
Functional Coding of Differential Forms

Jerzy Karczmarczuk

Dept. of Computer Science, University of Caen, France
karczma@info.unicaen.fr

Abstract. Algebraic computations in differential geometry have usually a strong “analytic”
side, and symbolic formula crunching is heavily used, even if at the end, the user needs only
numbers, or graphic visualization. We show how to implement in a simple way the domain
of differential forms with the p-vector algebra, Hodge “star” operator, and the differentia-
tion. There is no explicit symbolic manipulation involved, we exploit only the “standard”
mathematical operations in a generic way. Everything forms a local algebra coded in Haskell,
and the differentiation algorithms heavily use the lazy evaluation. Some short examples are
presented. This paper generalizes our one-dimensional algorithmic differentiation formalism
in functional sauce presented elsewhere.
Keywords: Haskell, differentiation, laziness, forms, geometry.

1 Introduction

1.1 Lazy Differential Algebra

The differentiation is a “mechanical”, easily algorithmisable procedure and first computer implementations
of symbolic differentiation are older than FORTRAN. All computer algebra packages are equipped with
the appropriate modules. Less known is the concept of thealgorithmic differentiation([1]) of numerical
computer programs. No symbolic processing is involved, the program computes in parallel the value of
an expression and of its derivative, beginning with constants and the “differentiation variable” – whose
derivatives are trivial. All arithmetic operations can be overloaded in order to handle such compound data,
and the calculus threads along the program:(x, x′) + (y, y′) = (x + y, x′ + y′), (x, x′) · (y, y′) =
(xy, xy′ + x′y), etc. All manipulations can eventually be reduced to the chaining of the elementary
operations. These operations augmented by thederivation operatorwhich yields the derivative, form a
local differential algebra. In [2, 3] we have shown how to augment the typical “scientific” programs, by the
derivation operator using a functional version of the Algorithmic Differentiation paradigm. We exploited the
nice properties of lazy framework which made it possible to implement effectively and efficiently aclosed
differential algebra inHaskell [4]. Formally the generator of the differential algebra, i. e. the “differentiation
variable”, is equivalent to an infinite number of algebraically independent variables: the program which
manipulates an expressionp should be able to construct all the entitiesp′, p′′, . . . etc., and apparently the
symbolic manipulation is the only way to do this, because numerical programs dislike infinite data. But
not in lazy languages! We proposed to embed the expressionsp (which in the program are just numbers
assigned to program variables) into infinite sequencesp = [p(0), p′, p′′, p(3), . . .]. All the constantsc
(possibly assigned to program variables) are lifted to[c, 0, 0, . . .], and the distinguished differentiation
variable, e.g. the parameterx of a function whose derivative we compute, becomes[x, 1, 0, 0, . . .]. The

derivation operator is the tail of such sequences, and the algebra is closed. Having two expressionsp =
[p(0), p′, p′′, . . .] = (p(0) : p) andq = [q(0), q′, q′′, . . .] = (q(0) : q), we write

p± q = (p(0) ± q(0) : q ± q), (1)
p · q = (p(0) · q(0) : pq + qp), p/q = (p(0)/q(0) : p/q − pq/q2), (2)

exp(p) = r where r = (exp(p(0)) : pr), (3)
√
p = r where r = (

√
p(0) :

1
2
p/r), (4)

etc. The technique can be used to compute recursively defined functions with derivatives, and to other
computations where symbolic manipulation is unwieldy, and numerical approximations might be unstable.

1.2 Multi-dimensional Case

The generalization to many dimensions in principle is straightforward. We can define a new datatype:
data Scal a = Df a [Scal a] where the typea will typically be Double. The list contains all the
partial derivatives wrt. the “variables”. The constants are formed by the functionsCst x = Df x [],
but the “variable” now is a vector, so in 3 dimensions the componenty of the vectorx will have the form
Df y [0,1,0]. The multiplication, and other operations are more involved, for example

p@(Df x x’)*q@(Df y y’)=Df (x*y) (zipWith (+) (map (p*) y’) (map (*q) x’))

etc. The propagation of the derivatives through function applications proceeds as in the one dimensional
case, only the explicit constructor of the “variable”x is more involved. We call itdfVar, and its argument
is a list of the base type values (Doubles). It will be defined in the section (3.2).

