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Abstract. These notes were written as a supplement to a course on partial differ-
ential equations (PDEs), but have since been adapted for use in a course on linear
analysis.

This material is covered in many books. The presentation in this note is quite
terse, but I hope the motivated reader will not have any serious difficulty reading it.

If you find misprints or other mistakes or shortcomings of these notes, I would
like to hear about it — preferably by email.

Introduction
in which the author tries to explain why studying this note is useful, and gives
fatherly advice on how to do so.

In a sense, mathematical analysis can be said to be about continuity. The
epsilon–delta arguments that you meet in a typical calculus course rep-
resent the beginnings of mathematical analysis. Unfortunately, too often
these definitions are briefly presented, then hardly used at all and soon
forgotten in the interest of not losing too many students and because,
frankly, it is not that important in elementary calculus. As mathemat-
ics becomes more abstract, however, there is no way to proceed without
a firm grounding in the basics. Most PDEs, for example, do not admit
any solution by formulas. Therefore, emphasis is on different questions:
Does a solution exist? If so, is it unique? And if so, does it depend on
the data in a continuous manner? When you cannot write up a simple
formula for the solution of a PDE, you must resort to other methods to
prove existence. Quite commonly, some iterative method is used to con-
struct a sequence which is then shown to converge to a solution. This
requires careful estimates and a thorough understanding of the under-
lying issues. Similarly, the question of continuous dependence on the
data is not a trivial task when all you have to work with is the existence
of a solution and some of its properties.

How to read these notes. The way to read these notes is slowly. Because
the presentation is so brief, you may be tempted to read too much at a

Version 2009–02–22



Elements of mathematical analysis 2

time, and you get confused because you have not properly absorbed the
previous material. If you get stuck, backtrack a bit and see if that helps.

The core material is contained in the first four sections — on met-
ric spaces, completeness, compactness, and continuity. These sections
should be read in sequence, more or less. The final two sections, one
on ordinary differential equations and one on the implicit and inverse
function theorems, are independent of each other.

The end of a proof is marked with in the right margin. Sometimes,
you see the statement of a theorem, proposition etc. ended with such a
box. If so, that means the proof is either contained in the previous text
or left as an exercise (sometimes trivial, sometimes not — but always
doable, I hope). If a proof is not complete, then this is probably inten-
tional — the idea is for you to complete it yourself.

Metric spaces
in which the basic objects of study are introduced, and their elementary proper-
ties are established.

Most of mathematical analysis happens in some sort of metric space.
This is a set in which we are given some way to measure the distance
d(x, y) between two points x and y . The distance function (metric) d
has to satisfy some simple axioms in order to be useful for our purposes.

Later, we shall see that a metric space is the proper space on which to
define continuity of functions (actually, there is a more general concept
— that of a topological space — that is even more appropriate, but we
shall not need that level of abstraction here).

1 Definition. A metric on a set X is a real-valued function d : X ×X →R

satisfying:

d(x, x) = 0
d(x, y) > 0 if x 6= y
d(x, y) = d(y, x) (symmetry)
d(x, z) ≤ d(x, y)+d(y, z) (the triangle inequality)

A metric space is a pair (X ,d) where X is a set and d a metric on X (how-
ever we often speak of the metric space X , where d is understood).
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3 Elements of mathematical analysis

Before moving on to the examples, we shall note that the triangle in-
equality can easily be generalised to more than three elements. For ex-
ample, two applications of the triangle inequality yields the inequality

d(x, w) ≤ d(x, y)+d(y, w) ≤ d(x, y)+d(y, z)+d(z, w).

In fact, it is not difficult to prove the general inequality

d(x0, xn) ≤
n∑

k=1
d(xk−1, xk )

by induction on n. This is sometimes called the generalised triangle in-
equality, but we shall simply call this the triangle inequality as well. We
shall resist the temptation to call it the polygonal inequality. While the
original triangle inequality corresponds to the fact that the sum of two
sides in a triangle is at least as large as the third, the above inequality
corresponds to a similar statement about the sides of an n +1-gon.

2 Examples.

R or C with d(x, y) = |x − y |.
Rn or Cn with d(x, y) = ‖x − y‖ (where ‖x‖ =

√∑n
j=1 |x j |2).

Any set X with d(x, x) = 0 and d(x, y) = 1 whenever x 6= y . This is called a
discrete metric space.

3 Definition. A norm on a real or complex vector space X is a map ‖ ·
‖ : X →R satisfying:

‖x‖ > 0 if x 6= 0
‖ax‖ = |a| · ‖x‖ for every scalar a and x ∈ X
‖x + y‖ ≤ ‖x‖+‖y‖ (the triangle inequality)

A normed space is a vector space with a norm on it. Such a space is also
a metric space with d(x, y) = ‖x − y‖.

4 Examples.

Rn or Cn with ‖x‖ =
√∑n

j=1 |x j |2.

Rn or Cn with ‖x‖ =∑n
j=1 |x j |.
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Rn or Cn with ‖x‖ = max{|x j | : 1 ≤ j ≤ n}.

The space l∞ consisting of all bounded sequences x = (x1, x2, . . .) of real
(or complex) numbers, with ‖x‖ = max{|x j | : 1 ≤ j ≤∞}.

We shall often need to consider subsets of a metric space as metric spaces
in their own right. Thus, if (X ,d) is a metric space and A is a subset of
X , then (A,d |A×A) is a metric space. (The notation f |S is often used to
denote the restriction of a function f to the subset S, in the sense that
f |S (x) = f (x) when x ∈ S but f |S (x) is not defined when x ∉ S.) We say
that A is given the metric inherited, or induced from X . Later, we shall
define what it means for a metric space to be compact. Then we shall
say that a subset A ⊆ X is compact if it is compact when given the inher-
ited metric, and we can do similarly with any other concept relating to
metric spaces.

5 Definition. The open ε-neighbourhood, also called the open ε-ball (where
ε> 0) of a point x in a metric space X is

Bε(x) = {ξ ∈ X : d(x,ξ) < ε}

The corresponding closed ε-neighbourhood (or –ball) is

B̄ε(x) = {ξ ∈ X : d(x,ξ) ≤ ε}

A neighbourhood of a point in a metric space is a subset containing an
ε-ball for some ε> 0. A set is open if it is a neighbourhood of every one of
its points. The interior of a subset A of X is the set of all points for which
A is a neighbourhood.

Note that x ∈ Bε(x), and that Bε(x) may consist of no points other than x
itself (if, for example, X is given the discrete metric and ε≤ 1). It should
also be noted that B̄ε(x) is not necessarily the closure of Bε(x) (for exam-
ple, with the discrete metric, B1(x) = {x} while B̄1(x) = X ).

6 Exercise. Use the triangle inequality to show that an open ε-ball is in
fact open. Prove that the interior of any set is open, and that the interior
of A is in fact the largest open subset of A. Finally, show that the comple-
ment of a closed ε-ball, that is a set of the form X \ B̄ε(x), is open.
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5 Elements of mathematical analysis

7 Definition. A sequence (xn)∞n=1 in a metric space X is said to converge
to a limit x ∈ X (and we write xn → x) if, for each ε> 0, there is an index
N so that d(xn , x) < ε whenever n ≥ N . A part (xn)∞n=N is called a tail
of the sequence. Thus, the sequence (xn) converges to the limit x if and
only if every neighbourhood of x contains some tail of the sequence. A
sequence is called convergent if it converges to some limit.

