v) (3.20)
P=P(S,V,N)=P(s,0) (3.21)
p=p(S,V,N)=rp(sv) (3.22)

It all three equations of state are known, they may be substituted into the
Euler relation, thereby recovering the fundamental equation. Thus the
totality of all three equations of state is equivalent fo the fundamental
equation and contains all thermodynamic information about a system.
Any single equation of state contains less thermodynamic information
than the fundamental equation.

If two equations of state are known, the Gibbs-Duhem relation can be
integrated to obtain the third. The equation of state so obtained will
contain an undetermined integration constant. Thus two equations of
state are sufficient to determine the fundamental equation, except for an
undetermined constant.

A logically equivalent but more direct and generally more convenient
method of obtaining the fundamental equation when two equations of
state are given is by direct integration of the molar relation

du=Tds — Pdv {3.23)

Clearly, knowledge of T = T(s,v) and P = P(s,v) yields a differential
equation in the three variables u, s, and v, and integration gives

u=u(s,v) {(3.24)

which is a fundamental equation. Again, of course, we have an unde-
termined constant of integration.

It is always possible to express the internal energy as a function of
parameters other than S, V, and N. Thus we could eliminate S from
U= U(S,V,N)and T = T(S,V, N) to obtain an equation of the form
U= U(T,V, N). However, I stress that such an equation is not a funda-
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FIGURE 3.1

tion about the system. In fact, recalling the definition of T as JU /38, we
see that U = U(T,V, N) actually is a partial differential equation. Even if
this equation were integrable, it would yield a fundamental equation with
undetermined functions. Thus knowledge of the relation U = U(S,V, N)
allows one f{o compute the relation U = U(T,V, N), but knowledge of
U= U(T,V,N) does not permit one inversely to compute U =
U(S,V, N). Associated with every equation there is both a truth value and
an informational content. Each of the equations U = U(S,V,N) and
U= U(T,V,N) may be true, but only the former has the optimum
informational content.

These statements are graphically evident if we focus, for instance, on
the dependence of U on § at constant ¥ and N. Let that dependence be
as shown in the solid curve in Fig. 3.1(a). This curve uniquely determines
the dependence of U on T, shown in Fig. 3.1(b}; for each point on the
U(S) curve there is a definite U and a definite slope T = 9U/3S,
determining a point on the U(T) curve. Suppose, however, that we are
given the U(T) curve (an equation of state) and we seek to recover the
fundamental U(S) curve. Each of the dotted curves in Fig. 3.1(a) is
equally compatible with the given U(T') curve, for all have the same slope
T at a given U. The curves differ by an arbitrary displacement, corre-
sponding to the arbitrary “constant of integration” in the solution of the
differential equation U = U{dU/3S). Thus, Fig. 3.1(a) implies Fig. 3.1(b),
but the reverse is not true. Equivalently stated, only U = U(S) is a
fundamental relation. The formal structure is illustrated by consideration
of several specific and explicit systems in the following Sections of this
book.

Example
A particular system obeys the equations
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and

A QM\N

p
T VN 1/2
where A ig a positive constant. Find the fundamental equation.

Solution

Writing the two equations in the form of equations of state in the entropy
representation (which is suggested by the appearance of U, V., and N as
independent parameters)

m 4L/, 3/4070

=2 4"V A2

T Ty

Then the differential form of the molar fundamental equation (the analogue of
equation 3.23} is

i P
&wlxﬂ&m._'luﬂ&c

= \&L\m?sw\ac(m&: + mmu\»ci\maqcv

= thw\m&.mﬂn\hﬂuy\wv
50 that
§=d4A47172y1/4172 4 S
and
S =44V 4 Nsg

The reader should compare this method with the alternative technique of first
integrating the Gibbs-Duhem relation to obtain u{u, v), and then inserting the
three equations of state into the Euler equation.