In our package we used amodified numerical Prelude with such classes asAddGroupwhich declares
the addition,Monoid with multiplication,Group which augmentsMonoid by division,Transcen where
the overloaded exponential, logarithm, etc. are declared (and where we have squeezed also such functions
as the square root. . .), and some other generic classes appropriate for the development of general arithmetic
system. In particular, ourEq instance is ill-defined – we compare only the “main” values and not the
derivatives, which would overflow. We don’t feel particularly guilty about that, because in typical numerical
computations one rarely applies the equality for real numbers; what is needed is some topology, all numbers
are approximations. Moreover, expressions withall their derivatives are non-local objects. Comparing them
is like comparing functions: an effective algorithm for this is more than difficult.

We have used such a package written inClean [5] for generic manipulations of 3D surface models ([6]).
But a more ambitious look at those manipulationsis necessary. The triple(x, y, z) is not just a record, but
a vector, ageometricobject with its algebra, all the invariance properties of the scalar product, and all the
transformation paradigms. Now we shall implement a more generic geometric formalism.

1.3 What for?

This paper belongs to our crusade against the abuse of Computer Algebra packages by some computing
physicists and other similar dangerous species. One does not need to be a relativistic physicist1 in order

1 Relativistic Physicist: a researcher who travels from conference to conference at the speed of light; do
not confound with Quantum Physicist who prefers teleporting.

to work in curved spaces, or to need some complicated tensor formulae. We have seen many times that
complicated tensor computations needed in statistical physics (field theory, crystallography, etc.) or in
engineering (mechanics, robotics) performed by the symbolic packages, serve only to generate computer
programs in FORTRAN or “C” attached to a number-crunching application. The formulae themselves are
unwieldy, offering no insight for the humans. But the standard “scientific” languages are far too poor to
handle really complicated mathematical objects; the evolution of some object-oriented mathematical libraries
is still quite slow. Our objective is to show on some simple examples how to throw a direct bridge between
the conceptual,simple and compactinitial formulae such as the Laplacian∆φ in anycoordinate system,
and their final numeric implementation. This can be easily done in many modern languages; our functional
option arose from the conviction that a good representation of mathematical objects and algorithms should be
as static as possible, without side effects. The usage of laziness not only simplifies some iterative processes,
but bridges the gap between our computer codes and the Infinity. Butnothingin our algorithms is specifically
numeric. They are universal, and if somebody constructs a symbolic datatype whose elements belong to a
commutative algebra: can be added, multiplied, etc., our code is directly reusable.

2 Polyvectors and Tensors

2.1 Vectors and Skew Products

We want to put into a common datatype allp-vectors, including scalars. We declare thus

data PV a = VZ | S a | V (PV a) (PV a)

whereVZ is a formal zero vector, which acts also as the terminating item of the p-vector tree.(S x) is
a scalar:x may belong toDouble, or, later on, toScal Double. A simple algebraic vector:x = 1,
y = 3.5, z = 2 is represented byV (S 1.0) (V (S 3.5) (V (S 2.0) VZ)). The constructorPV
is a naturalFunctor, with the generalized map functional (fmap) defined in a most straightforward way

instance Functor PV where
fmap _ VZ = VZ
fmap f (S x) = S (f x)
fmap f (V p q) = V (fmap f p) (fmap f q)

The construction of theEq andAddGroup instances of(PV a) is immediate. The tensor product which
creates nested sequences is defined by

instance (AddGroup a,Monoid a) => Monoid (PV a) where
VZ*_=VZ; _*VZ=VZ
S a * p = a *> p; p * S a = a *> p
(S x) * (S y) = S (x*y)
a@(S _) * V p q = V (a*p) (a*q)
V p q * r = V (p*r) (q*r)

wherex*>v = fmap (x *) v is the implementation of the “external” multiplication ofa by the structure
PV a defined within the classModule. (The differential scalars are also instances of aModule: the
multiplication of such a scalar by a constant propagates this operation through all the derivatives.)

We see that the recursive chaining replaces the usage of indices. The component(u2v3) of the product
A = (uv) is the third component of the second element ofA. Such representation of matrices has been
used extensively in Lisp, and criticized. The usage of vectors and indexing is more compact while writing
formulae on paper. But we use a functional language, where the recursive list processing is natural, andwe
don’t want to use indices in our codes!

