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Exercise 1 Clearly, the given equation implies that Ṅ < 0 if N > S, while Ṅ > 0 if N < S. This simple fact
explains the term sustainable population: The population increases while it is smaller, and decreases
when it is larger than, the sustainable population.

Ṅ /N is the relative growth rate: Growth per unit population and unit time. When N ¿ S then Ṅ ≈ r N ,
so the population grows exponentially with a time scale 1/r . So 1/r is in fact a reasonable time scale.
Picking S for the scale of N seems reasonable, since N will grow up to S with time.

These scalings (N = SN ′ and t = t ′/r ) lead to the scaled equation

Ṅ

N
= 1−N , or equivalently: Ṅ = N −N 2

where we have already dropped the primes.

Exercise 2 Clearly, the absolute harvest rates of krill and whales are FN N and FH H respectively: FN and
FH could be called relative harvest rates: Proportions of the total population harvested per time unit.

With no whales eating krill (H = 0) and no harvest, the krill satisfy a logistic growth equation with sustai-
nable population K .

The number of krill eaten by whales each year is of the form aH N : Clearly this means that each whale
gets to eat an amount of krill proportional to the total krill population.

With no harvesting and a constant krill population, the whale population satisfies a logistic growth equa-
tion with sustainable population αN .

The text clearly implies that 1/q might be used for the time scale. We may also wish to scale the krill and
whale populations, with K as the natural scale for N and hence αK as the natural scale for H .

If we insert t = t ′/r , N = K N ′ and H =αK H ′ in the given equations and then divide the first by r and the
second by q and immediately drop the primes, we end up with

ε
Ṅ

N
= 1−N −βH − fN ,

Ḣ

H
= 1− H

N
− fH

where we have put

β= aαK , fN = FN /r, fH = FH /q.

(The latter two scalings seem to make sense, in that these dimensionless versions of harvest rates are
expressed in terms of the natural reproduction rates of the two species.)

This system is clearly singular, in that its nature changes when ε→ 0.
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Equilibrium happens when
N +βH = 1− fN , H = (1− fH )N .

Under the rather natural assumption that 0 ≤ fN < 1 and 0 ≤ fH < 1, these two equations describe a pair
of lines that clearly intersect at a unique point in the first quadrant. (We do not bother with the simple
computation.)

To investigate the stability of the system, rewrite it as

Ṅ = 1

ε

(
(1− fN )N −N 2 −βH N

)
,

Ḣ = (1− fH )H − H 2

N
.

To find its linearization at the equilibrium we just differentiate the righthand side wrt N and H , and build
a matrix: 

1− f N −2N −βH

ε
−βN

ε

H 2

N 2
1− fH −2

H

N

=

−
N

ε
−βN

H 2

N 2
fh −1


where we used the equilibrium equations to simplify the matrix. Given our assumptions the trace is
clearly negative, and the determinant is positive – so the linearized system is stable. Hence, so is the
equilibrium point in the nonlinear system.

With ε= 0 the equations become

N +βH = 1− fN ,
Ḣ

H
= 1− H

N
− fH

which reduces to the single equation

Ḣ = (1− fH )H − H 2

βH −1+ fN

for the whale population.

We expect the krill population to change rapidly towards the equilibrium value given by N +βH = 1− fN :
Then the whale population changes more slowly according to the above differential equation while the
krill population changes in the opposite direction.
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