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Abstract

In this work the interfacial tensions (IFT) of methane + n-butane were calculated
with gradient theory (GT) of inhomogeneous fluids for planar interface. The inputs
of GT are the Helmholtz free energy densities of homogeneous fluids and influence
parameters of inhomogeneous interface. The homogeneous fluids properties were
computed by applying volume translated Soave-Redlich-Kwong equation of state
(SRK EOS). The pure influence parameters were obtained by the correlating the
experimental surface tensions of pure fluids , and the influence parameter of the
mixtures was determined by using the geometric mixing rule. In this study the
gradient theory was applied to the methane + n-butane mixture near the critical
conditions where the measured interfacial tensions are above 0.9 mN/m. The pre-
dicted interfacial tensions were in excellent agreements with the avaible measured
data to within a few percents. In addition the predicted density profiles in the in-
terface revealed the local enrichment of methane and confirmed the credibility of
the gradient theory.

Key words: Interfacial tension; Inhomogeneous; Gradient theory; Equation of
state; Influence parameter; Density profiles;

1 Introduction

It is well known that the interfacial tensions of hydrocarbon mixtures are re-
garded as one of important thermophysical parameters in oil related industrial
processes, but there are still a considerable lack of reliable experimental IFT
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data in the open literatures, specially near the critical point. Therefore the the-
oretical and semiempirical predictions of interfacial tensions are of particular
significance.

There are several approaches which have been proposed for the modelling of
interfacial tensions. These approaches can be divided into two categories: em-
pirical correlations and statistic thermodynamics-based methods that take into
account the density gradient between the bulk phases. For instance, here list a
few of techniques. Simple correlations methods: the parachor method [1-2] and
corresponding state correlations [3] that are not satisfactory for computing in-
terfacial tension of compounds that exhibit strong hydrogen bonding. Statistic
thermodynamics-based methods: the perturbation theory[4], the density func-
tion theory[5-7] and the gradient theory[8-9].

In summary the general expression of gradient theory is the integral of the
two contributions: the local value of the properties (homogeneous fluid) and
the gradient value of the properties[9]. The gradient value of the properties
can be derived from the properties of the homogeneous fluids by applying
the influence parameters, which are related to the mean square range of the
direct correlation functions of the homogeneous fluids[18]. The minimum of
this integral with respect to one component density variations corresponds to
the free energy of the flat interface, which is equal to surface tension in case of
vapor-liquid systems. Hence the inputs of gradient theory are the free energy
density of homogeneous fluids and the influence parameters of inhomogeneous
fluids[19].

There are lots of efforts that have been done for pratical applications of gra-
dient theory to compute the interfacial tensions in different fluids systems.
The significant research was firstly started by Carey et al. (1980) [10] that
focused on predicting the interfacial tension of polytomic fluids such as nonpo-
lar hydrocarbons and alcohols. Similarly, Sahimi et al. (1985) [11] applied the
gradient theory to predict interface composition profiles and interfacial ten-
sions of liquid-liquid, liquid-vapor and liquid-liquid-vapor interface in binary
and ternary mixtures of CO2 with propane and decane. Unlike the previous
research work the predictions of interfacial tension was made with Mohanty-
Davis equation of state by Perez-Lopez et al. (1992) [12]. After one year Cor-
nelisse et al. (1993) [13] studied the interfacial tension of carbon dioxide +
water and benzene + water systems, the results were not satisfactory due to
the incapbility of the Peng-Robinson as well as the gradient approximation.
To save time-consuming density profile computation, Zuo and Stendy et al.
[14-16] developed the linear gradient theory for calculating interfacial tension
of mixtures that had excellent agreements between the predicted and exper-
imental interfacial tension at high and moderate IFT value. For estimate of
intefacial tension of complex mixtures of more than three components, the
gradient theory was for the first time applied without any lumping by Miqueu
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et al. (2005) [17].

In this study the gradient theory will be utilized to predict the interfacial
tensions of methane + n-butane mixture in combination with volume trans-
lated Soave-Redlich-Kwong equation of state (SRK EOS). The objective of
this survey is to investigate the validity of gradient theory for estimating the
interfacial tension of hydrocarbon mixtures near the critical area. First,this
paper will begin with the descriptions of gradient theory. Second, the volume
translate SRK EOS will be recalled in the section 3. Third, the explaination
of influence paramters used in the gradient theory will be found in the sec-
tion 4. Finally the results of calculated interfacial tensions will be compared
with avaible experimental data, and moreover the estimated density profiles
will display the density distribution across the vapor-liquid interface to help us
better understanding the interfacial behaviors of methane + n-butane mixture
near the critical point.