– We want to work mainly withinvariantoperations, where an object preserves its geometric identity. Even
the selection of a component may be implemented as a scalar product of a vector with an appropriate
projector, say,[0, 0, 1, 0]. But the extraction ofonecomponent is a rare operation anyway.

– The formalism should not depend on the dimension of the space, and it should be natural, without the
need of keeping separately the information about this dimension.

– We shall need not only rectangular “generalized matrices”, but also antisymmetric tensors (Pfaffians,
exterior forms), whose shape resembles more a simplex than a parallelepiped. This is the principal
argument for our choice.

– Most symbolic manipulations of tensor formulae use the indices (free or repeated) as dummy items:
placeholders, and most formulae are invariant anyway. The computer algebra package constructors tried
to adapt the syntax to the established manual formula processing, but this superficial tribute paid to
Cartan, Einstein, Schouten etc. need not be followed by everybody. Especially when – as here – we
shallnotdo any symbolic manipulations.

We will not discuss the standard tensor products, nor general tensors constructed from 1-vectors by multipli-
cation and addition. The scalar sector ofp-vectors belongs to a normal commutative algebra, and we define
for it the division, algebraic and transcendental functions, etc. We pass to something much more interesting,
to the higherp-vectors resulting from the application of antisymmetric, skew productu ∧ v. The result
will be implicitly antisymmetric. A 2-vector will be a nested sequence containingn(n − 1)/2 elements,
wheren is the dimension of the underlying space. For example, the elements of a 2-vector forn = 3 form
a tree[[a12, a13], [a23]], and a 3-vector in a 5-dimensional space has the components[[[a123, a124, a125],
[a134, a135], [a145]], [[a234, a235], [a245]], [[a345]]]. Every sub-matrix is triangular, only the items whose
index set is ordered will be kept. Formally the skew productA = u(1) ∧ u(2) ∧ · · · ∧ u(p) is defined as

Ai1i2...ip =
∑
j1...jp

δ
j1...jp
i1...ip

u
(1)
j1
u

(2)
j2
. . . u

(p)
jp
, (5)

where the generalized Kroneckerδ is equal to 1 when the upper index sequence is an even permutation of
the lower set, -1 in the odd case, and 0 otherwise. Implementing this using indices and loops (and a cascade
of conditionals) is dull. The recursive code is much more compact, and less error-prone. Curiously enough,
it is not easy at all to find the code given below in the literature, even Lisp implementations of some early
computer algebra packages are polluted by indices. . . We shall use the super-commutativity properties of the
skew product. Ifu is ap-vector, andv – aq-vector, their product obeysu∧ v = (−1)(orduv)v ∧ a, where
orduv is equal to -1 when bothp andq are odd, and 1 otherwise. The order of ap-vector is immediately

established by looking upon the depth of theV ... data structure. Omitting the trivialVZ and scalar
sector we get a remarkably compact code (whereordv2 computes the sign)

u@(V u1 uq) /\ v@(V v1 vq)
| uq==VZ || vq==VZ = VZ --No antisym. in 1 dim.
| otherwise = V (u1/\vq + (ordv2 u v)*>(v1/\uq)) (uq/\vq)

In order to prove this, it suffices to note that for the first component of the result – the scalar or vector which
contains the index 1, the structuremust be like that; the recursion does the rest. All elements which contain
the index 1 have the form:u1α ± uα1, whereα is the remaining index set. The choice of sign depends
on the cardinality ofα: the number of transpositions necessary to push the index 1 to the right through the
sequenceα. In our convention we do not divide thep product byp!.

We can construct now the generalized vector products inn-dimensional space. In 3 dimensions a 2-
product is structurally equivalent to a normal 1-vector, the known vector product. The 3-product has only
one component, it is equivalent to a scalar. We might notice that in fact, in order to establish this equivalence
we should be able to computedual p-vectors, and for this we must have also defined thescalar productof
vectors (the metric), otherwise there cannot be any equivalence between contra- and covariant vectors. The
dualization is performed by the Levi-Civitta tensor which transposes the covariance of its argument.

