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Bernshteı̆n1 polynomials are ordinary polynomials written on the particular form

b(t ) =
n∑

k=0
βk

(
n

k

)
t k (1− t )n−k , (1)

where β0, . . . ,βn are given coefficients.2 The special case where each βk = 1 de-
serves mention: Then the binomial theorem yields

n∑
k=0

(
n

k

)
t k (1− t )n−k = (

t + (1− t )
)n = 1. (2)

We can show by induction on n that if b = 0 then all the coefficientsβn are zero. The
base case n = 0 is obvious. When n > 0, a little bit of binomial coefficient gymnas-
tics shows that the derivative of a Bernshteı̆n polynomial can be written as another
Bernshteı̆n polynomial:

b′(t ) = n
n−1∑
k=0

(βk+1 −βk )

(
n −1

k

)
t k (1− t )n−1−k .

In particular, if b = 0 it follows by the induction hypothesis that all βk are equal,
and then they are all zero, by (2).

In other words, the polynomials t k (1− t )n−k , where k = 0, . . . , n, are linearly in-
dependent, and hence they span the n + 1-dimensional space of polynomials of
degree ≤ 1. Thus all polynomials can be written as Bernshteı̆n polynomials, so there
is nothing special about these – only about the way we write them.

To understand why Bernshteı̆n polynomials are so useful, consider the individ-
ual polynomials

bk,n(t ) =
(

n

k

)
t k (1− t )n−k , k = 0, . . . , n. (3)

If we fix n and t , we see that bk,n(t ) is the probability of k heads in n tosses of a
biased coin, where the probability of a head is t . The expected number of heads in
such an experiment is nt , and indeed when n is large, the outcome is very likely to
be near that value. In other words, most of the contributions to the sum in (1) come
from k near nt . Rather than using statistical reasoning, however, we shall proceed
by direct calculation – but the probability argument is still a useful guide.

1Named after Sergeı̆ Natanovich Bernshteı̆n (1880–1968). The name is often spelled “Bernstein”.
2When n = 3, we get a cubic spline. In this case, β0, β1, β2 and β3 are called the control points of the

spline. In applications, they are usually 2- or 3-dimensional vectors.
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1 Theorem. (Weierstrass) The polynomials are dense in C [0,1].

This will follow immediately from the following lemma.

2 Lemma. Let f ∈C [0,1]. Let bn be the Bernshteı̆n polynomial

bn(t ) =
n∑

k=0
f
( k

n

)( n

k

)
t k (1− t )n−k .

Then ‖ f −bn‖∞ → 0 as n →∞.

Proof: Let t ∈ [0,1]. With the help of (2) we can write

f (t )−bn(t ) =
n∑

k=0

(
f (t )− f

( k

n

))( n

k

)
t k (1− t )n−k ,

so that

| f (t )−bn(t )| ≤
n∑

k=0

∣∣∣ f (t )− f
( k

n

)∣∣∣( n

k

)
t k (1− t )n−k , (4)

We now use the fact that f is uniformly continuous: Let ε> 0 be given. There is then
a δ> 0 so that | f (t )− f (s)| < εwhenever |t −s| < δ. We now split the above sum into
two parts, first noting that

∑
|k−nt |<nδ

∣∣∣ f (t )− f
( k

n

)∣∣∣( n

k

)
t k (1− t )n−k ≤ ε (5)

(where we used | f (t )− f (k/n)| < ε, and then expanded the sum to all indexes from
0 to n and used (2)). To estimate the remainder, let M = ‖ f ‖∞, so that

∑
|k−nt |≥nδ

∣∣∣ f (t )− f
( k

n

)∣∣∣( n

k

)
t k (1− t )n−k ≤ 2M

∑
|k−nt |≥nδ

(
n

k

)
t k (1− t )n−k . (6)

To finish the proof, we need to borrow from the Chebyshev inequality in order to
show that the latter sum can be made small. First we find

n∑
k=0

k

(
n

k

)
t k (1− t )n−k = nt

n−1∑
k=0

(
n −1

k

)
t k (1− t )n−1−k = nt . (7)

