TMA4195 Mathematical modelling 2005

Exercise set 9

Advice and suggestions: 2005-11-09
This exercise is to be handed in by Friday, 18 November.
It will count as 10% toward your final grade.
Problem 1: A popular foot race with many participants ("studentmila") happens in a stadium with a 400 m oval track.
(a) When lots of students are running in the same part of the track, they impede each other so that their speed decreases. A certain model leads to the partial differential equation on dimensionless form:

$$
\begin{equation*}
\rho_{t}+(1-2 \rho) \rho_{x}=0 \tag{1}
\end{equation*}
$$

where $0 \leq \rho \leq 1$ and $\rho(x, t)$ is a 2π-periodic function of x. What are the assumptions of this model? Does it seem reasonable? (Compare with the traffic model.)
(b) Find (on implicit form) the exact solution of (1) given the initial condition

$$
\begin{equation*}
\rho(x, 0)=\rho_{0}+\varepsilon \cos x, \quad 0<\rho_{0} \pm \varepsilon<1, \varepsilon>0, \tag{2}
\end{equation*}
$$

valid at least for small t.
(c) Sketch the characteristics corresponding to the initial values of (2). Show that the smooth solution must break down after a while and develop a shock.
(d) When does the shock form, how does it move, and what happens as $t \rightarrow \infty$? (Hint: Consider the intersection of the characteristics starting at $(x, t)=\left(\frac{3}{2} \pi \pm \theta\right)$ where $0<\theta<\pi$.) In hindsight, how could you have proceeded without this hint?

Problem 2: Solve the following singular perturbation problem for the function $y(x)$ to lowest order in ε, where $0<\varepsilon \ll 1$:

$$
\varepsilon y^{\prime \prime}-y y^{\prime}+1=0, \quad y(0)=1, y(1)=0 .
$$

There is a boundary layer at one end. Which one?