2.2 Hodge “star” Operator

We will discuss here only the Euclidean case, with the scalar product of two 1-vectors defined as the sum
of the component-wise products (or with the metric tensor being the identity matrix). Some (important)
generalizations will be mentioned later. We don’t need to, and we won’t distinguish here between the contra-
and covariant vectors. The dualization operation known as the Hodge “star” operator is defined by

(∗u)i1i2...iq =
∑
j1...jp

εi1i2...iqj1...jpuj1...jp , (6)

whereε is the fully antisymmetricn-tensor inn dimensional space, whose only component is equal to 1
when the set of indices is an even permutation of{1, 2, . . . , n}, -1 for the odd configuration, and 0 in the
remaining cases. We will see later that in more general coordinate systemsε is not equal to±1; it is a
densityproportional to the Jacobian of the transformation between the Cartesian and the general basis.

The construction of the star operator is simple and quite amusing. Take for example a 2-vector:
[[u12, u13, . . . , u1n], [u23, . . . u2n], . . . , [u(n−1)n]]. It is obvious from the construction (6) that the first
component of(∗u), whose first index is 1, cannot have any items from the first (compound) element of
u. Only the tail ofu contributes to it. On the other hand the whole sub-vector[u12, u13, . . . , u1n] will
contribute to the tail of(∗u), because the index 1mustbe present therein. We should also take into account
the signs. For anyp-vectoru the following identity holds:∗(∗u) = (−1)p(n−p)u (if the signature of the
metric tensor is trivial; in pseudo-Euclidean case it is more complicated).

We define first some generic auxiliary functions:vdpth u computes the depthp of ap-vector,dsgn
n is equal to 1 forn even and -1 forn odd,vhd andvtl which retrieve thehead and thetail from V
head tail, andnlist n x which produces fromx a nestedV structure[[. . . [x] . . .] of depthn. The
predicatesvnull andscalr verify if the vector is equal to VZ, or it is a scalar. We have then

hodge x = hdgn (ndim x) x
hdgn n x
| n==0 = x
| scalr x = (nlist n x)
| otherwise = let s=fromInt (dsgn (n - vdpth x))

h=vhd x; t=vtl x
in if vnull t then hdgn (n-1) (s*>h)

else V (hdgn (n-1) t) (hdgn (n-1) (s*>h))

The vector product of any two 1-vectors isu× v = ∗(u ∧ v). This is a 1-vector only forn = 3.

2.3 Generalized Scalar Product

The scalar product may be constructed as

u · v = ∗(u ∧ ∗v), (7)

and this holds for anyp-vectors. If the depth ofu and v is equal, the result is a scalar, because the
skew product of ap- by a (n − p)-vector produces an-vector which has only one component. IfA =
u(1) ∧ u(2) ∧ . . . ∧ u(n), its value is the determinant|u(i)

k |. In fact, we have constructed and coded a
variant of the Laplace expansion for determinants. (The reader who fears that it is an awful algorithm, whose
complexity is factorial, shouldn’t worry. In practical cases the dimension of the space is never too big, and
for n = 3 this algorithm is more efficient than the Gaussian elimination. The numerical stability of the
classical Laplace expansion is another issue. . .). IfA = u(1) ∧ . . . ∧ u(p), andB = v(1) ∧ . . . ∧ v(p),
the generalized scalar productA ·B is the determinant of the Gramm matrix:|(u(i) · v(j)|. Eq. (7) defines
a tensor contraction more general than a classical scalar product, not neccessarily symmetric. For example,
in 4 dimensions such scalar product of a 2- by a 3-vector gives a 1-vector, while the reverse order product
vanishes. It is useful to define a more straightforward full contraction of twop-vectors of the same order by

VZ <.> VZ = fromDouble 0.0
x@(S _) <.> y@(S _) = x*y
V u uq <.> V v vq = u <.> v + uq <.> vq

which is more efficient than the formula using the Hodge operator. (It could be represented in a more generic
way using folds, but we shall not insist upon that.) All classical vector algebra identities, as the reduction of
(u× v)2, or (u× v)×w take simpler forms, whose derivation we leave for the reader.

