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bly doing work on an external agent until it has moved to the position
that equalizes the pressure on the two sides. During this process energy is
withdrawn from the system, but its entropy remains constant (the process
is reversible and no heat flows). This is the process suggested by the
energy minimum principle. The vital fact we wish to stress, however, 1s
that independent of whether the equilibrium is brought about by either of
these two processes, or by any other process, the final equilibrium state in
each case satisfies both exiremal conditions.

Finally, we illustrate the energy minimum principle by using it in place
of the entropy maximum principle to solve the problem of thermal
equilibrium, as treated in Section 2.4. We consider a closed composite
system with an internal wall that is rigid, impermeable, and diathermal.
Heat is free to flow between the two subsystems, and we wish to find the
equilibrium state. The fundamental equation in the energy representation
is

U= UD(SO, VO ND, )+ UB(SD VO ND, ) (58)

All volume and mole number parameters are constant and known. The
variables that must be computed are S and §®. Now, despite the fact
that the system is actually closed and that the total energy is fixed, the
equilibrium state can be characterized as the state that would minimize
the energy if energy changes were permitted. The virtual change in total
energy associated with virtual heat fluxes in the two systems 1s

dU = TWGSD 4 TP gs® (5.9)

The energy minimum condition states that dU = 0, subject to the condi-
tion of fixed total entropy:

SO + §@ = constant (5.10)
whence
dU = (T® — TP)dsM = 0 (5.11)
and we conclude that
T =T® (5.12)

The energy minimum principle thus provides us with the same condi-
tion of thermal equilibrium as we previously found by using the entropy
maximum principle.

Equation 5.12 is one equation in S® and S®. The second equation is
mact convenientlv taken as eanation 5 8 in which the total enerev {J is
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known and which consequently involves only the two unknown quantities
S and $©@. Equations 5.8 and 5.12, in principle, permit a fully explicit
solution of the problem.

In a precisely analogous fashion the equilibrium condition for a closed
composite system with an internal moveable adiabatic wall is found to be
equality of the pressure. This conclusion is straightforward in the energ
representation but, as was observed in the last paragraph of Section 2.7, it
is relatively delicate in the entropy representation.

PROBLEMS

5.1-1. Formutlate a proof that the energy minimum principle implies the entropy
maximum principle—the “inverse argument” referred to after equation 3.7. That
is, show that if the entropy were not maximum at constant energy then the energy
could not be minimum at constant entropy.

Hinr: First show that the permissible increase in entropy in the system can be
exploited to extract heat from a reversible heat source (initially at the same
temperature as the system) and to deposit it in a reversible work source. The
reversible heat source is thereby cooled. Continue the argument.

5.1-2. An adiabatic, impermeable and fixed piston separates a cylinder into two
chambers of volumes V,/4 and 37,/4. Each chamber contains T mole of a
monatomic ideal gas. The temperatures are T, and T,, the subscripts s and !
referring to the small and large chambers, respectively.

a) The piston is made thermally conductive and moveable, and the system
relaxes to a new equilibrium state, maximizing its entropy while conserving its total
energy. Find this new equilibrium state.

b) Consider a small virtual change in the energy-of the system, maintaining the
entropy at the value attained in part (a). To accomplish this physically we can
retimpose the adiabatic constraint and quasistatically displace the piston by
imposition of an external force. Show that the external source of this force must
do work on the system in order to displace the piston in either direction. Hence
the state attained in part (@) Is a state of minimum energy al constant entropy.

¢} Reconsider the initial state and specify how equilibrium can be established by
decreasing the energy at constant entropy. Find this equilibrium state.

d} Describe an operation that demonstrates that the equilibrium state attained in
(c) is a state of maximum entropy at constant energy.