Particular note should be taken of the manner in which ds is integrated to
obtain s. The equation for ds in terms of du and dv is a partial differential
equation—1it certainly cannot be integrated term by term, nor by any of the
familiar methods for ordinary differential equations in one independent variable.
We have integrated the equation by “inspection”; simply “recognizing” that
u= 342 dy + 20 %12 dy is the differential of u!/%'/2,

PROBLEMS

3.3-1. A particular system obeys the two equations of state

34s? .
T = —, the thermal equation of stare
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and

P=—, the mechanical equation of state

where A is constant.
a} Find p as a function of s and v, and then find the fundamental equation.
b) Find the fundamental equation of this system by direct integration of the
molar form of the equation.
3.3-2. 1t is found that a particular system obeys the relations
U= PV
and
P = BT*
where B is constant. Find the fundamental equation of this system.
3.3-3. A system obeys the eguations

pe MU
T NV = 24VU
and
12y v
= - /N
I'=205—724v°

Find the fundamental equation.
Hint: To mtegrate, let

§ == bmﬁ.._cs:m.|\uc

where D, n, and m are constants to be determined.
3.3-4. A system obeys the two equations ¥ = #Pv and ©*/? = BTv*/*. Find the
fundamental equation of this system.

3-4 THE SIMPLE IDEAL GAS AND
MULTICOMPONENT SIMPLE IDEAL GASES

A “simple ideal gas” is characterized by the two equations
PV = NRT (3.25)

and
U= cNRT (3.26)

where ¢ 1s a constant and R is the “universal gas constant” (R = Nk, =
8.3144 J /mole K).

Gases composed of noninteracting monatomic atoms (such as He, Ar,
Ne) are observed to satisfy equations 3.25 and 3.26 at temperatures such
that k7 is small compared to electronic excitation energies (i.e., T < 104
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Under somewhat more restrictive conditions of temperature and pres-
sure other real gases may conform to the simple ideal gas equations 3.25
and 3.26, but with other values of the constant ¢. For diatomic molecules
{(such as O, or NO) there tends to be a considerable region of temperature
for which ¢ = § and another region of higher temperature for which ¢ = 1
(with the boundary between these regions generally occurring at tempera-
tures on the order of 10° K),

Equations 3.25 and 3.26 permit us tco determine the fundamental
equation. The explicit appearance of the energy U/ in one equation of state
(equation 3.26) suggests the entropy representation. Rewriting the equa-
tions in the correspondingly appropriate form

== &Aﬁ - R (3.27)

and

£ Aﬁ _R (3.28)

From these two entropic equations of state we find the third equation of
state

% = function of u, v (3.29)

by integration of the Gibbs-Duhem relation

ﬁ,ﬁ u iwv + &A%v (3.30)

Finally, the three equations of state will be substituted into the Euler
equation
1 P

mnmiqiiwéﬁz (3.31)

Proceeding in this way the Gibbs-Duhem relation (3.30) becomes

&ﬁmvﬂsx.ﬁ@ &:+eXIM~; %H!m%@ml%@w
T 22 u? u v
(3.32)

and integrating

hfl,muﬁl NI W
L T;o eRlnzt = Rin:t (3.33)
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relation (3.31)

U (2 e N —{c+1}
S = Ns, + NRIn Aﬂov Aimm:ﬂv (3.34)
where
so=(c+ :mgﬁo (3.35)

Equation 3.34 is the desired fundamental equation; if the integration
constant s, were known equation 3.34 would contain all possible thermo-
dynamic information about a simple ideal gas.

This procedure is neither the sole method, nor even the preferred
method. Alternatively, and more directly, we could integrate the molar
equation

1 P
ds = Ai%ii% (3.36)
which, in the present case, becomes
R
%Hmﬁlv&: +hsmmv&c (3.37)
U U
giving, on integration,
hu;+q§iaﬁ+ﬁsﬁi (3.38)
Uy Uy

This equation is equivalent to equation 3.34.

It should, perhaps, be noted that equation 3.37 is integrable term by
term, despite our injunction (in Example 3) that such an approach
generally is not possible. The segregation of the independent variables u
and v in separate terms in equation 3.37 is a fortunate but unusual
simplification which permits term by term integration in this special case,

A muxture of two or more simple ideal gases—a “multicomponent
simple ideal gas”—is characterized by a fundamental equation which is
most stmply written in parametric form, with the temperature T playing
the role of the parametric variable.

