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Exercise 1 — A simple expansion near a singularity

We have been given the function
1
flxe)=—— ()

x+e
First we expand it using the binomial theorem. The binomial theorem is given by

(x+a)—n — Z ( —k”l )xka—n—k,
k=0

we use it to expand around € and end up with

1 €
XE)=———+---
f(x;e) Pl

as expected.

We now rescale using x =€ X, yielding

F(X;e) = .
c(1+X)

Again we expand this into series, ending up with

2
1(1_X+X2_...):l_£+x__...

F(X;e)= -
(X3€) € € € ¢

which is clearly valid for | X| < 1, and thus for |x| <e.

In fact, this is nothing but what we would get from the first procedure if we interchanged x and e.

Exercise 4 — A two-point boundary value problem

This time our starting point is the equation

€d2y+xdy+ =0 l<x<?2
dx? dx Y= 2)

y1) =0, y2)=1 0D<ex1.
The first thing we do is to expand and obtain the outer solution. We let
Yy=Yoteyir+--
and insert into (2). A 0’th order solution is given by

dyo
— 4+ =0.
X dx Yo



This is a separable equation with the solution

So how can we guess the location of the boundary layer? The boundary layer — wherever it may be - is
recognized by the fact that y” is large there. So y’ changes rapidly. Inside the boundary layer, then we
can treat the x in the equation as an approximate constant. So no the approximate equation within the
boundary layer (near xp) is

ey"+xy +y=0,

whose general solution is Ae™* + Be'>* where r, r, are the roots of the equation er’+xr+1=0, ie.,

r= %6‘_1(—)6() + \/x(z) —4e. These roots are approximately r; = —1/xp and r, = —xp/e. The solution corre-

sponding to the latter root will go rapidly to 0 when x grows (if € > 0) or when x decreases (if € < 0).!
Therefore we expect a boundary layer at the left end of the interval when € > 0, and at the right end if
€<0.

Here € > 0, so we proceed assuming a boundary layer at the left end. We use the boundary condition at
x =2 and end up with

_2
J’o—x-

Then we look for the inner solution. We let
x=1+¢X,
insert and expand Y = Yy +€Y; +:-- where y(x) = Y(X). A 0’th order solution is given by

d?y, dYy

— 4=y,
dx? * dx

with the solution Yy(X) = C; + Coe™X. We have Y (0) = 0 which yields C; +C, = 1. We then match the inner
and outer solution, that is we require that limx_.., Y (X) =lim,_.; y(x), or C; = 2. Our final inner solution
is given by

Yo(X)=2-2¢7%,

and a reasonable approximation to the full solution is

x—1 2
y(x)+Y(X)—2:y(x)+Y(T)—2= =-

ze(l—x)/e

As to how this fits together with the van Dyke matching rule, consider this:

Start with the 1-term outer expansion yy = 2/x. In inner variables it becomese yy = 2/(1 + € X). Express
that as a power series: yp =2(1 —€X +---. Keep just one term: yp ~ 2.

Next, start with the 1-term inner expansion Yy = C; (1 — e~%). Express it in the outer variable: Yy = C; (1 —
e(1=9/€¢) and note that if x > 1 then e!!~"/¢ is exponentially small as € — 0. So the 1-term outer expansion
becomes simply Yy ~ C;.

Thus the van Dyke matching rule is just C; =2, as for the simpler matching method.

11 am also using xp > 0 here.



Exercise 5 — An artificial example

As always, we start with an equation, this time given by

dx2  dx 1+3u?’ 3)
u@©)=0, wu(l)=1.

We obtain the outer solution in the usual way. Start by expanding u = 1y +€u; + -+, then insert this into
(3) and look at the 0’th order solution. It is given by

dug _ Uo+ up
dx  1+3u3

which has the general solution ug + ug = C1e*. Using the right boundary condition we get
ug+ ug =2e*71.

We then look for the inner solution, by letting x = € X and expand U = Uy + € U + - -- where u(x) = U(X).
We get the ODE
d?U , 40 _
d?2X  dX
with general solution Uy (X) = C; + C, e~X. We have U(0) = 0 which gives C; + C» =0, so that
Up(X)=Cr(1—-e™™).

We match the solutions by demanding that limx_.., C1 (1 — e %) = uy(0), i.e., C; = up(0), which we can
determine by C; + Cf =2e7 L

Exercise 10 — Logarithms

We are asked to show that the one-term outer expansion of

log x

e)=1+ )
e loge

x>0 (4)
is given by f ~ 1. This is really nothing much more that the statement that f(x;e) — 1 as € — 0, which is
obviously true.

In the boundary layer near x = 0 we then let x = € X, and write f(x;€) = F(X;€). We get

loge X loge logX log X
FX;e) =1+ ———=1+ + =2+
loge loge loge loge

which yields F ~ 2 to the first order. Obviously there is no way to match these two solutions.

If we include the logarithmic term, however, we trivially have F(X;e) exactly in the inner expansion, and
f(x;€) exactly in the outer expansion. These two match because they are in fact equal by definition.