5-2 LEGENDRE TRANSFORMATIONS

In both the energy and entropy representations the extensive parame-
ters play the roles of mathematically independent variables, whereas the
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contrast to the practical situation dictated by convenience in the labora-
tory. The experimenter frequently finds that the intensive parameters are
the more easily measured and controlled and therefore is likely to think of
the intensive parameters as operationally independent variables and of the
extensive parameters as operationally derived quantities. The extreme
instance of this situation is provided by the conjugate variables entropy
and temperature. No practical instruments exist for the measurement and
control of entropy, whereas thermometers and thermostats, for the mea-
surement and control of the temperature, are common laboratory
equipment. The question therefore arises as to the possibility of recasting
the mathematical formalism in such a way that intensive parameters will
replace extensive parameters as mathematically independent variables. We
shall see that such a reformulation is, in fact, possible and that it leads to
various other thermodynamic representations.

It is, perhaps, superfluous at this point to stress again that thermody-
namics is logically complete and self-contained within either the entropy
or the energy representations and that the introduction of the transformed
representations is purely a matter of convenience. This is, admittedly, a
convenience without which thermodynamics would be almost unusably
awkward, but in principle it is still only a luxury rather than a logical
necessity.

The purely formal aspects of the problem are as follows. We are given
an equation (the fundamental relation) of the form

Y=Y(X,, X,.... X)) (5.13)
and it is desired to find a method whereby the derivatives

_ 9y
Pz (5.14)

can be considered as independent variables without sacrificing any of the
informational content of the given fundamental relation (5.6). This formal
problem has its counterpart in geometry and in several other fields of
physics. The solution of the problem, employing the mathematical tech-
nique of Legendre transformations, is most intuitive when given its
geometrical interpretation; and it is this geometrical interpretation that we
shall develop in this Section.

For simplicity, we first consider the mathematical case in which the
fundamental relation is a function of only a single independent vari-
able X.

Y = Y(X) (5.15)

ronmetriceally the fundamental relafinn e renrecented By a enirve 111 a9
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X FIGURE 5.3

space (Fig. 5.3) with cartesian coordinates X and Y, and the derivative

9y

P=3%

(5.16)

is the slope of this curve. Now, if we desire to consider P as an
independent variable in place of X, our first impulse might be stmply to
ehminate X between equations 5.15 and 5.16, thereby obtaining ¥ as a
function of P

Y = ¥(P) (5.17)

A moment’s reflection indicates, however, that we would sacrifice some of
the mathematical content of the given fundamental relation (5.15) for,
from the geometrical point of view, it is clear that knowledge of ¥ as a
function of the slope dY /dX would not permit us to reconstruct the curve
Y = Y(X). In fact, each of the displaced curves shown in Fig. 54
corresponds equally well to the relation Y = Y(2). From the analytical
point of view the relation ¥ = ¥Y(P) is a first-order differential equation,
and its integration gives Y = Y(X) only to within an undetermined
integration constant. Therefore we see that aceeptance of ¥ = Y(P) as a
basic equation in place of ¥ = Y( X) would involve the sacrifice of some
information originally contained in the fundamental relation. Despite the

x FIGURYE 5.4
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FIGURE 5.5

desirability of having P as a mathematically independent variable, this
sacrifice of the informational content of the formalism would be com-
pletely unacceptable.

The practicable solution to the problem is supplied by the duality
between conventional point geometry and the Pluecker line geometry. The
essential concept in line geometry is that a given curve can be represented
equally well either (a) as the envelope of a family of tangent lines (Fig.
5.5), or (b) as the locus of points satisfying the relation Y = ¥(X). Any
equation that enables us to construct the family of tangent lines therefore
determines the curve equally as well as the relation ¥ = Y(X).

Just as every point in the plane is described by the two numbers X and
Y, so every straight line in the plane can be described by the two numbers
P and v, where P is the slope of the line and ¢ is its intercept along the
Y-axis. Then just as a relation ¥ = Y(X) selects a subset of all possible
points (X, Y), a relation ¢ = ¢(P) selects a subset of all possible lines
(P,4). A knowledge of the intercepts y of the tangent lines as a function
of the slopes P enables us to construct the family of tangent lines and
thence the curve of which they are the envelope. Thus the relation

Y =¢(P) (5.18)

is completely eauivalent to the fundamental relation Y = ¥Y(X). In this
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relation the independent variable is P, so that equation 5.18 provides a
complete and satisfactory solution to the problem. As the relation ¢ =
Y (P) is mathematically equivalent to the relation ¥ = Y{(X), it can also
be considered a fundamental relation; ¥ = ¥{X) is a fundamental rela-
tion in the “Y-representation”; whereas ¢ = (P) is a fundamental
relation in the “yJ-representation.”