T 4
S = M@ﬁi%@&??ﬂ + M&Es zc

Y

U= AMR&?H (3.39)
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Elimination of T between these equations gives a single equation of the
standard form § = S(U,V, N, N,,...).

Comparison of the individual terms of equations 3.39 with the expres-
sion for the entropy of a single-component ideal gas leads to the following
interpretation (often referred to as Gibbs’s Theorem). The entropy of a
mixture of ideal gases is the sum of the entropies that each gas would have if
it alone were to occupy the volume V at temperature T. The theorem is, in
fact, true for all ideal gases (Chapter 13).

It is also of interest to note that the first of equations 3.39 can be
written in the form

T 14 N,
S = M?”_.h‘...o +Amgﬁav%wﬂﬁ + NR _bg - %Mﬁ?ﬂd i.m\.;

(3.40)

and the last term is known as the “entropy of mixing.” Iz represents the
difference in entropies between that of a mixture of gases and that of a
collection of separate gases each at the same temperature and the same
density as the original mixture N./V.= N/V, (and hence at the same
pressure as the original mixture); see Problem 3.4-15. The close similarity,
and the important distinction, between Gibbs’s theorem and the interpre-
tation of the entropy of mixing of ideal gases should be noted carefully by
the reader. An application of the entropy of mixing to the problem of
isotope separation will be given in Section 4.4 (Example 4).

Gibbs’s theorem is demonstrated very neatly by a simple “thought
experiment.” A cylinder (Fig. 3.2) of total volume 2V} is divided into four
chambers (designated as «, B,v,8) by a fixed wall in the center and by
two sliding walls. The two sliding walls are coupled together so that their
distance apart is always one half the length of the cylinder (V, = V, and
Ve = V). Imtially, the two sliding walls are coincident with the left end
and the central fixed partition, respectively, so that ¥V, = V,=0. The
chamber 8, of volume ¥}, is filled with a mixture of N? moles of a simple
ideal gas 4 and Ng moles of a simple ideal gas B. Chamber § is injtially
evacuated. The entire system is maintained at temperature 7.

The left-hand sliding wall is permeable to component A, but not to
component B. The fixed partition is permeable to component B, but not
to component A. The right-hand sliding wall is impermeable to either
component.

The coupled sliding walls are then pushed quasi-statically to the right
until Vg = Vs =0 and V, = V, = ¥,. Chamber « then contains pure A
and chamber y contains pure B. The initial mixture, of volume Vs,
thereby is separated into two pure components, each of volume V.
According to Gibbs’s theorem the final entropy should be equal to the
initial entropv. and we shall now see directlv that thic is in fact trye
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Vacuum

“Coupling bar
Fixed wall

Sliding wall (permeabie to B)

(permeable to .&J
i

Sliding wail
{impermeahbie)

I’

FIGURE 3.2
Separation of a mixture of ideal gases,
demonstrating Gibbs’s theorem.

We first note that the second of equations 3.39, stating that the energy
is a function of only T and the mole number, ensures that the final energy
is equal to the initial energy of the system. Thus —7TAS is equal to the
work done in moving the coupled walls.

The condition of equilibrium with respect to transfer of component A4
across the left-hand wall is p, , = p, 5 It is left to Problem 3.4-14 to
show that the conditions yt, , = 4 5 and pp o = pp , nply that

P,=P, and P, = 2P,

That is, the total force on the coupled moveable walls (P, — Py + P)
vanishes. Thus no work is done in moving the walls, and consequently no
entropy change accompanies the process. The entropy of the original
mixture of 4 and B, in a common volume ¥, is precisely equal to the
entropy of pure 4 and pure B, each in a separate volume V. This is
Gibbs’s theorem.

Finally, we note that the simple ideal gas considered in this section is a
snecial case of the ceneral ideal gas. which encompasses a very wide class
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of real gases at low or moderate pressures. The general ideal gas is again
characterized by the mechanical equation of state P}V = NRT (equation
3.25), and by an energy that again is a function of the temperature
only—but not simply a linear function. The general ideal gas will be
discussed in detail in Chapter 13, and statistical mechanical derivations of
the fundamental equations will emerge in Chapter 16.