2 Gradient theory

In this section the theoretical background of gradient theory will be described
briefly. Consider there is a planar interface between liquid and vapor bulk
phases, the distance normal to this inerface is denoted by z which equals to
interface thickness. According to gradient theory, in the absence of external
potentials, the differential equation that governs the density distribution ρ(z)
through the planar interface is of the form:

N∑
j=1

d

dz
(κij

dρj

dz
) − 1

2

N∑
j=1

N∑
k=1

∂cjk

∂ρi

dρj

dz

dρk

dz
=

∂Φ(ρ)

∂ρi

(1)

where κ denotes the influence parameter of the inhomogeneous fluid at the
interface, and Φ(ρ) is grand thermodynamic potential defined by

Φ(ρ) = f 0(ρ) − ∑
i

ρiμiB (2)

f 0(ρ) = ρμ(ρ) − P (ρ) (3)

where f 0(ρ) is the local Helmholtz free energy density of homogeneous fluid at
interface grid of density ρ(z), and μiB is the chemical potential of component
i in the bulk phase.

Assuming the influence parameters are independent of density supported by
the works of McCoy & Davis et al. (1978) [20] in which density profiles of
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simple one-component fluids were shown to be relatively insensitive (10% vari-
ation) to the density dependence of the influence parameters. The governing
equation (1) for planar interface is reduced to

N∑
j=1

κij
d2ρj

dz2
= μi(ρ) − μiB (4)

where the μi(ρ) is the chemical potential at the interface grid where the den-
sity equals to ρ. Multiplying equation (4) by dρi/dz, summing over i and
integerating gives

∑
i

∑
j

1

2
κij

dρi

dz

dρj

dz
= Φ(ρ) − ΦB (5)

where ΦB = −P , P is the vapor liquid equilibrium pressure.The boundary
conditions related with equation (3) are

z −→ +∞, ρ −→ ρL

z −→ −∞, ρ −→ ρV

where the ρL and ρV are the liquid and vapor phase densities.

The interfacial tension according to gradient theory is calculated as[18]

σ =

+∞∫

−∞
κij

dρi

dz

dρj

dz
dz (6)

To avoid solving a boundary value problem on the infinite interval [−∞, +∞],
a density variable ρ is defined to eliminate the position coordinate variable z, as
z moves from −∞ to +∞, the density variable ρ will increases monotonically
from ρI to ρII . To do this,the following equations will be used

dρi

dz
=

dρi

dρ

dρ

dz
(7)

d2ρi

dz2
=

d(dρi

dρ
)

dρ

dρ

dz

dρ

dz
+

dρi

dρ

d(dρ
dz

)

dρ

dρ

dz
=

d2ρi

dρ2
(
dρ

dz
)2 +

dρi

dρ

dρ

dz

d

dρ
(
dρ

dz
) (8)

Then dz can be written as by rearranging equation (5)

dz =

√√√√
∑

i

∑
j κij

dρi

dρ

dρj

dρ

2[Φ(ρ) − ΦB]
dρ (9)
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The equation (6) can be rewritten as the following form by using the indepen-
dent density variable ρ

σ =

ρII∫

ρI

√√√√(2(Φ(ρ) − ΦB)
∑

i

∑
j

κij
dρi

dρ

dρj

dρ
dρ (10)

To calculate the chemical potential μ in each interface grid, the volume trans-
lated SRK EOS were utilized. It will be introduced in the next section.

3 Equation of state

In this paper, the volume translated SRK EOS from the work of Lin et al.
(2006) [21] is choosed to compute the thermodynamic properties of the bulk
phase and interface. The bulk phase density and interface pressure and chem-
ical potential can be estimated with the help of the volume translated SRK
EOS. It is defined as

p =
RT

v + c − b
− a

(v + c)(v + b + c)
(11)

The coefficients a and b are calculated likewise the origial SRK EOS by Soave
et al. (1972) [22] as

a = 0.42748
R2T 2

c

Pc
α(T ) (12)

b = 0.08664
RTc

Pc
(13)

α(T ) = [1 + m(1 − T 0.5
r )]2 (14)

m = 0.480 + 1.574ω − 0.176ω2 (15)

where the Tc and Pc are the critical temperature and critical pressure, the
Tr = T/Tc is the reduced temperaure and ω is the acentric factor.

