Suggested solution Mathematical modelling Exercise 6, autumn 2005

Arne Morten Kvarving / Harald Hanche-Olsen

27. november 2005

Exercise 1 - A simple expansion near a singularity

We have been given the function

$$
\begin{equation*}
f(x ; \epsilon)=\frac{1}{x+\epsilon} . \tag{1}
\end{equation*}
$$

First we expand it using the binomial theorem. The binomial theorem is given by

$$
(x+a)^{-n}=\sum_{k=0}^{\infty}\binom{-n}{k} x^{k} a^{-n-k}
$$

we use it to expand around ϵ and end up with

$$
f(x ; \epsilon) \approx \frac{1}{x}-\frac{\epsilon}{x^{2}}+\cdots
$$

as expected.
We now rescale using $x=\epsilon X$, yielding

$$
F(X ; \epsilon)=\frac{1}{\epsilon(1+X)}
$$

Again we expand this into series, ending up with

$$
F(X ; \epsilon)=\frac{1}{\epsilon}\left(1-X+X^{2}-\cdots\right)=\frac{1}{\epsilon}-\frac{x}{\epsilon^{2}}+\frac{x^{2}}{\epsilon^{3}}-\cdots
$$

which is clearly valid for $|X|<1$, and thus for $|x|<\epsilon$.
In fact, this is nothing but what we would get from the first procedure if we interchanged x and ϵ.

Exercise 4 - A two-point boundary value problem

This time our starting point is the equation

$$
\begin{array}{cl}
\epsilon \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0 & 1<x<2 \tag{2}\\
y(1)=0, y(2)=1 & 0<\epsilon \ll 1
\end{array}
$$

The first thing we do is to expand and obtain the outer solution. We let

$$
y=y_{0}+\epsilon y_{1}+\cdots
$$

and insert into (2). A 0 'th order solution is given by

$$
x \frac{\mathrm{~d} y_{0}}{\mathrm{~d} x}+y_{0}=0
$$

This is a separable equation with the solution

$$
y_{0}=\frac{C_{1}}{x} .
$$

So how can we guess the location of the boundary layer? The boundary layer - wherever it may be - is recognized by the fact that $y^{\prime \prime}$ is large there. So y^{\prime} changes rapidly. Inside the boundary layer, then we can treat the x in the equation as an approximate constant. So no the approximate equation within the boundary layer (near x_{0}) is

$$
\epsilon y^{\prime \prime}+x_{0} y^{\prime}+y=0,
$$

whose general solution is $A e^{r_{1} x}+B e^{r_{2} x}$ where r_{1}, r_{2} are the roots of the equation $\epsilon r^{2}+x_{0} r+1=0$, i.e., $r=\frac{1}{2} \epsilon^{-1}\left(-x_{0} \pm \sqrt{x_{0}^{2}-4 \epsilon}\right.$. These roots are approximately $r_{1} \approx-1 / x_{0}$ and $r_{2} \approx-x_{0} / \epsilon$. The solution corresponding to the latter root will go rapidly to 0 when x grows (if $\epsilon>0$) or when x decreases (if $\epsilon<0$). ${ }^{1}$ Therefore we expect a boundary layer at the left end of the interval when $\epsilon>0$, and at the right end if $\epsilon<0$.

Here $\epsilon>0$, so we proceed assuming a boundary layer at the left end. We use the boundary condition at $x=2$ and end up with

$$
y_{0}=\frac{2}{x} .
$$

Then we look for the inner solution. We let

$$
x=1+\epsilon X,
$$

insert and expand $Y=Y_{0}+\epsilon Y_{1}+\cdots$ where $y(x)=Y(X)$. A 0^{\prime} th order solution is given by

$$
\frac{\mathrm{d}^{2} Y_{0}}{\mathrm{~d} X^{2}}+\frac{\mathrm{d} Y_{0}}{\mathrm{~d} X}=0
$$

with the solution $Y_{0}(X)=C_{1}+C_{2} e^{-X}$. We have $Y(0)=0$ which yields $C_{1}+C_{2}=1$. We then match the inner and outer solution, that is we require that $\lim _{X \rightarrow \infty} Y(X)=\lim _{x \rightarrow 1} y(x)$, or $C_{1}=2$. Our final inner solution is given by

$$
Y_{0}(X)=2-2 e^{-X},
$$

and a reasonable approximation to the full solution is

$$
y(x)+Y(X)-2=y(x)+Y\left(\frac{x-1}{\epsilon}\right)-2=\frac{2}{x}-2 e^{(1-x) / \epsilon} .
$$