PROBLEMS

Note that Problems 3.4-1, 3.4-2, 3.4-3, and 3.4-8 refer to “quasi-static
processes”; such processes are to be interpreted not as real processes but merely
as loci of equilibrium states. Thus we can apply thermodynamics to such
quasi-static “ processes”; the work done in a quasi-static change of volume (from
Vi to ¥y} is W= — (PdV and the heat transfer is ¢ = [TdS. The relationship of
real processes to these idealized “quasi-static processes” will be discussed in
Chapter 4.

3.4-1. A “constant volume ideal gas thermometer” is constructed as shown
(schematically) in Fig. 3.3, The bulb containing the gas is constructed of a
material with a negligibly small coefficient of thermal expansion. The point 4 is a
reference point marked on the stem of the bulb, The bulb is connected by
a flexible tube to a reservoir of liquid mercury, open to the atmosphere. The
mercury reservoir is raised or lowered until the mercury miniscus coincides with
the reference point 4. The height % of the mercury column is then read.

a) Show that the pressure of the gas is the sum of the external (atmospheric)
pressure plus the height & of the mercury column multiplied by the weight per
unit volume of mercury (as measured at the temperature of interest).

b) Using the equation of state of the ideal gas, explain how the temperature of
the gas is then evaluated.

Gas
(Ideal)

o]

FIGURE 3.3
Constant-volume ideal gas thermometer.
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¢} Describe a “constant pressure ideal gas thermometer” (in which a changing
volume is directly measured at constant pressure).

3.4-2. Show that the relation between the volume and the pressure of a mon-
atomic ideal gas undergoing a quasi-static adiabatic compression (dQ = TdS = 0,
S = constant) is

Pp5/? A‘.cocw\mm;ﬁc\uxvmfxum = constant

Sketch a family of such “adiabats” in a graph of P versus V. Find the
corresponding relation for a simple ideal gas.

3.4-3. 'Two moles of a monatomic ideal gas are at a temperature of 0°C and a
volume of 45 liters. The gas is expanded adiabatically (dQ = 0) and quasi-stati-
cally until its temperature falls to ~ 50°C. What are its initial and final pressures
and its final volume?

Answer:
P, =01 MPa, S =61 x 1073 m’

3.4-4. By carrying out the integral [P 4V, compute the work done by the gas in
Problem 3.4-3. Also compute the initial and final energies, and corroborate that
the difference in these energies is the work done.

3.4-5. In a particular engine a gas is compressed in the initial stroke of the piston.
Measurements of the instantaneous temperature, carried out during the compres-
sion, reveal that the temperature increases according to
V T

ik
where T, and ¥, are the injtial temperature and volume, and 7 15 a constant. The
gas is compressed to the volume V| (where V, < ;). Assume the gas to be
monatomic tdeal, and assume the process to be quasi-static.
a) Calculate the work W done on the gas.
by Calculate the change in energy AL/ of the gas.
¢) Calculate the heat transfer O to the gas (shrough the cylinder walls) by using
the results of {a) and (b).
dy Calculate the heat transfer directly by integrating dQ = T dS.
¢) From the result of (¢) or (d), for what value of 7 is ¢ = 07 Show that for this
value of 5 the locus traversed coincides with an adiabat (as calculated in Problem
3.4-2).
3.4-6. Find the three equations of state of the “simple ideal gas” (equation 3.34).
Show that these equations of state satisfy the Euler relation.

3.4-7. Find the four equations of state of a two-component mixture of simple
ideal gases (eguations 3.39). Show that these equations of state satisfy the Euler

rolats
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3.4-8. If a monatomic ideal gas is permitted to expand into an evacuated region,
thereby increasing its volume from ¥ to AV, and if the walls are rigid and
adiabatic, what is the ratio of the initial and final pressures? What is the ratio of
the initial and final temperatures? What is the difference of the initial and final
entropies?

3.4-9. A tank has a volume of 0.1 m® and is filled with He gas at a pressure of
5 % 10% Pa. A second tank has a volume of 0.15 m® and is filled with He gas at a
pressure of 6 X 10° Pa. A valve connecting the two tanks is opened. Assuming He
to be a monatomic ideal gas and the walls of the tanks to be adiabatic and rigid,
find the final pressure of the system.

Hint: Note that the internal energy is constant.