The reader is urged at this point actually to draw a reasonable number
of straight lines, of various slopes P and of various Y-intercepts = — P2,
The relation i = —P* thereby will be seen to characterize a parabola
(which is more conventionally described as Y = 1X?). In J-representation
the fundamental equation of the parabola is = — P2 whereas in Y-rep-
resentation the fundamental equation of this same parabola is ¥ = 1 X7

The question now arises as to how we can compute the relation
¥ =¢(P) if we are given the relation ¥ = Y(X). The appropriate
mathematical operation is known as a Legendre tramsformation. We
consider a tangent line that goes through the point (X, Y) and has a slope
P. If the intercept is ¥, we have (see Fig. 5.6)

P = I (5.19)
or
Y=Y —PX (5.20)
Let us now suppose that we are given the equation
Y=v¥(Xx) (5.21)

—_—

(X,7)
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and by differentiation we find
P=P{X) (5.22)

Then by elimination’ of X and Y among equations 5.20, 5.21, and 5.22 we
obtain the desired relation between ¢ and P. The basic identity of the
Legendre transformation is equation 5.20, and this equation can be taken
as the analytic definition of the function . The function ¢ is referred to
as a Legendre transform of Y.

The inverse problem is that of recovering the relation ¥ = Y(.X) if the
relation § = Y(P) is given. We shall see here that the relationship
between (X, Y) and (P, ) is symmetrical with its inverse, except for a
sign in the equation of the Legendre transformation. Taking the differen-
tial of equation 5.20 and recalling that dY = PdX, we find

dy =dY — PdX — XdP
= —XdP (5.23)

or

_ 4
—X =5 (5.24)

If the two variables y and P are eliminated® from the given equation
¢ = L(P) and from equations 5.24 and 5.20, we recover the relation
Y = Y(X). The symmetry between the Legendre transformation and its
inverse is indicated by the following schematic comparison:

¥ =Y(X) ¥ =¢(F)
_ 4y -
P=ax 4P
¢ =—PX+7Y Y=XP+ ¢
Elimination of X and Y yields Flimination of P and ¢ yields
¥ = $(P) Y = Y(X)

The generalization of the Legendre transformation to functions of more
than a single independent variable is simple and straightforward. In three
dimensions Y is a function of X, and X;, and the fundamental equation
represents a surface. This surface can be considered as the locus of points

I This elimination is possible if P is not independent of X; that is, if d”Y/dX? « 0. In the
thermodynamic application this criterion will turn out to be identical to the criterion of stability. The
criterion fails only at the “critical points,” which are discussed in detail in Chapter 10.

2The condition that this be possible is that d*y/dP? + 0, which will, in the thermodynamic
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satisfying the fundamental equation Y = Y( X, X)), or it can be consid-
ered as the envelope of tangent planes. A plane can be characterized by its
intercept ¢ on the Y-axis and by the slopes P, and P, of its traces on the
Y — X, and Y — X, planes. The fundamental equation then selects from
all possible planes a subset described by ¢ = ¢( Py, P,).

In general the given fundamental relation

Y=Y(X,, Xss..., X)) (5.25)

represents a hypersurface in a (7 + 2)-dimensional space with cartesian
coordinates Y, X, X,,..., X,. The derivative

Y
Pe= 5% (5.26)

is the partial slope of this hypersurface. The hypersurface may be equally
well represented as the locus of points satisfying equation 5.25 or as the
envelope of the tangent hyperplanes. The family of tangent hyperplanes
can be characterized by giving the intercept of a hyperplane, ¢, as a
function of the slopes Py, Py, ..., P,. Then

y=Y~ 2L PX, (5.27)
k

Taking the differential of this equation, we find

dy = — MUN». dP, (5.28)
k
whence
dy
P T 5.29
«= 3P, (5.29)