8 Exercise. Show that no sequence can have more than one limit.

As a result of the above exercise, we can talk about the limit of a conver-
gent sequence, and write limn→∞ xn for the limit. Though a sequence
can have only one limit, a non-convergent sequence can have many
limit points:

9 Definition. A limit point of a sequence (xn) is a point x ∈ X such that,
for every ε > 0 and every N , there is some n ≥ N so that d(xn , x) < ε.
Equivalently, every neighbourhood of x contains at least one point (and
therefore infinitely many points) from every tail of the sequence.

10 Exercise. A sequence (yk )∞k=1 is called a subsequence of a sequence
(xn)∞n=1 if it is possible to find n1 < n2 < ·· · so that yk = xnk for all k.
Show that x is a limit point of the sequence (xn) if and only if some sub-
sequence of (xn) converges to x.

11 Definition. A subset F of a metric space X is called closed if, when-
ever a sequence contained in F converges to a point in X , the limit is in
F .

12 Proposition. For a subset F of a metric space X the following are
equivalent:

(a) F is closed,
(b) the complement X \ F is open,
(c) for every x ∈ X , if every neighbourhood of x has a nonempty inter-

section with F , then x ∈ F ,
(d) F contains every limit point of every sequence contained in F .
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13 Definition. The closure of a subset A of the metric space X is the set
Ā of limits of all convergent sequences in A.

14 Proposition. The closure of a subset A of a metric space X is a closed
set containing A, and is in fact the smallest closed set containing A. It
also consists of all limit points of sequences in A. Finally, a point x be-
longs to Ā if and only if every neighbourhood of x has a nonempty inter-
section with A.

15 Proposition. The union of an arbitrary family of open sets is open,
and the intersection of an arbitrary family of closed sets is closed. The
intersection of a finite family of open sets is open, and the union of a
finite family of closed sets is closed.

For the sake of completeness, I include the definition of a topological space here.
This is a set X together with a family O of subsets of X satisfying the following
requirements:

;∈O and X ∈O ,
If U ∈O and V ∈O then U ∩V ∈O ,
The union of an arbitrary subfamily of O is in O .

The members of O are called open, and their complements are called closed. A
neighbourhood of a point is a set containing an open set containing the point.

Clearly, a metric space together with its open sets is a topological space.
In these notes you may notice that notions like continuity and compactness

have equivalent formulations in terms of open or closed sets (or neighbour-
hoods). These notions, then, can be generalised to topological spaces.

Completeness
in which we already encounter our first Theorem.

16 Definition. A sequence (xn) is said to be a Cauchy sequence if, for
each ε> 0 there is some N so that d(xm , xn) < ε whenever m,n ≥ N .

It is easy to see that any convergent sequence is Cauchy (exercise), but
the converse is not true, as can be seen from the metric space Q (all ra-
tional numbers, with the usual metric d(x, y) = |x − y |). A sequence in Q
converging to

p
2 in R is convergent in R and hence Cauchy, but is not

convergent in Q.
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7 Elements of mathematical analysis

17 Definition. A metric space in which every Cauchy sequence converges
is called complete. A complete normed space is called a Banach space.

One reason to be interested in complete spaces is that one can often
prove existence theorems by somehow constructing a Cauchy sequence
and considering its limit: Proving that a sequence converges may be dif-
ficult, as you need to know the limit before you can use the definition of
convergence; by comparison, showing that a sequence is Cauchy may be
much easier. As an example, we state and prove the Banach fixed point
theorem, also known as the contraction principle.

18 Definition. A contraction on a metric space X is a function f from X
to itself so that there is a constant K < 1, such that

d( f (x), f (y)) ≤ K d(x, y)

for every x, y ∈ X . A fixed point of a map f : X → X is a point x ∈ X so
that f (x) = x.

19 Theorem. (Banach’s fixed point theorem) A contraction on a nonempty
complete metric space has one, and only one, fixed point.

Proof: Let f : X → X be a contraction, and 0 < K < 1 such that d( f (x), f (y)) ≤
K d(x, y) whenever x, y ∈ X . Let x0 ∈ X be any point, and define the se-
quence (xn) by xn+1 = f (xn), n = 0,1,2, . . .. It is easy to prove by induction
that d(xn+1, xn) ≤ K nd(x1, x0) and hence, by repeated use of the triangle
inequality, whenever 1 ≤ m < n we get

d(xn , xm) ≤
n−1∑
k=m

d(xk+1, xk ) ≤
n−1∑
k=m

K k d(x1, x0)

< d(x1, x0)
∞∑

k=m
K k = d(x1, x0)

K m

1−K

and since 0 < K < 1 it is then clear that (xn) is a Cauchy sequence, and
hence convergent since X is complete. Let x be the limit.

We need to prove that x is a fixed point. We know that xn is an ap-
proximate fixed point when n is large, in the sense that d( f (xn), xn) → 0
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when n →∞ (because d( f (xn), xn) = d(xn+1, xn) ≤ K nd(x1, x0)). We per-
form a standard gymnastic exercise using the triangle inequality: f (x) is
close to f (xn) = xn+1 which is close to x. More precisely:

d( f (x), x) ≤ d( f (x), f (xn))+d(xn+1, x)

≤ K d(x, xn)+d(xn+1, x) → 0 (n →∞)

Thus, for any ε > 0 we can use the above inequality with a sufficiently
large n to obtain d( f (x), x) < ε, and since ε > 0 was arbitrary, we must
have d( f (x), x) = 0. Thus f (x) = x, and x is indeed a fixed point of f .

It remains to prove the uniqueness of the fixed point. So, assume x
and y are fixed points, that is, f (x) = x and f (y) = y . Then

d(x, y) = d( f (x), f (y)) ≤ K d(x, y)

and since 0 < K < 1 while d(x, y) ≥ 0, this is only possible if d(x, y) = 0.
Thus x = y , and the proof is complete.

In many applications of the fixed point theorem, we are given a func-
tion which is not a contraction on the entire space, but which is so lo-
cally. In this case, we need some other condition to ensure the existence
of a fixed point. In the following very useful case, it turns out that the
proof of the Banach fixed point theorem can be adapted.

20 Corollary. Assume X is a complete metric space, that x0 ∈ X , and
that f : B̄r (x0) → X is a continuous function. Assume further that K < 1
is so that

d( f (x), f (y)) ≤ K d(x, y) (x, y ∈ B̄r (x0)),

d( f (x0), x0) ≤ (1−K )r.

Then f has a unique fixed point in B̄r (x0).

