# An impossible initial value problem 

Harald Hanche-Olsen<br>hanche@math.ntnu.no

Consider the initial value problem for a function $x(t)$ :

$$
x \ddot{x}=1, \quad x(0)=0, \quad \dot{x}(0)=a .
$$

Since this is a second order ODE, you might expect to find a unique solution. However, the condition $x(0)=0$ makes the equation singular at $t=0$, so the usual existence theory breaks down, and the problem must be examined more closely.

Obviously, inserting the given initial conditions into the ODE at $t=0$ produces the absurd equation $0 \cdot \ddot{x}(0)=1$.

But we might still hope for a solution to $x \ddot{x}=0$ for $t>0$ which has a limit as $t \rightarrow 0$ satisfying the initial conditions. (If so, $\ddot{x} \rightarrow \infty$ as $t \rightarrow 0$.) We shall see that this is hopeless too.

Introduce the new dependent variable $y=\dot{x}$ : The original equation becomes the system

$$
\dot{x}=y, \quad \dot{y}=\frac{1}{x}, \quad x(0)=0, \quad y(0)=a .
$$

Writing the system as $\mathrm{d} x=y \mathrm{~d} t, \mathrm{~d} y=x^{-1} \mathrm{~d} t$ and dividing ${ }^{1}$ we find the separable equation $\mathrm{d} x / \mathrm{d} y=x y$. The usual procedure for separable equations produces the general solution

$$
x=A e^{y^{2} / 2}
$$

where $A$ is a non-zero constant ( $x=0$ does not satisfy the equation). The initial condition $x(0)=0$ implies the impossible $A=0$. In fact, for $A \neq 0$ the minimum value of $|x|$ is $|A|$, so we cannot even get $x=0$ in the limit as $t \rightarrow 0$.

You will likely get a much more complicated equation for the problem of the modelling seminar, but still with the problematic leading term $x \ddot{x}$. The resulting initial value problem will be unsolvable, for much the same reason that this one is - though proving it is harder. What to do? Suspect that your model is wrong for small $t$, and think about possible ways to get around the difficulty.

[^0]
[^0]:    ${ }^{1}$ A formal, but correct procedure.