A Legendre transformation is effected by eliminating ¥ and the X, from
Y = ¥( Xy, Xs..., X, ), the set of equations 5.26, and equation 5.27. The
inverse transformation is effected by eliminating ¢ and the P, from
Y = y{P, P,,..., P), the set of equations 5.29, and equation 5.27.
Finally, a Legendre transformation may be made only in some (n + 2)-
dimensional subspace of the full (¢ + 2)-dimensional space of the relation
Y= Y(X; X,..., X,). Of course the subspace must contain the Y-coor-
dinate but may involve any choice of n + 1 coordinates from the set
Xy, X35+, X,. For convenience of notation, we order the coordinates so

that the Legendre transformation is made in the subspace of the first
n 4+ 1 ecanrdinatee fand of VY- the canrdinatee ¥V V0 YV ars [aft
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untransformed. Such a partial Legendre transformation is effected merely
by considering the variables X, , X,,,,..., X, as constants in the trans-
formation. The resulting Legendre transform must be denoted by some
explicit notation that indicates which of the independent variables
have participated in the transformation. We employ the notation
Y[Py, Py,..., P,] to denote the function obtained by making a Leg-
endre transformation with respect to X, X;,..., X, on the function
Y( X, Xy, .- -» X,). Thus Y[ Py, Py, ..., P,]is a function of the Emmw@z@oa
variables Py, P,..., P, X, .,,..., X,. The various relations involved in a

partial hnmmﬂ&m ﬁmsmmoﬂgmﬁon msa its inverse are indicated in the
following table.

Y=Y(X; X5, X,) Y{P,, Py,..., P,] = function of
Py, P..., P, X1, 0 X,
(5.30)
oY _ovi{p,...,P]
.m\n = lﬁw.»\%".._nl ..E.»N's.n = %.w__« Mﬂ < Hn
(5.31)
aY[Py...,P,]
P = ya k>n

The partial differentiation denotes
constancy of all the natural varia-
bles of Y other than X, (i.e., of all
X, with j # k)

!
dy = Y. P, dX,
4]

n

Y[Py...,P1=Y—-YPX
0

Elimination of Y and X,
X,..., X, from equations 5.30,
5.33, and the first » + 1 equations
of 531 vields the transformed
fundamental relation.

The partial differentiation denotes
constancy of all the nataral varia-
bles of Y(Z,,...,P,) other than
that with respect to which the
differentiation is being carried out.

dY[P,,..., P ]

n

= — Mx dpP, + M P.dX,
n+1
! (5.32)

Y=Y[Py....P1+ 2 X P
0

(5.33)

Elimination of Y[F,,.... P} and
Py, Py, ..., P, from equations
5.30, 5.33, and the first n + 1
equations of 5.31 yields the origi-

nal fundamental relation.

T el st e A imed 1 v m it mrirmafimaal aecmarnte AfF T scrome Ao
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thermodynamic applications in the succeeding sections of this chapter, it
may be of interest to indicate very briefly the application of the formalism
to Lagrangian and Hamiltonian mechanics, which perhaps may be a more
familiar field of physics than thermodynamics. The Lagrangian principle
guarantees that a particular function, the Lagrangian, completely char-
acterizes the dynamics of a mechanical system. The Lagrangian is a
function of 2r variables, r of which are generalized coordinates and r of
which are generalized velocities. Thus the equation

H\Hhﬁcfcwu...uc‘.“.@?@wui.v&u.v Am.mhu

plays the role of a fundamental relation. The generalized momenta are
defined as derivatives of the Lagrangian function

L
mv =
£ (5.35)
If 1t is desired to replace the velocities by the momenta as independent
variables, we must make a partial Legendre transformation with respect to
the velocities. We thereby introduce a new function, called the Hamilto-
nian, defined by?

(—H)=1L- W,Lu»c» (5.36)

A complete dynamical formalism can then be based on the new funda-
mental relation

H=H(P, P,...,P.q,q5,...,4,) (5.37)

Furthermore, by equation 5.31 the derivative of H with respect to P, is
the velocity v,, which is one of the Hamiltonian dynamical equations.
Thus, if an equation of the form 5.34 is considered as a dynamical
fundamental equation in the Lagrangian representation, the Hamiltonian
equation (5.37) is the equivalent fundamental equation expressed in the
Hamiltonian representation.