Proof: The uniqueness proof is just as in the theorem. Next, let x1 =
f (x0), and more generally xn+1 = f (xn) whenever xn is defined and xn ∈
B̄r (x0). Just as in the proof of the theorem, we find

d(xn , xm) < d(x1, x0)
K m

1−K
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9 Elements of mathematical analysis

provided x0, . . . , xn are defined. With m = 0, this becomes

d(xn , x0) < d( f (x0), x0)
1

1−K
≤ r

using the assumption. Thus xn ∈ B̄r (x0), and therefore we can define
xn+1. By induction, then, xn is defined and in B̄r (x0) for all n. The proof
that this sequence converges to a limit which is a fixed point is just like
before.

21 Proposition. A subset of a complete space is complete if and only if
it is closed.

Proof: Let X be a complete metric space, and A a subset of X .
First, assume that A is closed. To show that A is complete, consider a

Cauchy sequence in A. Then this sequence is also a Cauchy sequence in
X . But because X is complete, the sequence has a limit in X . Since A is
closed and the original sequence was contained in A, the limit belongs
to A. Thus the sequence converges in A, and we have proved that A is
complete.

Second, assume that A is complete. To show that A is closed in X ,
consider a sequence in A converging to some point x ∈ X . Since A is
complete, this sequence also has a limit in A. But no sequence can have
more than one limit, so the latter limit must be x, which therefore must
belong to A. Thus A is closed.

22 Definition. The diameter of any subset A of a metric space is

diam A = sup{d(x, y) : x, y ∈ A}

23 Proposition. A metric space X is complete if and only if whenever
F1 ⊇ F2 ⊇ F3 ⊇ ·· · are closed nonempty subsets of X with diamFn → 0,
the intersection

⋂∞
n=1 Fn is nonempty.

Clearly
⋂∞

n=1 Fn , if nonempty, has diameter 0, and so contains only a
single point.

Proof: First, assume X is complete, and let F1 ⊇ F2 ⊇ F3 ⊇ ·· · be closed
nonempty subsets of X . Pick xn ∈ Fn for each n. If diamFn → 0 the se-
quence (xn) is Cauchy and hence convergent. The limit x belongs to
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Elements of mathematical analysis 10

each Fn because x j ∈ Fn whenever j ≥ n, and because Fn is closed. Thus
x ∈⋂∞

n=1 Fn .
To prove the converse, let (xn) be a Cauchy sequence, and let Fn =

{xn , xn+1, . . .}. Then
⋂∞

n=1 Fn is the set of limit points of (xn). Since
⋂∞

n=1 Fn 6=
;, thus (xn) has a limit point, which must be a limit of (xn).

24 Exercise. The above proof has several gaps and details left out. Iden-
tify these, and fill them in.

Compactness
in which we define a most useful property of metric spaces such as closed and
bounded intervals.

25 Definition. A metric space is called compact if every sequence in the
space has at least one limit point (and hence a convergent subsequence).

Note thatR is not compact, since the sequence xn = n has no limit point.

26 Exercise. Prove that any closed subset of a compact metric space is
compact. Also prove that every compact subset of any metric space is
closed.

27 Definition. A metric space X is called totally bounded if, for every
ε> 0, there exist a finite number of points x1, . . . , xn ∈ X so that, for every
y ∈ X , one of the points xi satisfies d(xi , y) < ε. In other words, X is a
finite union of ε-balls for every ε> 0.

28 Definition. A cover of X is a set of subsets of X whose union is all of
X . An open cover is a cover consisting of open sets.

29 Definition. A set F of subsets of X has the finite intersection property
if every finite subset of F has nonempty intersection; i.e., if F1, . . . ,Fn ∈
F , then F1 ∩·· ·∩Fn 6= ;.

30 Theorem. For a metric space X , the following are equivalent:

(a) X is compact,
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11 Elements of mathematical analysis

(b) every open cover of X contains a finite cover of X ,
(c) every set of closed subsets of X with the finite intersection prop-

erty has nonempty intersection,
(d) X is totally bounded and complete.

Proof: We prove (d) ⇒ (c) ⇒ (a) ⇒ (d). The proof of the equivalence
(b) ⇔ (c) will be left as an exercise. (Hint: F is a set of closed sets with
the finite intersection property but with empty intersection if and only
if {X \ F : F ∈ F } is an open cover with no finite subset which is also a
cover.)

(d) ⇒ (c): Assume X is totally bounded and complete, and let F be a
set of closed subsets of X with the finite intersection property. If ε > 0,
by the total boundedness we may write X = ⋃n

k=1 B̄ε(xk ). Let Gk = {F ∩
B̄ε(xk ) : F ∈F }. At least one of the families G1, . . . ,Gn has the finite inter-
section property (exercise: prove this). Clearly each set in Gk has diame-
ter at most 2ε.

So far we have proved: Every set F of closed sets with the finite in-
tersection property has a refinement G (by which we mean a family of
closed sets, also with the finite intersection property, so that for every
F ∈F there exists some G ∈G with G ⊆ F ), each of whose members has
diameter no larger than some prescribed positive number.

Let now εk ↘ 0. Let F0 =F and, for k = 1,2, . . . let Fk be a refinement
of Fk−1, each of whose members has diameter at most εk . Next let F0 =
X and, for k = 1,2, . . . let Fk ∈Fk with Fk ⊆ Fk−1. Now apply Proposition
23 to see that, by the completeness of X ,

⋂∞
k=1 Fk = {x} for some x ∈ X .

Now let G ∈ F . For each k, since Fk refines F there is some Gk∈Fk

with Gk ⊆ G . Since Fk has the finite intersection property, Fk ∩Gk 6= ;,
so let xk ∈ Fk ∩Gk . Since xk ∈ Fk for each k, x = limk→∞ xk . But xk ∈ G
and G is closed, and therefore x ∈ G . Since G was an arbitrary member
of F , we have shown x ∈ ⋂

F , so that F does indeed have a nonempty
intersection.

(c) ⇒ (a): Let (xn) be a sequence in X , and let Fn = {xn , xn+1, . . .}.
Clearly, F = {F1,F2, . . .} has the finite intersection property, and its in-
tersection

⋂∞
n=1 Fn consists of all limit points of (xn). If (c) holds there is

therefore at least one limit point.
(a) ⇒ (d): Assume X is compact. Clearly it is complete, for if a Cauchy

sequence has at least one limit point, that limit point is unique and the
sequence converges to that point (exercise).
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Assume X is not totally bounded. Then there is some ε > 0 so that
no finite number of ε-balls covers X . Let x1 ∈ X be arbitrary, and for
n = 1,2,3, . . . pick xn+1 ∈ X \

⋃n
k=1 Bε(xk ). Then (xn) is a sequence in X so

that d(xm , xn) ≥ ε whenever m 6= n. Such a sequence can have no limit
point, since no open ε/2-ball can contain more than one point from the
sequence. This contradicts the compactness of X .

The real numbers
in which we prove the Heine–Borel theorem and the completeness of the field of
real numbers.

We shall take the following fundamental property of R for granted: Ev-
ery nonempty subset S ⊆R which has an upper bound has a least upper
bound a = supS. More precisely, that a is an upper bound of S means
that x ≤ a for every x ∈ S. That a is a least upper bound means that it
is an upper bound for S, such that a ≤ b whenever b is an upper bound
for S. Clearly, the least upper bound is unique. For completeness, we set
sup;=−∞, and supS =+∞ if S has no upper bound. The greatest lower
bound infS is defined similarly, but with all the inequalities reversed. The
existence of the greatest lower bound can be deduced from the existence
of the least upper bound by taking negatives; in fact infS =−sup{−s : s ∈
S}. For completeness, we set inf;=+∞, and infS =−∞ if S has no lower
bound.