3 How to Implement Forms

3.1 Forms as p-vectors over Differential Scalars

We cannot present here an adequate introduction to Differential Forms, see e. g. [7] or [8]. But thisis an
important topic, whose importance in physics and technical sciences became simple explosive, especially

in fields where the importance of topology is primordial, e.g. in the analysis of the turbulence. Forms permit
to unify all variants of the Stokes’ theorem, get rid of the grad/div/curl symbols whose combinations are
difficult to read and to memorize, and to formulate many profound and beautiful theorems in differential
geometry in a very simple way.There is no modern theoretical physics without differential forms.

A 1-form may be written as a “path” element:ω = P dx+Qdy +Rdz. It is “something which can
be integrated”. (A 0-form is a scalar functionf(x); its “integration” is its evaluation at a point.) A field of
directed surface elements (forn = 3) is a 2-form:α = Adxdy + B dxdz + C dydz. Finally, a 3-form
is the volume elementM dxdydz. Algebraically forms span a Grassman algebra with the anticommutative
generatorsdx,dy, etc. All productsdxkdxk vanish. Because of the antisymmetry the number of components
of ap-form is equal to

(n
p

)
– exactly as for thep-vectors (or(n− p)-vectors).

Structurally we might say that ap-formisap-vector of its coefficients, and keep the productsdxi . . . dxj
implicit. Again, a purist would prefer not to confound forms and vectors, and he would be right, our
presentation is simplified. All the linear operations and the skew multiplication is identical for forms and
for “standard” vectors.

Now we have to define the differentiation of these objects, so for us they will belong to the typePV
(Scal a). For any scalar expressionf , i. e. S (Df f [fx, fy, fz]) the list of partial derivatives
converted into a 1-vector generates automatically

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz , (8)

whose coefficients contitute the gradient off . In principle we could replace lists in the definition of the
Scal datatype by thePV objects, but at a deeper level the derivatives of the components arenotvectors nor
forms, and we couldn’t reuse the vector operations upon them. We need thus a trivial conversion function
which transforms[a,b,c,...] into V (S a) (V (S b) (V (S c) ...).

3.2 The Exterior Differentiation of Forms

We know how to differentiate scalars. What aboutdu? If the vectoru represent the formu1dx+ u2dy +
u3dz, with natural generalization for the n-dimensional case,du is a 2-form:

du =
(
∂uy
∂x
− ∂ux

∂y

)
dxdy +

(
∂uz
∂x
− ∂ux

∂z

)
dxdz +

(
∂uz
∂y
− ∂uy

∂z

)
dydz, (9)

which symbolically might be written asd∧u. The differentiation increases the depth of the form by 1, like
the multiplication by 1-vector. Here is the algorithm permitting to differentiate ap-form. First we define the
constructor of a differential variablex.

dfVar l = dV (length l) 1 l where
dV _ _ [] = VZ
dV n k (x:xq)=V (S(dfScal n k x)) (dV n (k+1) xq) --where

dfScal n k x = Df x (unitV n k)
unitV n k = (replicate (k-1) (fromDouble 0.0) ++
((fromDouble 1.0):replicate(n-k)(fromDouble 0.0)))

First we scan recursively all the elements of a form, replacing all scalars by the lists of their partial derivatives.

recd VZ = VZ
recd (S (Df _ v)) = listToVector v
recd (V p q) = V (recd p) (recd q)

Then, we split the result ofrecd into the derivatives wrt. the first variable, and the rest

dsplit VZ=(VZ,VZ)
dsplit (V x@(S _) q) = (x,q) --The first partial
dsplit (V v q)=let (a,b)=dsplit v; (c,d) = dsplit q in (V a c,V b d)

Then, the following code solves the problem, performing the recursive antisymmetrization:

df v = asym (recd v)
asym VZ = VZ
asym (V VZ _) = VZ -- Singleton. No asym.
asym p@(V (S _) _) = p
asym p = let asx VZ _ _ = VZ; asx p r q = V (p - asym r) (asym q)

(V _ qq, V r1 rq) = dsplit p
in asx qq r1 rq

The easiest way to check the package is to verify that the Poincaré lemma holds, i.e. thatdf (df any)
gives zero (not necessarily scalar orVZ. This lemma encompasses known identities, such asdiv◦curl = 0,
or curl ◦ grad = 0). It is easy to verify also that1/|x| is a harmonic function in three dimensions. The
coding of the Laplace operator for differential forms is trivial, for scalars∆f = ∗d(∗df). We begin with
any numerical vector constructed as the “variable”x:

x = dfVar [1.3, -2.1, 0.8] :: PV (Scal Double)
invr = recip (sqrt (x/.\x))
res = (hodge . df . hodge . df) invr