PROBLEMS

5.2-1. The equation y = x?/10 describes a parabola.

a) Find the equation of this parabola in the “line geometry representation”
¥ = y(P).

by On a sheet of graph paper (covering the range roughly from x = —15 to
x = +15 and from y = —251t0 y = +25) draw straight lines with slopes P = 0,

3In our usage the Legendre transform of the Lagrangian is the negarive Hamiltonian. Actuaily, the
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+0.5, £1, +£2, + 3 and with intercepts ¢ satisfying the relationship ¢ = Y (P) as
found in part {a). (Drawing each straight line is facilitated by calculating its
intercepts on the x-axis and on the p-axis.)

5.2-2. Let y = de®*

2) Find ¢{P).

b) Calculate the inverse Legendre transform of :(P) and corroborate that this
result is y(x). ’ )

¢} Taking 4 = 2 and B = 0.5, draw a family of tangent lines in accordance with
the result found in (a), and check that the tangent curve goes through the
expected points at x = 0, 1, and 2.

5-3 THERMODYNAMIC POTENTIALS

The application of the preceding formalism to thermodynamics is
self-evident. The fundamental relation Y = Y(X,, X, ...) can be inter-
preted as the energy-language fundamental relation U = U{S,
X, Xpoo 0 X)) or U=U(S,V,N,, N,, ...). The derivatives Py, Py, .
correspond to the intensive parameters 7, — P, ., ii», ... . The Legendre
transformed functions are called thermodynamic potentials, and we now
specifically define several of the most common of them. In Chapter 6 we
continue the discussion of these functions by deriving extremum princi-
ples for each potential, indicating the intuitive significance of each, and
discussing its particular role in thermodynamic theory. But for the mo-
ment we concern ourselves merely with the formal aspects of the defini-
tions of the several particular functions.

The Helmholiz potential or the Helmholtz free energy, is the partial
Legendre transform of U that replaces the entropy by the temperature as
the independent variable. The internationally adopted symbol for the
Helmholtz potential is F. The natural variables of the Helmholtz potential

are T,V, N, N, ... . That is, the functional relation F =
F(T,V, N,. N,. ...) constitutes a fundamental relation. In the systematic
notation introduced in Section 5.2

F=U|T] (5.38)

The full relationship between the energy representation and the
Helmholtz representation, is summarized in the following schematic com-
parison:

U= U(S,V,N, N, ...) F=F(T,V,N,N,, ...) (5.39)
T = 9U/8S —S = 9F/0T (5.40)
F=U-TS U=F-+ TS (5.41)

Elimination of U/ and S yields;] Elimination of F and T yields
F=FTV N, . N, ...} U= U(S.V.N,,N,... )
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The complete differential dF is
dF = —8dT — PdV + pdN, + p,dN, + --- (5.42)

The enthalpy is that partial Legendre transform of U that replaces the
volume by the pressure as an independent variable. Following the recom-
mendations of the International Unions of Physics and of Chemistry, and
in agreement with almost universal usage, we adopt the symbol H for the
enthalpy. The natural variables of this potential are S, P, N|, N,, ... and

H=U[P] (5.43)

The schematic representation of the relationship of the energy and en-
thalpy representations is as follows:

U=U(S,V,N,N,, ...} H=H(S,P,N,N,, ...) (5.44)
—P=3U/3V V=3aH/3P (5.45)
H=U-+ PV U=H—- PV (5.46)
Elimination of U/ and V yields | Elimination of H and P vyields
H=H(S,P,N,N,, ...) U= U(S,V,N,N,, ...)