Answer:
N\N 5.6 X 10% Pa

3.4-10.

a) If the temperatures within the two tanks of Problem 3.4-9, before opening the
valve, had been 7 =300 K and 350 K, respectively, what would the final
temperature be?

b) If the first tank had contained He at an initial temperature of 300 K, and the
second had contained a diatomic ideal gas with ¢ = 5/2 and an initial tempera-
ture of 350 K, what would the final temperature be?

Answer:
ay uwu 330K
b) uwﬁ 337K

3.4-11. Show that the pressure of a multicompanent simple ideal gas can be
written as the sum of “partial pressures” P, where P, = N,RT/V. These “partial
pressures” are purely formal quantities not subject to experimental observation.
(From the mechanistic viewpoint of kinetic theory the pariial pressure P, is the
contribution to the total pressure that results from bombardment of the wall by
molecules of species i—a distinction that can be made only when the molecules
are noninteracting, as in an ideal gas.)

3.4-12. Show that p;, the electrochemical potential of the jth component in a

multicomponent simple 1deal gas, satisfies

Nivo
vV

and find the explicit form of the “function of 7.7

Show that p; can be expressed in terms of the “partial pressure” (Problem
3.4-11) and the temperature.

;= w%mbA v + (function of T')

3.4-13. An impermeable, diathermal, and rigid partition divides a container into
fr7 orthvualiimee sarh Af vnlittme ¥ The cnnhunliithee crantain  vrecnacttuvaly APe
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mole of H, and three moles of Ne. The system is maintained at constant
temperature 7. The partition is suddenly made permeable to H,, but not to Ne,
and equilibrium is allowed to reestablish. Find the mole numbers and the
pressure.

3.4-14. Use the results of Problems 3.4-11 and 3.4-12 to establish the results
P, = P_and Py = 2P, in the demonstration of Gibbs’s theorem at the end of this
section.

3.4-15. An impermeable, diathermal and rigid partition divides a container into
two subvolumes, of volumes #¥, and m¥;. The subvolumes contain, respectively,
r moles of H, and m moles of Ne, each to be considered as a simple ideal gas.
The system is maintained at constant temperature 7. The partition is suddenly
ruptured and eguilibrium is allowed to re-establish. Find the initial pressure in
each subvolume and the final pressure. Find the change in entropy of the system.
How is this result related to the “entropy of mixing” (the last term in equation
3.40»?

3-5 THE “IDEAL VAN DER WAALS FLUID”

Real gases seldom satisfy the ideal gas equation of state except in the
limit of low density. An improvement on the mechanical equation of state
(3.28) was suggested by J. D. van der Waals in 1873.

RT a
2

P=0=3"3

(3.41)
Here a and b are two empirical constants characteristic of the particular
gas. In strictly quantitative terms the success of the equation has been
modest, and for detailed practical applications it has been supplanted by
more complicated empirical equations with five or more empirical con-
stants. Nevertheless the van der Waals equation is remarkably successful
in representing the qualitative features of real fluids, including the
gas-liquid phase transition.

The heuristic reasoning that underlies the van der Waals equation 1s
intuitively plausible and informative, although that reasoning lies outside
the domain of thermodynamics. The ideal gas equation P = RT/v is
known to follow from a model of point molecules moving independently
and colliding with the walls to exert the pressure P. Two simple correc-
tions to this picture are plausible. The first correction recognizes that the
molecules are not point particles, but that each has a nonzero volume
b/N,. Accordingly, the volume V¥ in the ideal gas equation is replaced by
V' — Nb; the total volume diminished by the volume Nb occupied by the
molecules themselves.

The second correction arises from the existence of forces between the
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intermolecular forces in all directions, which thereby tend to cancel. But a
molecule approaching the wall of the container experiences a net back-
ward attraction to the remaining molecules, and this force in turn reduces
the effective pressure that the molecule exerts on colliding with the
container wall. This diminution of the pressure should be proportional to
the number of interacting pairs of molecules, or upon the square of the
number of molecules per unit volume {1,/0?); hence the second term in
the van der Waals equation.

