\[\int_0^1 t \, d(t^2) \quad \text{(substitute } t^2 = x) \]

\[= \int_0^{\tau^2} x^{1/2} \, dx = \frac{2}{3} \tau^{3/2} \left[\tau^2 \right]_0^\tau = \frac{2}{3} \tau^3 \]

\[y = t \]
\[x = t^2 \]

This area is the integral

Alternatively write \(d(t^2) = 2t \, dt \):

\[\int_0^\tau 2t^2 \, dt = \frac{2}{3} \tau^3 \]