As to how this fits together with the van Dyke matching rule, consider this:
Start with the 1 -term outer expansion $y_{0}=2 / x$. In inner variables it becomese $y_{0}=2 /(1+\epsilon X)$. Express that as a power series: $y_{0}=2\left(1-\epsilon X+\cdots\right.$. Keep just one term: $y_{0} \sim 2$.
Next, start with the 1-term inner expansion $Y_{0}=C_{1}\left(1-e^{-X}\right)$. Express it in the outer variable: $Y_{0}=C_{1}(1-$ $e^{(1-x) / \epsilon}$) and note that if $x>1$ then $e^{(1-x) / \epsilon}$ is exponentially small as $\epsilon \rightarrow 0$. So the 1-term outer expansion becomes simply $Y_{0} \sim C_{1}$.
Thus the van Dyke matching rule is just $C_{1}=2$, as for the simpler matching method.

[^0]
Exercise 5 - An artificial example

As always, we start with an equation, this time given by

$$
\begin{gather*}
\epsilon \frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{u+u^{3}}{1+3 u^{2}} \tag{3}\\
u(0)=0, \quad u(1)=1
\end{gather*}
$$

We obtain the outer solution in the usual way. Start by expanding $u=u_{0}+\epsilon u_{1}+\cdots$, then insert this into (3) and look at the 0 'th order solution. It is given by

$$
\frac{\mathrm{d} u_{0}}{\mathrm{~d} x}=\frac{u_{0}+u_{0}^{3}}{1+3 u_{0}^{2}}
$$

which has the general solution $u_{0}+u_{0}^{3}=C_{1} e^{x}$. Using the right boundary condition we get

$$
u_{0}+u_{0}^{3}=2 e^{x-1}
$$

We then look for the inner solution, by letting $x=\epsilon X$ and expand $U=U_{0}+\epsilon U_{1}+\cdots$ where $u(x)=U(X)$. We get the ODE

$$
\frac{\mathrm{d}^{2} U_{0}}{\mathrm{~d}^{2} X}+\frac{\mathrm{d} U_{0}}{\mathrm{~d} X}=0
$$

with general solution $U_{0}(X)=C_{1}+C_{2} e^{-X}$. We have $U(0)=0$ which gives $C_{1}+C_{2}=0$, so that

$$
U_{0}(X)=C_{1}\left(1-e^{-X}\right)
$$

We match the solutions by demanding that $\lim _{X \rightarrow \infty} C_{1}\left(1-e^{-X}\right)=u_{0}(0)$, i.e., $C_{1}=u_{0}(0)$, which we can determine by $C_{1}+C_{1}^{3}=2 e^{-1}$.

Exercise 10 - Logarithms

We are asked to show that the one-term outer expansion of

$$
\begin{equation*}
f(x ; \epsilon)=1+\frac{\log x}{\log \epsilon}, \quad x>0 \tag{4}
\end{equation*}
$$

is given by $f \sim 1$. This is really nothing much more that the statement that $f(x ; \epsilon) \rightarrow 1$ as $\epsilon \rightarrow 0$, which is obviously true.

In the boundary layer near $x=0$ we then let $x=\epsilon X$, and write $f(x ; \epsilon)=F(X ; \epsilon)$. We get

$$
F(X ; \epsilon)=1+\frac{\log \epsilon X}{\log \epsilon}=1+\frac{\log \epsilon}{\log \epsilon}+\frac{\log X}{\log \epsilon}=2+\frac{\log X}{\log \epsilon}
$$

which yields $F \sim 2$ to the first order. Obviously there is no way to match these two solutions.
If we include the logarithmic term, however, we trivially have $F(X ; \epsilon)$ exactly in the inner expansion, and $f(x ; \epsilon)$ exactly in the outer expansion. These two match because they are in fact equal by definition.

[^0]: ${ }^{1}$ I am also using $x_{0}>0$ here.