31 Lemma. For any closed and bounded set F ⊆R, supF ∈ F .

Proof: Let a = supF . If a ∉ F then, since F is closed, there is some ε >
0 so that F ∩Bε(a) = ;. But if x ∈ F then x ≤ a because a is an upper
bound for F , and so x ≤ a −ε (since otherwise |x − a| < ε). Thus a −ε is
an upper bound for F , which contradicts the definition of a as the least
upper bound for F . This contradiction shows that a ∈ F .

32 Theorem. (Heine–Borel) Every bounded and closed set of real num-
bers is compact.

Historically, the version of compactness to be proven below is called
Cantor’s intersection theorem, while it is the open covering version that
is properly called the Heine–Borel theorem. The fact that any bounded
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13 Elements of mathematical analysis

sequence of real numbers has a limit point is known as the Bolzano–
Weierstrass theorem.

Proof: Let K ⊆ R be a bounded and closed set, and let F be a family of
closed subsets of K , with the finite intersection property. Define F ′ to
be the set of all intersections of finite subsets of F , and finally let

ω= inf{supF : F ∈F ′}.

The claim is that ω ∈ ⋂
F . Thus let F ∈ F . We need to prove that ω ∈ F .

Since F is closed, we only need to prove – for any ε> 0 – that F ∩Bε(ω) 6=
;.

By the definition ofω, there is some G ∈F ′ so that supG <ω+ε. Since
F ∩G ∈ F ′, we have sup(F ∩G) ≥ω, and of course sup(F ∩G) ≤ supG <
ω+ε. Hence sup(F ∩G) belongs to Bε(ω). By Lemma 31, sup(F ∩G) ∈ F ,
so sup(F ∩G) ∈ F ∩Bε(ω), which proves the claim.

33 Corollary. Every bounded sequence of real numbers has a limit point,
and R is complete.

Proof: The first statement follows from Theorem 30. To prove the second
statement, note that a Cauchy sequence is certainly bounded. Thus it
has a limit point. But any limit point of a Cauchy sequence is a limit of
the sequence, which is therefore convergent.

34 Proposition. Rn is complete, and any closed and bounded subset of
Rn is compact.

Proof: It is enough to show that every bounded sequence in Rn has a
limit point. So let (xk ) be such a sequence, and write xk, j for the j -th
coordinate of xk , so that xk = (xk,1, . . . , xk,n).

Since (xk,1) is a bounded sequence of real numbers, some subsequence
converges. By replacing the original sequence (xk ) by the corresponding
subsequence, then, we conclude that (xk,1) converges.

Next, by again replacing the just found subsequence with a further
subsequence, we find that (xk,2) converges. Repeating this procedure n
times, we end up having replaced the original sequence with a subse-
quence such that (xk, j ) converges for j = 1, 2, . . . ,n. It is not hard to show
that then the sequence (xk ) converges.

Version 2009–02–22



Elements of mathematical analysis 14

Indeed, let y j = limk→∞ xk, j . Given ε > 0 there is, for each j , some
N j so that |xk, j − y j | < ε whenever k > N j . Let N = max{N1, N2, . . . , Nn}.
If k > N then |xk − y | < p

nε. Since
p

n is a harmless constant in this
context, the claimed convergence xk → y follows.

Continuity
in which we, at last, study the continuous functions, without which the study of
metric spaces would be a fruitless and boring activity. As an application, we con-
sider the problem of moving a differentiation operator under the integral sign.

35 Definition. Let (X ,d) and (Y ,ρ) be metric spaces, and let f : X → Y
be a function. f is said to be continuous at x ∈ X if, for every ε> 0, there
exists some δ> 0 so that, whenever ξ ∈ X ,

d(ξ, x) < δ⇒ ρ( f (ξ), f (x)) < ε.

36 Exercise. For some fixed y ∈ X , let f : X →R be the function defined
by f (x) = d(x, y). Show that f is continuous. Also, define a metric ρ on
X ×X by ρ

(
(x, y), (ξ,η)

)= d(x,ξ)+d(y,η). Show that ρ is in fact a metric,
and that d : X ×X →R is continuous when X ×X is given this metric.

37 Definition. If V ⊆ Y we write f −1[V ] = {x ∈ X : f (x) ∈ V } (even if f
has no inverse function f −1).

38 Proposition. Let X and Y be metric spaces, f : X → Y a function,
and x ∈ X . Then the following are equivalent:

(a) f is continuous at x;
(b) for each neighbourhood V of f (x), f −1[V ] is a neighbourhood of

x;
(c) f (xn) → f (x) whenever xn → x.

Proof: The equivalence of any two of these is easy to prove directly. We
prove a cycle of implications.

(a) ⇒ (b): If V is a neighbourhood of f (x), then Bε( f (x)) ⊆V for some
ε> 0. Then, by continuity, for some δ> 0 we get Bδ(x) ⊆ f −1[Bε( f (x))] ⊆
f −1[V ], so f −1[V ] is a neighbourhood of x.
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15 Elements of mathematical analysis

(b) ⇒ (c): Let xn → x. Assume V is a neighbourhood of f (x). Then,
since f −1[V ] is a neighbourhood of x, some tail of the sequence (xn)
is contained in f −1[V ], and so the corresponding tail of the sequence
( f (xn)) is contained in V . Hence f (xn) → f (x).

(c) ⇒ (a): Assume f is not continuous at x. Then for some ε > 0 and
every δ> 0 there is some ξ ∈ X with d(ξ, x) < δ but ρ( f (ξ), f (x)) ≥ ε. Let
δk ↘ 0, and for each k, let xk ∈ X with d(xk , x) < δk and ρ( f (xk ), f (x)) ≥
ε. Then xk → x but f (xk ) 6→ f (x).

39 Definition. A function f : X → Y is said to be continuous if it is con-
tinuous at every point in X .

40 Proposition. Let X and Y be metric spaces and f : X → Y a function.
Then the following are equivalent:

(a) f is continuous;
(b) for each open subset V ⊆ Y , f −1[V ] is open;
(c) for each closed subset F ⊆ Y , f −1[F ] is closed.

41 Theorem. Let X and Y be metric spaces and f : X → Y a continuous
function. If X is compact then f [X ] = { f (x) : x ∈ X } is compact.

Proof: It is instructive to give several proofs of this fact.
First, let (yn) be a sequence in f [X ]. Since yn ∈ f [X ] we can write yn =

f (xn). By compactness the sequence (xn) has a convergent subsequence
(xnk ). Since f is continuous, then the subsequence given by ynk = f (xnk )
converges. Thus f [X ] is compact.