Statistical mechanics provides a more quantitative and formal deriva-
tion of the van der Waals equation, but it also reveals that there are an
infinite series of higher order corrections beyond those given in equation
3.41. The truncation of the higher order terms to give the simple van der
Waals equation results in an equation with appropriate gualitative fea-
tures and with reasonable (but not optimum) quantifative accuracy.

The van der Waals equation must be supplemented with a thermal
equation of state in order to define the system fully. It is instructive not
simply to appeal to experiment, but rather to inquire as to the simplest
possible (and reasonable) thermal equation of state that can be paired
with the van der Waals equation of state. Unfortunately we are not free
simply to adopt the thermal equation of state of an ideal gas, for
thermodynamic formalism imposes a consistency condition between the
two equations of state. We shall be forced to alter the ideal gas equation
slightly.

We write the van der Waals equation as

= — (3.42)
and the sought for additional equation of state should be of the form

1
7 =/(u,0) (3.43)

These two equations would permit us to integrate the molar equation

1 P
ds = du + 5 dv (3.44)

to obtain the fundamental equation. However, if ds is to be a perfect
differential, it is required that the mixed second-order partial derivatives
should be equal

s %s

an du = A1 an G.hmv
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or
9 a (P
3o\ 7). = 7l 7). (5.46)
whence
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a .w M \
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This condition can be written as

i7" Tz, (349

That is, the function 1/7T must depend on the two variables 1,/v and u/a
in such a way that the two derivatives are equal. One possible way of
accomplishing this is to have 1/7 depend only on the sum (1/v + u/a).
We first recall that for a simple ideal gas 1 /7 = ¢R/u; this suggests that
the simplest possible change consistent with the van der Waals equation 1s

1 cR
T uta/ (3.49)

For purposes of illustration throughout this text we shall refer to the
hypothetical system characterized by the van der Waals equation of state
(3.41) and by equation 3.49 as the “ideal van der Waals fluid.”

We should note that equation 3.41, although referred to as the ““ van der
Waals equation of state,” is not in the appropriate form of an equation of
state. However, from equations 3.49 and 3.42 we obtain

P R acR
== - 3.50
T v—b w+aw (3.50)

The two preceding equations are the proper equations of state in the
entropy representation, expressing 1/7 and P/T as functions of « and v.

With the two equations of state we are now able to obtain the
fundamental relation. It is left to the reader to show that

S = NRIn[(v — b)(u + a/v)°| + Ns, (3.51)
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TABLE3.1
Van der Waals Constants and Molar Heat
Capacities of Common Gases”

Gas a (Pa-m" b (10~ °m’) ¢

He 0.00346 237 15
Ne 0.0215 17.1 15
H, 0.0248 26.6 25
A 0.132 302 15
N, 0.136 38.5 25
0, 0.138 32.6 2.5
Co 0151 39.9 2.5
CO, 0.401 42.7 35
N,O 0.384 44.2 3.5
H,0 0.544 30.5 31
Ct, 0.659 56.3 2.8
50, 0.680 564 3.5

“ Adapted from Paul 8. Epstein, Textbook of Thermodvnamics,
Wiley, New York, 1937,

equation does not satisfy the Nernst theorem, and it cannot be valid at
very low temperatures.

We shall see later (in Chapter 9) that the ideal van der Waals fiuid is
unstable in certain regions of temperature and pressure, and that it
spontaneously separates into two phases (“liquid” and “gas”). The funda-
mental equation (3.51) is a very rich one for the fdlustration of thermody-
namic principles.

The van der Waals constants for various real gases are given in Table
3.1. The constants g and b are obtained by empirical curve fitting to the
van der Waals isotherms in the vicinity of 273 K; theyv represent more
distant isotherms less satisfactorily. The values of ¢ are based on the
molar heat capacities at room temperatures.

PROBLEMS

3.5-1. Are each of the listed pairs of equations of state compatible (recall
equation 3.46)7 If so, find the fundamental equation of the system.
a) u = aPv and Pv® = bT
b) U = aPv® and Pv? = bT
u ¢+ buv u

<) wﬂm.a+vzc mbaﬂnm+w§

3.5-2. Find the relationship between the volume and the temperature of an ideal
van der Waals fluid in a quasi-static adiabatic expansion (i.e., in an isentropic