Hugs gives forres: -3.1225e-17, (please blame the implementation of the floating-point internals. . .) and
df res produces a vector with values of the same order. A differentiation operator which lowers the order
of its argument form, the composition∂ = ∗(d ∗): codf u = (hodge . df . hodge) u, is called
the co-differential. The general Laplace-deRham operator for any form isd∂+∂d, which can also be coded
in a straightforward manner. The use of the package needs some preparations. Suppose we want to compute
the normal vector to an implicit surface, e.g. a cone anchored at the origin, whose axis is given by the vector
n, and the angle between the axis and the surface isθ. The equation and the code of the cone are

h(x) = (x · n)2 − cx2 = 0, where c = cos2(θ) . (10)

n :: PV Double
n = listToVector [1.0, -1.0, 2.0]
th = 0.85 :: Double
c=z*z where z=cos th
h n c x = sq (x<.>n) - c*>sq (x<.>x) where sq x =x*x

and we want to compute this normal forx = [0.5, 1.0, 2.0]. But n belongs toPV Double, andc is a
floating constant. So, without changing anything in the definition of the surface, we call it like that:

cVec v = fmap (\x->(sCst x)) v -- (or: cVec = fmap sCst)
surf = h (cVec n) (sCst c) (dfVar [0.5, 1.0, 2.0])
theNormal = df surf

wherecVec lifts aDouble vector toPV (Scal Double). The result is [2.4264, -16.1471, -4.29426]. Its
scalar product withx does not vanish, which proves that the chosen vector does not belong to the surface.

4 Further Manipulations

4.1 Linear Transformations of p-vectors

If A is a linear transformation which transforms 1-vectors belonging to one space to another:u → w =
Au, thep-products transform naturally asAu1 ∧Au2 ∧ . . .Aup. Applying this to the basis vectors,
and exploiting linearity implies the existence of a unique “lifting” ofA to the space ofp-vectors. This is a
hyper-matrix called thep-th compound ofA – a matrix whose elements are all minors of orderp constructed
from the elements ofA. Its dimension is

(n
p

)
, the dimension ofp-vectors. We denote it by

∧p A. It is easy
to prove a nice (and non-trivial) property:

∧p(AB) = (
∧p A)(

∧p B), but how to construct it explicitly?
Normal matrices will be represented as vectors of 1-vectors; a particular instance of such an operator is the
standard dyadic (tensor,not skew) product of two 1-vectors. Our hyper-matrices should have a structural
shape appropriate to handle thep-vectors, as normal matrices do with 1-vectors:

-- lintrf Matrix Vector -> Vector
lintrf _ VZ = VZ
lintrf (V a1 aq) u = V (a1/.\u) (lintrf aq u)
lintrf VZ _ = VZ

The construction of the lifted matrices is quite easy. We see that all the orderpminors of our transformation
matrix may be obtained by taking the skew products ofp of its rows. The only problem is the recursive
structuring of the hyper-matrix adapted to the construction of a generalization oflintrf. It should be a
p-vector ofp-vectors. We begin with the construction of a “deep” mapping functionalvmap n v, not fully
recursive, asfmap, but adapted to thePV sequences of a given depth:

vmap 1 _ VZ = VZ
vmap 1 f (V x q) = V (f x) (vmap 1 f q)
vmap n f u = vmap 1 (vmap (n-1) f) u

Now, the hyper-matrix constructor and the generalization oflintrf have the form

hypmat 1 m = m
hypmat n m@(V a1 aq)
|n>vlength m = VZ
|otherwise=V(vmap (n-1) (a1/\)(hypmat (n-1) aq))(hypmat n aq)

lintrf p m u = vmap p (<.> u) m

wherem is the hyper-matrix, andu– the transformedp-vector. This completes our construction. However, one
of the remarkable properties of Forms is their nice behaviour with respect to any coordinate transformations,
and here the structural algebra does not suffice, we must return to our differential properties, and to have a
look into thedualspace (not to be confused with thep↔ (n− p)-vector duality).