Particular attention is called to the inversion of the signs in equations
5.45 and 5.46, resulting from the fact that — P is the intensive parameter
associated with V. The complete differential dH is

dH =TdS + VdP + p,dN, + p,dN, + -+ (5.47)

The third of the common Legendre transforms of the emergy is the
Gibbs potential, or Gibbs free energy. This potential is the Legendre
transform that simultaneously replaces the entropy by the temperature
and the volume by the pressure as independent variables. The standard

notation is G, and the natural variables are 7, P, N, N,, ... . We thus
have

G=U|T,P] (5.48)
and

U= U(S,V,N,N,, ...) G=GCGT,P,N, N, ...} (549
T=29U/38 -8 =9G/3T (5.50)
~P = gU/oV V =109G/3dP (5.51)
G=U—-TS+ PV U= G+ TS — PV (5.52)
Elimination of U, §, and ¥ yields | Elimination of G, T, and P yields
G=G(T,P,N,N,, ...) Us=US,V,N,N,, ...)
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The complete differential 4G is

dG = —SdT + VdP + pydNy, + pydN, + - - (5.53)

A thermodynamic potential which arises naturally E.mﬂmmwnoﬂ me-
chanics is the grand canonical potential, U[T, ). For this potential we
have

U= U(S,V,N) U[T, n] = function of T, ¥, and p (5.54)
T=9U/38 —-S§ = 9dU[T,pl/oT (5.55)
w= dU/IN —N = JU[T, u)/du (5.56)
UlT,pl=U—TS — upN U= U[T.ul+ TS + pN  (5.57)
Elimination of Elimination of
U, S, and N yields UiT,pl T, and p yields
U[T,p]as a functionof T, V, u U= U(S,V,N)
and
AU (T, u] = —SdT — PdV — Ndu (5.58)

Other possible transforms of the energy for a simple system, which are
used only infrequently and which consequently are unnamed, are Ul tLu
UlP,u,), ULT, . 4,), and so forth. The complete angaaw.qmbmmoﬂa 1s
ULT, P, fty» thos - - - » ). The fact that U(S,V, N, N,,. s Nyisa wo.Bomm-
neous first-order function of its arguments causes this latter function to
vanish identically. For

UlT,P ey} = U~ TS + PV — N, — Ny — -+ —p, N,

which, by the Euler relation (3.6), is identically zero

UIT, Popy, ooyt =0 (5.60)

PROBLEMS

5.3.1. Find the fundamental equation of a monatomic ideal gas in the Helmholtz
representation, in the enthalpy representation, and in the Gibbs representation.
Assume the fundamental equation computed in Section 3.4. In each case find the
equations of state by differentiation of the fundamental equation.

5.3-2. Find the fundamental equation of the ideal van der Waals fluid (Section

3.5) in the Helmholtz representation.
Perform an inverse Legendre transform on the Helmholtz potential and show
et alew P danmtin] mriatic 1 the aneroyu remrecentatinn 19 recaverad
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5.3-3. Find the fundamental equation of electromagnetic radiation in the Helm-
holtz representation. Calculate the “thermal” and “mechanical” equations of
state and corroborate that they agree with those given in Section 3.6.

5.3-4*. Justify the following recipe for obfaining a plot of F(¥') from a plot of
G (P} (the common dependent variables 7 and N being notationally suppressed
for convenience).

P 1%

(1) At a chosen value of P draw the tangent line 4.
(2) Draw horizontal lines B and C through the intersections of 4 with P = 1 and
P =0
(3) Draw the 45° line D as shown and project the intersection of B and D onto
the ine C to obtain the point F(V).
Hint: Identify the magnitude of the two vertical distances indicated in the G
versus P diagram, and also the vertical separation of lines B and €.

Note that the units of F and ¥ are determined by the chosen units of G and P.
Explain. ,

Give the analogous construction for at least one other pair of potentials.

Note that G(P) is drawn as a concave function (i.e., negative curvature) and
show that this is equivalent to the statement that x, > 0.

5.3-5. From the first acceptable fundamental equation in Problem 1.10-1 calcu-
late the fundamental equation in Gibbs representation. Calculate (T, P),
k(T P), and ¢ (7, P) by differentiation of G.

5.3-6. From the second acceptable fundamental equation in Problem 1.10-1
calculate the fundamental equation in enthalpy representation. Calculate
V(§, P, N) by differentiation.

5.3-7. The enthalpy of a particular system is

P
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