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Exercise 1 – Roots of equations

We are going to find the roots of the equation

εx3 +x −1 = 0. (1)

We first expand x as
x = x0 +εx1 +ε2 x2 + . . .

By plotting the first function in (1) we realize that there is one real root, around x = 1 and two imaginary
roots. We first consider balancing the terms x and −1. Inserting the expansion, doing some rearrange-
ments and equating coefficients for the powers of ε yields

ε0 : x0 −1 = 0

ε1 : x3
0 +x1 = 0

ε2 : 3x2
0 x1 +x2 = 0.

Solving these equations yields
x = 1−ε+3ε2+ . . . .

We now balance the terms εx3 and x. This gives a scaling

x = 1p
ε

X .

Inserting this into the function yields
X 3 +X −p

ε= 0.

Letting ε= 0 produces the uninteresting root X = 0 and the two roots ±i , which leads to an expansion

X =±i +ε1/2 X1 +εX2 + . . .

We once again proceed by equating powers of ε. This time the equations are

ε1/2 : −3X1 +X1 −1 = 0

ε1 : −2X2 ±3i X 2
1 = 0.

The solution of these equations yields the following expressions for the two other roots:

x = 1p
ε

(
±i −

p
ε

2
∓ 3i ε

8
+ . . .

)
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Next, we are going to find the roots of the equation

εx tan x −1 = 0. (2)

By looking at the plot of the function you should agree that

x = (
n + 1

2

)
π−εX

seems to be a good choice for a scaling. Inserting this into (2) yields

ε
(
(n + 1

2 )π−εX
) sin

(
(n + 1

2 )π−εX
)

cos
(
(n + 1

2 )π−εX
) = 1.

Since sin
(
(n + 1

2 )π−x
)=−cos x and cos

(
(n + 1

2 )π−x
)=−sin x this can be written as

ε
(
(n + 1

2 )π−εX
)

cos(εX ) = sin(εX ).

We now expand X as
X = X0 +εX1 +·· ·

and use the Taylor expansion of the sine and cosine. After inserting these, we equate powers of ε. This
yields

ε1 :
(
n + 1

2

)
π= X0

ε2 : −X0 = X1

The solution of these equations yields

x = (
n + 1

2

)
π(1−ε+ε2 +·· · ).
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Finally we are going to find the roots of the equation

x tan x −ε= 0 (3)

By looking at a plot of the function, we realize that we have two roots around x = 0 and then a root
around every whole multiple of π.

To find the first root use the scaling x =p
εX . Inserting this into (3) yields

p
εX tan

(p
εX

)−ε= 0.

We now expand X as
X = X0 +εX1 +ε2 X2 +·· · .1

Inserting this and equating powers we need to solve the equations

ε1 : X 2
0 −1 = 0

ε2 : 2X0X1 +
X 4

0

3
= 0

ε3 : X 2
1 +2X0X2 +

4X 3
0 X1

3
= 0.

This results in the roots

x =p
ε

(
1− ε

6
+ 7ε2

72
+·· ·

)
x =p

ε

(
−1+ ε

6
− 7ε2

72
+·· ·

)
To find the other roots we use the scaling x = nπ+εX . Inserting this into (3) (remember that tan(nπ+x) =
tan x) we get

(nπ+εX ) tan(εX )−ε= 0.

We then expand X as
X = X0 +εX1 +ε2 X2 +·· · .

This time we end up with the three equations

ε1 : nπX0 −1 = 0

ε2 : X 2
0 +nπX1 = 0

ε3 : nπX2 +2X0X1 +
nπX 3

0

3
= 0,

which yields the solution

x = nπ+ ε

nπ
− ε2

(nπ)3
+ 2ε3

(nπ)5
− ε3

3(nπ)3
+·· · .

1I told some of you to expand this as X = X0 +
p
εX1 +εX2. It was the other way around, sorry!
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Exercise 6 – Flagpoles again
We have been given the problem

∂2 y

∂t 2
+α4 ∂

4 y

∂x4
= 0

yxx = yxxx = 0 at x = 1, y = cos t , yx = 0 at x = 0
(4)

where αÀ 1 and ε= 1
α . We divide by α4, and get the equation in the form

ε4 ∂
2 y

∂t 2
+ ∂4 y

∂x4
= 0

yxx = yxxx = 0 at x = 1, y = cos t , yx = 0 at x = 0.
(5)

We then let y = y0 +ε4 y1 + . . . and insert this into (5). This yields

ε4
(
∂2 y0

∂t 2
+ε4 ∂

2 y1

∂t 2

)
+ ∂4 y0

∂x4
+ε4 ∂

4 y1

∂x4
= 0.

For ε0 this yields the equation
∂4 y0

∂x4
= 0.

We then integrate four times and use the boundary conditions to find the constants of integration. This
yields

y0 = cos t .

For the ε4 term we get the equation
∂2 y0

∂t 2
+ ∂4 y1

∂x4
.

We insert the known y0 and integrate four times, with the result y1 = 1
24 (x4 cos t + ax3 +bx2 + cx +d).

We use the boundary conditions y1 = y1x = 0 at x = 0 to conclude c = d = 0, and then the conditions
y1xx = y1xxx = 0 at x = 1 to get 12cos t + 6a + 2b = 0 and 24cos t + 6a = 0. So a = −4cos t and b =
−6cos t −3a = 6cos t , and we have

y1 = 1
24 (x4 −4x3 +6x2)cos t

and the final solution
y = (

1+ 1
24 ε

4(x4 −4x3 +6x2)
)

cos t +·· · .
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Exercise 8 – The forced logistic equation

We are asked to explain why the equation

du

dt
= ku(1−u)

is a crude model for population dynamics. In general, the quantity

1

u

du

dt

is a measure of the relative growth rate in the population, measuring the rate of births, minus the rate
of deaths, per individual and time unit. When the relative growth rate, we have the classical exponential
growth (or decay, if the rate is negative).

In the present case
1

u

du

dt
= k(1−u),

so the relative growth rate is near a constant k when u ¿ 1, and it falls linearly to 0 when u → 1. If u > 1,
the population decreases. This is presumably due to some limited resource available to the population.

The term 1 is actually the term in the equation that corresponds to the size of the resource (the equation
has been scaled in order to obtain the form given.

We now turn to the forced logistic equation

du

dt
= ku(1+εcos t −u), (6)

insert u = 1+εu1(t )+·· · and simplify. We get the ordinary differential equation

du1

dt
+ku1 = k cos t ,

which has the general solution

u1 = k2

1+k2
cos t + k

1+k2
sin t + c1e−kt .

No matter the value of the constant c1, it decays towards the periodic solution given by setting c1 = 0.

We are then asked to show that we can solve (6) using a substitution u = 1/v . This yields du/dt =
−v−2 ·dv/dt , and after a bit of tidying we end up with a linear, nonhomogeneous equation with variable
coefficents:

dv

dt
+k(1+εcos t )v = k.

This can be solved by multiplying with the integrating factor ek(t+εsin t ) and integrating, with the result

v = ke−k(t+εsin t )
∫

ek(t+εsin t ) dt .

That is perhaps not very illuminating! Our approximate formula

u = 1+ε
( k2

1+k2
cos t + k

1+k2
sin t

)
+O(ε2)

tells us much more, such as the size and phase of the oscillations of v .
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