The volume translation parameter c can be computed as

c = ccf(Tr) (16)

cc = (
1

3
− Zc)

RTc

Pc
(17)
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f(Tr) =

⎧⎪⎨
⎪⎩

β + (1 − β) exp[χ(1 − Tr)], Tr ≤ 1

β + (1 − β) exp(0.5χ), Tr > 1
(18)

β = −3.7303 exp[−60.2833(
1

3
− Zc)] + 0.2334 (19)

χ = −3.4620 = exp[16.08133 − Zc)] − 4.0957 (20)

where the Zc represents the cirical compressibility factor.

With the help of above volume translated SRK EOS, the thermodynamic
properties of homogeneous fluids can be computed, but to obtain the propertis
of inhomogeneous fluids in the interface the influence parameters must be
applied.

4 Influence parameter

In this part, it will focus on the influence paramters. The theoretical expression
for influence paramater is derived by Bongiorno et al. (1976) [23] as

κij =
kbT

6

∫

V

s2C0
ij(s, ρ)ds3 (21)

where kb is Boltzmann’s constant, and C0
ij is the homogeneous fluid direct cor-

relation function between the component i and j. Due to paucity of the direct
correlation function for the majority of the fluids systems, the influence pa-
rameters have to be determined based on correlating the avaible experimental
surface tension data of pure fluids to the gradient theory as

κ = (
σ∫ ρII

ρI

√
2(Φ(ρ) − ΦB)

)2 = (
σ∫ ρII

ρI

√
2[ρ(μ(ρ) − μB)] − (P (ρ) − PB)

)2(22)

In this study the influence parameters from Lin et al. (2007) [24] were applied
as

ln(
κ

ab
2
3

N
8
3
A ) = K0 + K1 ln(1 − T

Tc
) + K2[ln(1 − T

Tc
)]2 (23)

where NA is avogadro constant(6.0221415 × 1023mol−1), and K0, K1, K2 are
the correlation coefficients. For pure methane component

K0 = −1.161; K1 = −0.698; K2 = −0.098
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For pure n-butane compoent

K0 = 1.571; K1 = −0.840; K2 = −0.143

The geometric mixing rule is used to calculate the cross influence parameter
of methane + n-butane mixture. It is computed as

κij =
√

κiiκjj (24)

where κii and κjj are the influence parameters of pure methane and n-butane
corresponding to the equation (23).

5 Results and discussion

5.1 Numerical solution

For the binary mixture (i = 2), and the governing equation (4) can be restated
as

κ11
d2ρ1

dz2
+ κ12

d2ρ2

dz2
= μ1(ρ1, ρ2) − μ1B (25)

κ21
d2ρ1

dz2
+ κ22

d2ρ2

dz2
= μ2(ρ1, ρ2) − μ2B (26)

where the cross influence parameters of binary mixture κ12 = κ21 =
√

κ11κ22.

It can be seen that equation (25) ×√
κ22 equals to equation (26) ×√

κ11. At
last the object function in the interface can be obtained as

Fobj =
√

κ22[μ1(ρ1, ρ2) − μ1B] =
√

κ11[μ2(ρ1, ρ2) − μ2B] = 0 (27)

Derivatives to the density of component 1 and component 2 are of form as

[
√

κ22
∂μ1

∂ρ1
−√

κ11
∂μ2

∂ρ1
]dρ1 = 0 (28)

[
√

κ22
∂μ1

∂ρ2
−√

κ11
∂μ2

∂ρ2
]dρ2 = 0 (29)

where ∂μ1/∂ρ1,∂μ2/∂ρ1,∂μ1/∂ρ2 and ∂μ2/∂ρ2 can be derived with the help of
volume translated SRK EOS.
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The value of dρ1/dρ2 can be obtained by rearranging equation (28) and equa-
tion (29)

dρ1

dρ2

=

√
κ22

∂μ1

∂ρ2
−√

κ11
∂μ2

∂ρ2√
κ11

μ2

∂ρ1
−√

κ22
∂μ1

∂ρ1

(30)

The matlab code for calculation the thermodynamic properties of methane +
n-butane mixture is provided by Tore Haug-Warberg (Norwegian University
of Science and Technology).The volume and temperature is assumed to be
constant in the volume translated SRK EOS model. The following equations
are solved to calculate the value of dρ1/dρ2.