4.2 Transformations of Forms

It is the general transformation issue which shows clearly that forms and vectors, such asx belong to
different spaces. Until now we have abused the language, here we will try to bea little more precise, but
this section is a very superficial introduction to the transformation of forms. A zero-form, which is a scalar
functionf : f(x) ∈ R for x ∈ P belongs to thedual spaceF0(P). If x ∈ P is transformed iny ∈ Q:
y = y(x) = Tx, then the zero-forms undergo the transformationT∗ defined by

(T∗f)(x) = f(Tx) or T∗ ◦ f = f ◦T . (11)

We see thatT∗ ∈ (F0(Q) → F0(P)). For the 1-forms the situation is a little more complex. A typical
termai(y)dyi transforms into ∑

ai(y(x))
∂yi
∂xj

dxj . (12)

The coding is relatively easy, and once we manage to transform 1-forms, the technique used in (4.1) will
permit the lifting of those transformations to anyp-forms. The implementation of the Eq.F0, uses (11):
vtrf t f x = f (t x). (For those readers who are combinator maniacs:vtrf = flip (.), apart
from the type checking.) It may be interesting to note that the abandon of the standardHaskell Num classes
made it easier to implement directly a partial algebraic structure on forms treated as functions, for example

type Form0 a = (PV a -> a) -- 0 forms
instance AddGroup a => AddGroup (Form0 a) where
f + g = \x-> f x + g x
neg f = \x-> neg (f x)

instance Module ((->) (PV a)) where
a *> f = \x -> a*(f x)

etc. (Current versions ofHaskell will not accept the instance declarationModule Form0.) Now, even
if structurally we keep the “normal vector expressions”: the values of 1-forms:ω = a1(y)dy1 + · · · +
an(y)dyn in standard vectors[a1, . . . , an] belonging e.g. toPV Double, or toPV (Scal Double), in
order to transform them we must pass to the dual space, to their functional abstractionF1, as in the case of
F0. In fact, we might abandon the previous version ofF0 altogether: the scalar functionf will belong not to
P → R, but its result will be injected into thePV domain using theS tag. Then we can declare this functional
domain as Monoid with the composition playing the role of multiplication. The AddGroup declaration re-
mains identical.Thisrepresentation of the dual space is not vectorial; in order to facilitate the transformation
of the coefficients in (12) we might construct another space:PV (PV a -> a) of vectors whose compo-
nents belong to our previousF0. The conversion between these two possible representations is not difficult, a
vector functionf should be converted into the vector[vhd.f, vhd.vtl.f, . . . , vhd.vtl.vtl.f], where

vhd and vtl are the selectors of thePV fields, but its usage may be very inefficient. Suppose that the function
h transforms the coordinates, for example defines the transformation between spherical and Cartesian bases:

h (V r (V theta (V phi VZ))) = -- [x,y,z]
let rsth = r*sin theta
in V (rsth*cos phi) (V (rsth*sin phi) (V (r*cos theta) VZ)

How to compute the Jacobian determinant of such a transformation for a given value of the argument? Here
is the answer, for, say,arg = dfVar [3.0, pi/6.0, pi/4.0]:

jMatrix = recd (h arg)
jDet = hodge (hypmat 3 jMatrix) -- = 4.5

The matrixjMatrix before its application to the coefficient vectora in (12) should be transposed. This is
a standard list-processing algorithm which we omit.

The manipulation of Forms in any coordinate system might exploit the fundamental invariance property:
T∗(dω) = d(T∗ω). We terminate this section by showing that1/r is a harmonic functionin the spherical
coordinate system. The blind application of the previously defined∗d(∗df) operation to1/r will fail, but
not because the differential formulae are more complex! In fact, what we need to do is to modify the Hodge
star operator: its result should be modified by the intrinsic density element in the new system, i.e. by the
Jacobian determinant. This is the entire additional code:

ovr = recip (cvector [1.0,0.0,0.0] <.> arg) -- pick up 1/r invariantly
xhodge u = jDet * (hodge u)
xlapl x = (xhodge . df . xhodge . df) x
xlapl ovr -- Ugh! Of course -2.498e-16