Second, let U be an open cover of f [X ]. Then { f −1(U ) : U ∈ U } is an
open cover of X , and so by the compactness of X there is a finite number
of sets U1, . . . ,Un ∈ U so that

⋃n
k=1 f −1[Uk ] = X . Then

⋃n
k=1 Uk = f [X ],

and hence f [X ] is compact.
Third, consider a family of closed subsets of f [X ], with the finite inter-

section property. The proof that the family has a nonempty intersection
is left as an exercise for the reader.

42 Corollary. A continuous real-valued function on a compact space is
bounded, and achieves its maximum as well as its minimum.
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Proof: A compact subset of R is bounded, and its infimum and supre-
mum are members of the set because it is closed.

43 Exercise. If A be a subset of some metric space X , the distance from
a point x ∈ X to A is the number

dist(x, A) = inf{d(x, a) : a ∈ A}.

Show that x 7→ dist(x, A) is a continuous function. Assume now that K is
a compact subset of X and that K ∩ Ā =;. Show that there is some ε> 0
so that d(x, a) ≥ ε whenever x ∈ K and a ∈ A.

44 Definition. Let (X ,d) and (Y ,ρ) be metric spaces. A function f : X →
Y is called uniformly continuous if, whenever ε > 0, there exists some
δ> 0 so that ρ( f (ξ), f (x)) < ε whenever x,ξ ∈ X and d(ξ, x) < δ.

45 Exercise. Show that the real functions x 7→ x2 and x 7→ 1/x (with
x > 0) are not uniformly continuous. Show that arctan is uniformly con-
tinuous.

46 Proposition. A continuous function f : X → Y where X , Y are metric
spaces and X is compact, is uniformly continuous.

Proof: Let ε> 0. For every x ∈ X there is someδ(x) > 0 so thatρ( f (ξ), f (x)) <
ε whenever d(ξ, x) < δ(x). By the compactness of X there are x1, . . . , xn ∈
X so that X =⋃n

j=1 Bδ(x j )/2(x j ). Let δ= min{δ(x1), . . . ,δ(xn)}/2.

Now, if ξ, x ∈ X , then x ∈ Bδ(x j )/2(x j ) for some j . If furthermore d(ξ, x) <
δ then ξ ∈ Bδ(x j )(x j ) as well, and so

ρ( f (ξ), f (x)) ≤ ρ( f (ξ), f (x j ))+ρ( f (x j ), f (x)) < ε+ε= 2ε.

Hence f is uniformly continuous.
The above theorem and the notion of uniform continuity has many uses.
A simple application is the following result on differentiating under the
integral.

47 Proposition. Let f be a real function on some open subset U ⊂ R2.
Let a, b, and x0 be real numbers so that (x0, y) ∈ U whenever a ≤ y ≤
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17 Elements of mathematical analysis

b. Assume that ∂ f (x, y)/∂x exists and is continuous for each (x, y) ∈ U .

Then the function x 7→ ∫ b
a f (x, y)dy is differentiable at x0, with derivative

d

dx

∣∣∣∣
x=x0

∫ b

a
f (x, y)dy =

∫ b

a

∂ f

∂x
(x0, y)dy.

Proof: First, since the compact set {(x0, y) : a ≤ y ≤ b} is contained in
the open set U , there is some δ1 > 0 so that the, likewise compact, set
{(x, y) : |x − x0| ≤ δ1, a ≤ y ≤ b} is contained in U (exercise: prove this
using exercise 43 with A = X \ U ). Let ε > 0. By uniform continuity of
∂ f /∂x on this compact set, there is some δ> 0 so that∣∣∣∣∂ f

∂x
(x, y)− ∂ f

∂x
(x0, y)

∣∣∣∣< ε
whenever |x − x0| < δ and a ≤ y ≤ b (clearly, by picking δ ≤ δ1 we make
sure that (x, y) ∈U at the same time). Now∫ b

a
f (x, y)dy −

∫ b

a
f (x0, y)dy =

∫ b

a

∫ x

x0

∂ f

∂x
(ξ, y)dξdy

and∣∣∣∣ 1

x −x0

(∫ b

a

∫ x

x0

∂ f

∂x
(ξ, y)dξdy

)
−

∫ b

a

∂ f

∂x
(x0, y)dy

∣∣∣∣
=

∣∣∣∣ 1

x −x0

∫ b

a

∫ x

x0

(
∂ f

∂x
(ξ, y)− ∂ f

∂x
(x0, y)

)
dξdy

∣∣∣∣
≤ 1

|x −x0|
∫ b

a

∫ x

x0

∣∣∣∣∂ f

∂x
(ξ, y)− ∂ f

∂x
(x0, y)

∣∣∣∣ dξdy

< 1

|x −x0|
∫ b

a

∫ x

x0

εdξdy

= |b −a|ε
which completes the proof.
The above result has many useful generalisations, in particular replac-
ing the integral by multiple integrals or surface integrals. As long as we
integrate over a compact set, essentially the same proof will work. How-
ever, for improper integrals uniform continuity will not work anymore.
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For example, to prove a formula of the type

d

dx

∣∣∣∣
x=x0

∫ ∞

−∞
f (x, y)dy =

∫ ∞

−∞
∂ f

∂x
(x0, y)dy

uniform continuity is not enough, but if you can show, for every ε > 0,
the existence of some δ> 0 so that∣∣∣∣∂ f

∂x
(x, y)− ∂ f

∂x
(x0, y)

∣∣∣∣< εg (y)

whenever |x − x0| < δ, and where the function g (independent of ε) sat-
isfies

∫ ∞
−∞ g (x, y)dy <∞, you can get the desired formula just as in the

above proof.

48 Exercise. Complete the above argument.

The following result is sometimes called Fubini’s theorem, but that is
misleading – Fubini’s theorem is much more general, and deals with
Lebesgue integrable functions. The conclusion is the same, however. We
include this simple special case because it is easy to prove with the tools
at hand.

49 Proposition. Assume that f is a continuous function on [a,b]×[c,d ].
Then ∫ b

a

∫ d

c
f (x, y)d y d x =

∫ d

c

∫ b

a
f (x, y)d x d y.

Proof: Replace b in both integrals by a variable ξ. Clearly, the integrals
are equal when ξ = a. If we can show that both sides are differentiable
with respect to ξ, with the same derivative, then they must have the same
value for all ξ, including ξ= b.

First, note that f is uniformly continuous. A direct computation shows

that
∫ d

c f (x, y)d y is a continuous function of x. Hence the fundamental
theorem of calculus shows that

d

dξ

∫ ξ

a

∫ d

c
f (x, y)d y d x =

∫ d

c
f (ξ, y)d y.

Second, use the previous proposition to show that

d

dξ

∫ d

c

∫ ξ

a
f (x, y)d x d y =

∫ d

c

∂

∂ξ

∫ ξ

a
f (x, y)d x d y =

∫ d

c
f (ξ, y)d y.
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Ordinary differential equations
in which we state and prove the fundamental existence and uniqueness theo-
rem.

In elementary calculus courses (the so-called “advanced calculus”), when
discussing ordinary differential equations, the emphasis is on solutions
by formula. Sure, the uniqueness of solutions for the initial value prob-
lem is often proved, but this is usually a result of the particular structure
of the equation. In this section we will be concerned with the questions
of existence and uniqueness in a more general setting.