The differential equation for chemical potential is defined as

dμi = (
∂μi

∂V
)T,N1,N2dV + (

∂μi

∂N1

)T,V,N2dN1 + (
∂μi

∂N2

)T,V,N1dN2 (31)

where N1 and N2 are mole number of methane and n-butane respectively.

The differential equation for pressure is defined as

dP = (
∂P

∂V
)T,N1,N2dV + (

∂P

∂N1
)T,V,N2dN1 + (

∂P

∂N2
)T,V,N1dN2 (32)

The differential equation for mole number is defined as

V dρi + ρidV = dNi (33)

The value of ∂μi/∂ρ1 was computed by

∂μi

∂ρ1
= [

(∂μi

∂V
)T,N1,N2dV + ( ∂μi

∂N1
)T,V,N2dN1 + ( ∂μi

∂N2
)T,V,N1dN2

(dN1 − ρ1dV )/V
]T,V,ρ2 (34)

The value of ∂μi/∂ρ1 was calculated by

∂μi

∂ρ2
= [

(∂μi

∂V
)T,N1,N2dV + ( ∂μi

∂N1
)T,V,N2dN1 + ( ∂μi

∂N2
)T,V,N1dN2

(dN2 − ρ2dV )/V
]T,V,ρ1 (35)

All these derivatives had to be computed in each interface grid for deriving
the density profiles in the whole interface.
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5.2 Calculated density profiles

The prepared methane + n-butane mixture contained 73.6 mole% methane,
and before the density profiles in the interface are modelled, the densitis of
liquid and vapor bulk phases were calculated with an isothermcal flash subrou-
tine, the two phase isothermal flash algorithm was presented by Michelsen &
Mollerup (2007) [25]. Assuming the density profile of the reference component
in the interface as a monotonical function of interface thickness z, according
the work of Miqueu et al. (2005) [17] n-buthane was taked as the reference
fluid to calculate the density variations of methane in the interface. And the
interface was devided into 500 grid, to obtain the density of profile of methane
across the interface, the densities of methane at each grid were computed. The
whole nemerical procedure was proceeded as:

(i). Isothermal flash subroutine was applied to calculate bulk phase mole
densities(ρL

i and V
i ) of methane + n-butane mixtures with volume translated

SRK EOS. Methane was numbered as component 1, and n-buthane as com-
ponent 2.

(ii). Initialization: K = 0; ρ1(0) = ρV
1 ,ρ2(0) = ρV

2 ; �ρ2 =
(ρL

2 −ρV
2 )

Ngrid
.

(iii). K = K + 1; initial vale of ρ2 for each grid:

ρ2(K) = ρ2(K − 1) + �ρ2 (36)

initial guess of ρ1 for each grid: first Solving equation(30) to compute dρ1/dρ2,
then

ρ1(Kold) = ρ1(K − 1) +
dρ1

dρ2
� ρ2 (37)

(iv). Calculate ρ1(Knew): solving equation (27) by Newton Raphson method

(
∂Fobj

∂ρ1
)(δρ1) = −Fobj (38)

until the convergence critial is satisfied(δρ1 < 10−8). then

ρ1(Knew) = ρ1(Kold) + δρ1 (39)

(v). Go back to (iii), terminate when ρ2(K) = ρL
2
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Fig. 1. Density profiles across the interface for methane and n-butane at 310.93K
and 106.86Bar: solid line - density of n-butane, dash line - density of methane.

(vi). Determine the density profiles across the z direction according to follow-
ing equaiton

z = z0 +

nL
2∫

nV
2

√√√√
∑

i

∑
j κij

dρi

dρ

dρj

dρ

2(Φ(ρ) − ΦB)
dn2 (40)

z = z0 +

nL
2∫

nV
2

√√√√
∑

i

∑
j κij

dρi

dρ

dρj

dρ

2[
∑

i ρi(μi(n) − μiB)] − [P (n) − PB]
dn2 (41)

where n2 is the number density of n-butane that is mole density of n-butane
multiplying the Avogadro’s number. And z0 equals to zero at nV

2 . In addition
the influence parameter for methane + n-butane mixture can be estimated
according geometric mixing rule as

∑
i

∑
j

κij
dρi

dρ

dρj

dρ
= κ11(

dρ1

dρ2
)2 + 2

√
κ11κ22

dρ1

dρ2
+ κ22 (42)

In the figure 1 the density profiles of methane and n-butane was plotted at
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Fig. 2. Density profiles across the interface for methane and n-butane: solid line–
density of n-butane, dash line-density of methane, blue color- 89.63Bar, black color
- 93.08Bar, red color-96.53Bar.