5 Conclusions

The slogan “doing mathematics on a computer” becomes methodologically more serious, if we choose a
programming language which permits a decent implementation of hierarchically structured mathematical
objects obeing formal properties independently of the underlying data constructors. Ideally the same algo-
rithm should be used both for numerical and symbolic manipulations (unless we need some specifically
numeric approximations, which is not the case here). The modern functional languages with their type/class
systems offer this possibility. The class system ofHaskell is far from the ideal (classes are not categories,
types are not domains, neither extensions nor algebraic subsumptions are directly implementable. . .), but
we managed to implement in a fairly universal way a Differential Algebra package, including simple-minded
tensors and differential forms. The package can be used directly for numerical computations, avoiding the
“formula crunching” stage, so they might be useful for computational physicists2.

2 Computational Physicist: a researcher for whom the World is composed of computations, sometimes
disguised in palpable things like electrons or galaxies. This is different from Computing Physicist who
believes in Reality, but in order to understand it, he must model it on a computer; he has often serious
problems with his love affairs.

The differentiation layerneedsthe lazy semantics, the algorithms which compute the (primitive) deriva-
tives are co-recursive, although the construction of the differentials in the domain of forms may be coded
strictly. (In anN -dimensional space all differentials must be of order≤ N .) The code is very compact, in
accord with the basic psycho-philosophy of the Form-alist church, thatall formulae should be short, other-
wise they are the work of Devil. We have shown accessorily that all typicalregular indicial manipulations are
very well representable by recursive iterators. The code would be even more concise, if we used generalized
zips andfolds, but it would make the algorithms rather cryptic, impressive, but difficult to read. This work
will of course continue, it is possible to implement more tensor manipulations, Lie derivatives, connections,
etc. What is essential is to find some concrete, useful examples.

The possible applications are very numerous, ranging from the algorithms for the adaptive sampling of
curved surfaces in the 3D modelling, or the light reflection off some anisotropically textured surfaces in image
synthesis, to the search of the canonical representation of some thermodynamical or mechanical systems
(verification of the order of some forms, which may suggest the existence of turbulence, irreversibility, etc.)

It goes without any doubt that we all need symbolic manipulations, and the computer algebra packages
are indispensable. Such packages as ours can augment their power in the following way:

– There isnothinginherently numeric in our code. Some new symbolic algorithms can be implemented,
provided an adequate basic symbolic data are designed, and equipped with the appropriate algebraic
properties. The advantage of the functional approach is its genericity and compactness.

– Computer algebra packages are not Oracles. They give the answer sometimes in a badly simplified form
requiring some manual post-processing, or they need to be enriched by user-defined procedures, which
might contain errors. Direct computations with some random numeric data are anexcellentway to find
bugs in unwieldy formal expressions.

We believe very strongly that the best way to popularize the functional programming among the scientific
computing community is by showing how to implement the structures and the algorithmstheyneed.

References

1. G. F. Corliss, Automatic Differentiation Bibliography, originally published in the SIAM Proc. of Auto-
matic Differentiation of Algorithms: Theory, Implementation and Application(1991), but many times
updated. Available from the netlib archives (netlib@research.att.com), or from
ftp://boris.mscs.mu.edu/pub/corliss/Autodiff

2. Jerzy Karczmarczuk, Functional Differentiation of Computer Programs, Proceedings of the III ACM
SIGPLAN International Conference on Functional Programming, Baltimore, (1998), pp. 195–203.

3. Jerzy Karczmarczuk, Lazy Differential Algebra and its Applications, Workshop, III International Sum-
mer School on Advanced Functional Programming, Braga, Portugal, 12–18 September, 1998.

4. John Peterson et al., Haskell 1.4 Report, Yale University, available from http://haskell.org/report.
5. Rinus Plasmeijer, Marko van Eekelen, Concurrent Clean – Language Report, v. 1.3, HILT – High Level

Software Tools B. V., and University of Nijmegen, (1998).
6. Jerzy Karczmarczuk, Geometric Modelling in Functional Style, Proc. of the III Latino-American

Workshop on Functional Programming, CLAPF’99, Recife, Brazil, 8-9 March 1999.
7. H. Flanders, Differential Forms with Applications to the Physical Sciences, Acad. Press, NY, (1963).
8. C. von Westenholz, Differential Forms in Mathematical Physics, North Holland, Amsterdam, (1978).