The elementary theory can still throw some light on the general prob-
lem, and hint at what can and cannot be expected to hold true.

We shall be concerned with initial value problems — that is, problems
of the form

ẋ(t ) = f (t , x(t ))

x(0) = x0
(1)

with given function f and initial value x0. (We might, more generally,
consider a given initial value x(t0) = x0 at some time t0, but this gener-
alisation is trivial. We shall always think of the independent variable t as
time, though of course this would be misleading in many applications.)

Consider, for example, the equation ẋ = x2. This separable equation
is typically solved by formally rewriting it as dx/x2 = dt and integrat-
ing, with the result x = 1/(τ− t ). (This method misses the trivial solution
x(t ) = 0, though.) If we are given an initial value x(0) = x0, the integra-
tion constant must be given by τ= 1/x0. Thus, if x0 > 0 then the solution
goes to infinity (or “blows up”) at time t = τ= 1/x0.

Therefore, we cannot expect a general existence theorem to give global
results, but we must settle for a local result instead: existence of a solu-
tion x(t ) for t in a neighbourhood of 0.

Another example is the equation ẋ = x1/3, with the general solution
x = (2/3(t −τ))3/2 in addition to the trivial solution x(t ) = 0. We note that
the general solution is only valid for t > τ; however, we can make a solu-
tion valid everywhere by joining the general solution and the trivial one
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as follows:

x(t ) =
{

0 t ≤ τ,

(2/3(t −τ))3/2 t > τ
However, this is an example of the breakdown of uniqueness, for the ini-
tial value problem with initial value x(0) = 0 has infinitely many solu-
tions: Any solution like the one above with τ ≥ 0 will do. The problem
lies with the right hand side x1/3, which is too singular for uniqueness to
hold.

The key to an existence and uniqueness result for the initial value
problem (1) is to note that a function x defined on an interval surround-
ing 0 solves (1) if, and only if, it is continuous and satisfies the integral
equation

x(t ) = x0 +
∫ t

0
f (τ, x(τ))dτ (2)

for each t in the given interval.
We might imagine solving (2) by picking an arbitrary initial function

x1(t ) and proceeding to iterate:

xn+1(t ) = x0 +
∫ t

0
f (τ, xn(τ))dτ (3)

and then hoping that xn will converge to the desired solution function x
as n →∞.

This is known as Picard’s method and it does indeed work. We shall
use Banach’s fixed point theorem to show this. To carry out this program,
then, we must first define a suitable complete metric space to be popu-
lated by functions x(t ).

To this end, we may replace the interval around 0 by an arbitrary met-
ric space X . First, let l∞(X ) consist of all bounded, real-valued functions
on X . We use the norm

‖ f ‖∞ = sup{| f (x)| : x ∈ X }

on this space. A sequence in l∞(X ) which converges in this norm is called
uniformly convergent. In contrast, a sequence for which f (x) converges
for every x ∈ X is called pointwise convergent.
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50 Exercise. Show that a uniformly convergent sequence is pointwise
convergent. Show that, given x, the map f 7→ f (x) is a continuous map
from l∞(X ) to R. What is the connection between these two statements?

Finally, show that a pointwise convergent sequence need not be uni-
formly convergent (let f (x) = x/(1+ x2) and consider the sequence fn ,
where fn(x) = f (nx)).

51 Proposition. l∞(X ) is a Banach space.

Proof: Clearly, it is a normed space. We must show it is complete. Let
( fn) be a Cauchy sequence in l∞(X ). For each x ∈ X , ( fn(x)) is a Cauchy
sequence in R, and so has a limit which we will denote f (x).

To show that fn → f uniformly, let ε > 0. There is some N so that
‖ fn − fm‖ < ε whenever m,n ≥ N . By the definition of the norm, that
translates into | fn(x)− fm(x)| < ε whenever m,n ≥ N and x ∈ X . Letting
m →∞ in this inequality, we conclude | fn(x)− f (x)| ≤ εwhenever n ≥ N
and x ∈ X . But, again by the definition of the norm, this means ‖ fn− f ‖ ≤
ε whenever n ≥ N . In other words, fn → f uniformly.

The continuous functions in l∞(X ) form a subspace which we shall
call Cb(X ).

52 Proposition. Cb(X ) is a Banach space.

Proof: By Proposition 21, we only need to show that Cb(X ) is closed. In
other words, we must show that a uniform limit of continuous functions
is continuous.

So let now f1, f2, . . . be continuous real-valued functions on X , and
assume that fn → f uniformly. We must show that f is continuous.

So let x ∈ X , and ε > 0. By uniform convergence, there is some N so
that n > N implies ‖ fn − f ‖∞ < ε. Pick any n > N . Since fn is continuous,
there exists some δ > 0 so that | fn(y)− fn(x)| < ε whenever y ∈ Bδ(x).
Now, for any such y we find

| f (y)− f (x)| ≤ | f (y)− fn(y)|+ | fn(y)− fn(x)|+ | fn(x)− f (x)| < 3ε

since | f (y)− fn(y)| ≤ ‖ f − fn‖∞ < ε (and similarly, | fn(x)− f (x)| < ε).
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53 Definition. A real function f defined on R is said to be Lipschitz con-
tinuous with Lipschitz constant L if | f (x)− f (y)| ≤ L|x − y | for all x, y
(this definition has an immediate generalisation to functions between
arbitrary metric spaces, of course). Similarly, a function f of two vari-
ables is said to be uniformly Lipschitz continuous in the second variable
if it satisfies | f (t , x)− f (t , y)| ≤ L|x − y | for all t , x, y .

54 Theorem. (Picard–Lindelöf ) Consider the initial value problem (1)
where the right hand side f is defined and uniformly Lipschitz contin-
uous in the second variable on a neighbourhood of (t , x) = (0, x0). Then
(1) has a unique solution on some neighbourhood of t = 0.

Proof: The simple idea of the proof is to use the Banach fixed point the-
orem on the function

Φ(x)(t ) = x0 +
∫ t

0
f (τ, x(τ))dτ

since a fixed point of this function is a solution of (1), because (1) is
equivalent to (2). The proof is somewhat complicated by the fact that
Φ(x) may be undefined for some functions x, namely those x for which
x(t ) is sometimes outside the domain of definition of f . So we use Corol-
lary 20 instead.

First note that, given two functions x and y , we find

|(Φ(x)−Φ(y)
)
(t )| =

∣∣∣∣∫ t

0

(
f (τ, x(τ))− f (τ, y(τ))

)
dτ

∣∣∣∣
≤

∫ t

0
| f (τ, x(τ))− f (τ, y(τ))|dτ

≤
∫ t

0
L|x(τ)− y(τ)|dτ

≤ L|t | · ‖x − y‖

where L is the Lipschitz constant of f (in the second variable). Thus, to
make Φ a contraction, we might restrict it to functions on the interval
[−T,T ] where T < 1/L. Further, to use Corollary 20 we must have

‖Φ(x0)−x0‖∞ ≤ (1−LT )r.