310.93K and 106.86 Bar. It showed that the densities of n-butane were increas-
ing monotonically accoss the interface thickness z. In contrast the densities of
methane incresed to a maximun value that indicated the local enrichment of
the methane in the interface. It is know that the methane has the lower in-
trinsic free energy than n-butane. As a result, the Holmholtz energy of the
interface was minimized when methane was absorbed in the interface.

Moreover while the pressures increased, the interface thickness increased. It
can be seen in the figure 2. In addition the value of maximum density in the
interface increased with pressures, but the density differences between liquid
and vapor phase decreased while pressure increased. As a fact the maximum
density will disappear at critical point. It means that the local accumulation
of methane will not exist under critical condition, and the value of interfacial
tension will be zero.
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Fig. 3. Interfacial tension of methane + n-butane system data comparison between
this work and Pennington et al. (1965) [26]

5.3 Predicted interface tension

Similar numerical procedure was applied to estimate the value of interfacial
tension under different temperatures and pressures. The interfacial tensions
were computed accoding to equation (43) after generating the density profiles
in the interface.

σ =

nL
2∫

nV
2

√√√√∑
i

∑
j

κij
dρi

dρ

dρj

dρ
(2[

∑
i

ρi(μi(n) − μiB)] − [P (n) − PB])dn2 (43)

The table 1 showed the values of calculated and experimantal interfacial ten-
sions. The comparison was plotted in the figure 3. The total average absolute
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Table 1
Interfacial tension of methane + n-butane mixtures

Pressure 310.93K 327.59K 335.93K 344.26K

[Bar] EXP CAL EXP CAL EXP CAL EXP CAL

106.97 0.930 1.02

103.42 1.15 1.19

99.97 1.39 1.38 0.930 1.02

96.52 1.64 1.57 1.16 1.19 0.912 0.964

93.08 1.91 1.78 1.37 1.36 1.12 1.12 0.869 0.880

89.63 2.18 1.99 1.58 1.55 1.32 1.29 1.03 1.03

deviation is 3.85% that is calculated as

AAD = (1/Np)
∑
j

|(1 − σCAL
j /σEXP

j )| (44)

The lowese interfacial tension simulated by gradient theory was 0.869 mN/m
in this paper. In addition the average absolute deviation is 6.58 % when the
interfacial tensions are lower than 1mN/m. It was due to incapability of both
volume translated SRK EOS and gradient theory.

6 Conclusion

By comparing the value of average absolute deviation, it is obviously shown
that the average absolute deviation becomes bigger when the IFT is below
1mN/m. But the predicted interfacial tensions were in excellent agreements
with the avaible measured data to within a few percents When the interfacial
tension is bigger than 1mN/m. To predict the ultra low IFT (IFT¡1mN/m),
some modification need done to predict the density profiles of lighter hydro-
carbon componet more accurately. In addition it was shown that the volume
translated SRK EOS was not sufficiently enough to compute the liquid bulk
near the critical area. In the future work lots of attentions will be focused on
establishment of principles for achieving better predictions of ultra low IFT.

Nomenclature

a energy parameter of volume translated SRK EOS [J·m3]

AAD average absolute deviation

b volume parameter of volume translated SRK EOS [m3]

13



c temperature-independent parameter of volume translated SRK EOS

C direction correction function for influence parameter

f0 Holmholtz free energy density [J·m−3]

kb Boltzmann constant, 1.38066×10−23[J·K−1]

n number density [m−3]

NA Avogadro’s number, 6.02205×1023[ mol−1]

P pressure [Pa]

R universal gas constant, 8.314471 [J·mol−1 · K−1]

T temperature [K]

z distance normal to the interface [m]

Z compresibility factor

Greek letters

κ influence parameter[J ·m5]

μ chemical potential [J]

ρ mole density [mol ·m−3]

σ interfacial tension [mN ·m−1]

Φ thermodynamic potential density [J ·m3]

Superscript

CAL calculated value

EXP experimental value

L liquid phase

V vapor phase

Subscript

0 homogeneous state

B bulk phase
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