(Rewrite the binomial coefficient using factorials, perform the obvious cancella-
tion using k/k ! = 1/(k −1)!, put nt outside the sum, change the summation index,
and use (2).) Next, using similar methods,

n∑
k=0

k(k −1)

(
n

k

)
t k (1− t )n−k = n(n −1)t 2

n−2∑
k=0

(
n −2

k

)
t k (1− t )n−2−k = n(n −1)t 2.
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3 The Weierstrass density theorem

Adding these two together, we get

n∑
k=0

k2
(

n

k

)
t k (1− t )n−k = nt

(
(n −1)t +1

)
. (8)

Finally, using (2), (7) and (8), we find

n∑
k=0

(nt −k)2
(

n

k

)
t k (1− t )n−k = (nt )2 −2(nt )2 +nt

(
(n −1)t +1

)= nt (1− t ).

The most important feature here is that the n2 terms cancel out. We now have

nt (1− t ) ≥ ∑
|k−nt |≥nδ

(nt −k)2
(

n

k

)
t k (1− t )n−k

≥ (nδ)2
∑

|k−nt |≥nδ

(
n

k

)
t k (1− t )n−k ,

so that ∑
|k−nt |≥nδ

(
n

k

)
t k (1− t )n−k ≤ t (1− t )

nδ2 ≤ 1

4nδ2 . (9)

Combining (4), (5), (6) and (9), we end up with

| f (t )−bn(t )| < ε+ M

2nδ2 , (10)

which can be made less than 2ε by choosing n large enough. More importantly,
this estimate is independent of t ∈ [0,1].

One final remark: There is of course nothing magical about the interval [0,1]. Any
closed and bounded interval will do. If f ∈C [a, b] then t 7→ f

(
(1− t )a+ t b

)
belongs

to C [0,1], and this operation maps polynomials to polynomials and preserves the
norm. So the Weierstrass theorem works equally well on C [a, b].

The Stone–Weierstrass theorem is a bit more difficult: It replaces [0,1] by any compact set
X and the polynomials by any algebra of functions which separates points in X and has no
common zero in X . (This theorem assumes real functions. If you work with complex func-
tions, the algebra must also be closed under conjugation. But the complex version of the
theorem is not much more than an obvious translation of the the real version into the com-
plex domain.) One proof of the general Stone–Weierstrass theorem builds on the Weierstrass
theorem. More precisely, the proof needs an approximation of the absolute value |t | by poly-
nomials in t , uniformly for t in a bounded interval.
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An amusing (?) diversion. Any old textbook on elementary statistics shows pictures of the
binomial distribution, i.e., bk,n (t ) for a given n and t ; see (3). But it can be interesting to look
at this from a different angle, and consider each term as a function of t . Here is a picture of
all these polynomials, for n = 20:
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We may note that bk,n (t ) has its maximum at t = k/n, and
∫ 1

0 bk,n (t ) dt = 1/(n +1). In fact,
(n+1)bk,n is the probability density of a beta-distributed random variable with parameters
(k + 1, n − k + 1). Such variables have standard deviation varying between approximately
1/(2

p
n) (near the center, i.e., for k ≈ n/2) and 1/n (near the edges). Compare this with the

distance 1/n between the sample points.
It is tempting to conclude that polynomials of degree n can only do a good job of approx-

imating a function which varies on a length scale of 1/
p

n.
We can see this, for example, if we wish to estimate a Lipschitz continuous function f ,

say with | f (t )− f (s)| ≤ L|t − s|. Put ε = Lδ in (10) and then determine the δ that gives the
best estimate in (10), to arrive at | f (t )− bn (t )| < 3

2 M1/3(L2/n)2/3. So the n required for a

given accuracy is proportional to L2, in accordance with the analysis in the previous two
paragraphs.

Reference: S.N. Bernshteı̆n: A demonstration of the Weierstrass theorem based on the the-
ory of probability. The Mathematical Scientist 29, 127–128 (2004).

By an amazing coincidence, this translation of Bernshteı̆n’s original paper from 1912 ap-
peared recently. I discovered it after writing the current note.
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