Version 2009–02–22



23 Elements of mathematical analysis

This norm is easily estimated:

‖Φ(x0)−x0‖∞ = sup
|t |≤T

∣∣∣∣∫ t

0
f (τ, x(τ))dτ

∣∣∣∣≤ MT

where M is the maximum value of f on [−T,T ]× B̄ε(x0). By making T
smaller if necessary (which does not increase M) we can achieve the in-
equality MT ≤ (1−LT )r which is exactly what we need to complete the
existence proof.

Uniqueness also follows, at least locally, from which one can patch to-
gether a global uniqueness proof. It is better, however to use Grönwall’s
lemma to show uniqueness (but we shall not do so here).

We have stated and proved the Picard–Lindelöf theorem for scalar ini-
tial value problems only. However the same proof works, without mod-
ification, for systems of first order equations: Just think of the unknown
function as mapping an interval around 0 into Rn , and f as defined on
a suitable open subset of R×Rn . It can in fact be seen to work in a yet
more general setting, replacing Rn by a Banach space.

Furthermore, higher order equations are handled by reducing them
to first order equations: For example, given a second order equation of
the form ẍ = f (t , x, ẋ) we put y = ẋ and so arrive at the equivalent system
ẏ = f (t , x, y), ẋ = y .

A first order system of equations ẋ = f (t , x) where f is Lipschitz defines a
function φ by writing the solution to the system satisfying the initial condition
x(s) = ξ as φ(ξ, s, t ); thus φ(ξ, s, t ) = ξ and ∂φ/∂t = f (φ). It turns out (but we shall
not prove it) that if f is a C 1 function then φ is also C 1. In other words, the so-
lution of the system is a continuously differentiable function, not only of its pa-
rameter, but also of the initial conditions. We have now arrived at the beginnings
of the theory of dynamical systems, and this is where we leave that theory.

The implicit and inverse function theorems
in which we state some conditions under which equations may be solved, and
some properties of the solution.

The implicit function theorem concerns situations in which one can guar-
antee that an equation of the form F (x, y) = 0 defines y as a function of
x; that is, when we can find a function g so that F (x, g (x)) = 0 for all x in
some neighbourhood of a given point x0 (and, moreover, we want some
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form of uniqueness, so that F (x, y) = 0 has no solution y 6= g (x), at least
not locally).

The inverse function theorem concerns the existence of a local in-
verse of a given function f . Since the defining equation of the inverse,
f (g (x)) = x, can be written as F (x, g (x)) = 0 where F (x, y) = f (y)− x, it
should be clear that the inverse function theorem will be a special case
of the implicit function theorem. Thus we concentrate on the latter.

We shall need some definitions before we start.
The space of linear maps from Rn to Rm will be written L(Rn ,Rm). Of

course we know that this can be identified with the space of all m ×n-
matrices Rm×n , but mostly, we shall prefer the more abstract approach.
On this space we use the operator norm defined by

‖A‖ = sup
x∈Rn \{0}

‖Ax‖
‖x‖ .

(Much of what follows works just as well if the Euclidean spaces Rn are
replaced by Banach spaces, and L(X ,Y ) is the space of bounded linear
operators from a Banach space X to a Banach space Y .)

55 Definition. Let f be a function defined on a neighbourhood of a point
x ∈ Rn and with values in Rm . f is said to be (Fréchet) differentiable at x
if there is some A ∈ L(Rn ,Rm) so that

lim
ξ→0

‖ f (x +ξ)− f (x)− Aξ‖
‖ξ‖ = 0.

The operator A is uniquely determined (exercise!), and is called the deriva-
tive of f at x, written A = D f (x).

This is more conveniently written as the first order Taylor’s formula:

f (x +ξ) = f (x)+D f (x)ξ+o(‖ξ‖) (ξ→ 0)

where o(‖ξ‖) is taken to mean some function r (ξ) so that r (ξ)/‖ξ‖→ 0 as
ξ→ 0.

56 Exercise. Show that, if f is differentiable at x with D f (x) = A, then
all first order partial derivatives of f exist at x, and when A is interpreted

Version 2009–02–22



25 Elements of mathematical analysis

as a matrix, we have

Ai j = ∂ fi

∂x j
(x).

Show that the converse does not hold, for example by considering the
function

f (x) =


x1x2√
x2

1 +x2
2

x 6= 0,

0 x = 0.

Now, consider a function f defined in an open subset U of Rn . The func-
tion is said to be C 1 if it is differentiable at each point of U , and the func-
tion D f : U → L(Rn ,Rm) is continuous.

57 Proposition. A function f : U → Rm is C 1 in the open set U ⊆ Rn if
and only if it has first order partial derivatives at each point of U , and
those partial derivatives are continuous in U .

Proof: We prove only the hard part, leaving the rest as an exercise. What
we shall prove is the following: If f has continuous first order partial
derivatives in a neighbourhood of 0, then f is differentiable there.

For brevity, we write g j = ∂ f /∂x j . Write e j for the vector whose j
component is 1, while all the others are 0 (so e1, . . . ,en is the standard
basis of Rn). Then x = ∑n

j=1 x j e j . We estimate f (x)− f (0) by integrat-
ing the appropriate partial derivatives of f along the path consisting of
straight line segments from 0 via x1e1, x1e1 + x2e2, and so on to x: Let
γk (t ) = ∑k−1

j=1 x j e j + t xk ek so that γk (0) = ∑k−1
j=1 x j e j , γk (1) = ∑k

j=1 x j e j ,

and γ′k (t ) = xk ek . Then

f (x)− f (0) =
n∑

k=1

[
f

( k∑
j=1

x j e j

)
− f

(k−1∑
j=1

x j e j

)]

=
n∑

k=1

∫ 1

0

d

dt
f (γk (t ))dt

=
n∑

k=1
xk

∫ 1

0
gk (γk (t ))dt

=
n∑

k=1
xk gk (0)+

n∑
k=1

xk

∫ 1

0
[gk (γk (t ))− gk (0)]dt
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The first sum on the last line is the desired linear function of x; it is
D f (0)x. To show that this is really the Fréchet derivative, we must show
the second sum is o(‖x‖). But if ε > 0 is given we can find δ > 0 so that
‖g j (x)−g j (0)‖ < εwhenever δ> 0. Clearly, for such an x and 0 ≤ t ≤ 1 we
have ‖γk (t )‖ ≤ ‖x‖ < δ, and so each of the integrals in the second sum
has norm < ε; hence their sum has norm < ε

∑ |x j | and so it is o(‖x‖) as
‖x‖→ 0.

We leave the rest of the proof as an exercise. To show that f is C 1, note
that once we know that f is differentiable, the matrix elements of D f are
the partial derivatives of the components of f (in fact the columns of D f
are the functions g j ).

58 Proposition. (The chain rule) Let g map a neighbourhood of x ∈Rp

into Rn and f map a neighbourhood of g (x) into Rm . If g is differen-
tiable at x and f is differentiable at g (x), then the composition f ◦ g is
differentiable at x, with derivative

D( f ◦ g )(x) = D f
(
g (x)

)◦Dg (x)

When A and B are composable linear maps, it is more common to
write their composition as B A rather than B ◦A. Thus the above formula
is more commonly written as D( f ◦ g )(x) = D f (g (x))Dg (x).

Proof: Simply write

f ◦ g (ξ)− f ◦ g (x) = D f
(
g (x)

)(
g (ξ)− g (x)

)+o(‖g (ξ)− g (x)‖)

= D f
(
g (x)

)(
Dg (x)(ξ−x)+o(‖ξ−x‖)

)
+o

(
Dg (x)(ξ−x)+o(‖ξ−x‖)

)
= D f

(
g (x)

)(
Dg (x)(ξ−x)

)+o(‖ξ−x‖)

and the proof is complete. (Exercise: Write the argument out more care-
fully, dealing properly with all the epsilons and deltas.)

We can now state and prove the implicit function theorem. First, how-
ever, let us consider the simple case of single variables. Clearly, the curve
in Figure 1 is not the graph of a function. Nevertheless, some part sur-
rounding the point (x0, y0) is the graph of a function y = g (x). This illus-
trates the fact that we can only expect to be able to show the existence of
a function g with F (x, g (x)) = 0 locally, that is, in some neighbourhood
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Figure 1: The curve F (x, y) = 0 with a point (x0, y0) on it.

of x0. The trouble spots seem to be where the curve has a vertical tan-
gent or, equivalently, a horizontal normal. A normal vector is given by
∇F = (∂F /∂x,∂F /∂y), so the trouble spots are recognised by ∂F /∂y = 0.

We return to the general case of functions of several variables. If x ∈
Rm and y ∈ Rn , we may write the vector (x1, . . . , xm , y1, . . . , yn) ∈ Rm+n

as (x, y). If F is a function of (x, y), we write D y F (x, y) ∈ L(Rn ,Rn) as
D y F (x, y)η = DF (x, y)(0,η). We then note that the chain rule applied to
the equation F (x, g (x)) = 0 yields Dx F (x, y)+D y F (x, g (x))Dg (x) = 0, so
if D y F (x, g (x)) is invertible, we find

Dg (x) =−D y F (x, g (x))−1Dx F (x, y).

It turns out that this invertibility condition, which gives us a unique value
of Dg (x), is sufficient to define the function g in a neighbourhood of x.

59 Theorem. (Implicit function theorem) Assume given an Rn-valued
C 1 function F on a neighbourhood of (x0, y0) ∈ Rm ×Rn . Assume that
F (x0, y0) = 0, and that D y F (x0, y0) is invertible. Then there is a neigh-
bourhood U of x0 and a C 1 function g : U → Rn with g (x0) = y0 and
F (x, g (x)) = 0 for all x ∈U .

Proof: By replacing F (x, y) by F (x − x0, y − y0) we may assume x0 = 0
and y0 = 0. If A is an invertible n ×n matrix, F (x, y) = 0 is equivalent to
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AF (x, y) = 0; hence we may replace F by AF . If we let A = D y F (0,0)−1

this means we may, and indeed shall, assume D y F (0,0) = I .

Write F (x, y) = y −H(x, y); thus F (x, y) = 0 ⇔ y = H(x, y), and more-
over D y H(0,0) = 0. Given x, we propose to solve the equation y = H(x, y)
by the iteration yn+1 = H(x, yn) with y0 = 0. We must show that H(x, y),
as a function of y , is a contraction. But

H(x, y)−H(x, z) =
∫ 1

0

∂

∂t
H(x, t y + (1− t )z)dt

=
∫ 1

0
D y H(x, t y + (1− t )z)dt · (y − z)

and since D y H(0,0) = 0 and H is C 1, there is some ε > 0 so that, when-
ever ‖x‖ ≤ ε and ‖y‖ ≤ ε, we have ‖D y H(x, y)‖ ≤ 1/2. For such x and y ,
then, the above equality implies

‖H(x, y)−H(x, z)‖ ≤ 1

2
‖y − z‖.

Clearly, then, for fixed x with ‖x‖ < ε, the map y 7→ H(x, y) is a con-
traction of Bε(0) into Rn . This ball may however not be invariant for all x
(that is, the map y 7→ H(x, y) may not map the ball into itself). However,
if x is small enough, we shall see that Corollary 20 comes to the rescue.
In fact, all that remains is to satisfy the second inequality in that Corol-
lary, with K = 1

2 and r = ε. In our current setting, that inequality becomes
simply

|H(x,0)| ≤ 1

2
ε.

Since H is continuous and H(0,0) = 0, we can find a δ > 0 so that the
above inequality holds whenever |x| < δ. By Corollary 20, then, there is
therefore a unique solution y = g (x) ∈ B̄ε(0) of the equation y = H(x, y)
wehenever x < δ, and thus of the equation F (x, y) = 0.
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It only remains to establish the C 1 nature of g . To this end, consider

0 = F
(
ξ, g (ξ)

)−F
(
x, g (x)

)
=

∫ 1

0

d

dt
F

(
tξ+ (1− t )x, t g (ξ)+ (1− t )g (x)

)
dt

=
∫ 1

0
DF

(
tξ+ (1− t )x, t g (ξ)+ (1− t )g (x)

)
dt · (ξ−x, g (ξ)− g (x)

)
=

∫ 1

0
Dx F dt︸ ︷︷ ︸

A

·(ξ−x)+
∫ 1

0
D y F dt︸ ︷︷ ︸

B

·(g (ξ)− g (x)
)

where the matrices A and B satisfy inequalities of the form ‖A‖ <C and
‖I −B‖ < 1/2 (the latter comes from the inequality ‖D y H(x, y)‖ < 1/2,
and the former is just the boundedness of Dx F in a neighbourhood of
0). But then B is invertible with ‖B−1‖ < 2 (because B−1 =∑∞

k=0(I −B)k ),
and we have

g (ξ)− g (x) =−B−1 A(ξ−x).

In the limit ξ→ x, we find A → Dx F (x, g (x)) while B → D y F (x, g (x)) from
which the differentiability of g is easily shown. Furthermore,

Dg (x) =−D y F (x, g (x))−1Dx F (x, g (x))

which is continuous, so that g is C 1.

60 Corollary. (Inverse function theorem) Assume there is given an Rn-
valued C 1 function f on a neighbourhood of y0 ∈Rn , and that D f (y0) is
invertible. Then there is a neighbourhood U of f (y0) and a neighbour-
hood V of y0 so that f maps V invertibly onto U , and the inverse map
g : U →V is C 1.

Proof: Write F (x, y) = f (y)− x and apply the implicit function theorem
to F at the point (x0, y0) where x0 = f (y0). Thus there is a neighbourhood
U0 of x0 and a C 1 function g on U0 so that f (g (x)) = x whenever x ∈U0.

By the chain rule, D f (y0)Dg (x0) = I so that Dg (x0) is invertible, and
by what we just proved (applied to g instead of to f ) there is a neighbour-
hood V of y0 and a C 1 function h : V →Rn so that g (h(y)) = y whenever
y ∈V .
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Let U = g−1[V ]. It is not hard to show that, in fact, h(y) = f (y) when-
ever y ∈V , and the restrictions f |V and g |U are each other’s inverses.
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