Suggested solution Mathematical modelling Exercise 3, autumn 2005

Arne Morten Kvarving / Harald Hanche-Olsen

October 4, 2005

Exercise 1

We use Buckingham's Pi theorem directly:

$$
\begin{array}{ll}
{[D]=[\mathrm{m}],} & {[\rho]=\left[\frac{\mathrm{kg}}{\mathrm{~m}^{3}}\right]} \\
{[h]=[\mathrm{m}],} & {[d]=[\mathrm{m}]} \\
{[E]=\left[\frac{\mathrm{kg}}{\mathrm{~ms}^{2}}\right],} & {[\delta]=[\mathrm{m}]} \\
{[g]=\left[\frac{\mathrm{m}}{\mathrm{~s}^{2}}\right]} &
\end{array}
$$

From these 7 quantities involving 3 dimensions, we excpect to find $7-3=4$ dimensionless quantities, for example ${ }^{1}$

$$
\begin{array}{ll}
\pi_{1}=\frac{\delta}{D}, & \pi_{2}=\frac{h}{D} \\
\pi_{3}=\frac{d}{D}, & \pi_{4}=\frac{E}{D g \rho} .
\end{array}
$$

According to Buckingham's theorem, the wanted relation can be written

$$
\frac{\delta}{D}=\phi\left(\frac{h}{D}, \frac{d}{D}, \frac{E}{D g \rho}\right)
$$

Obviously, the bottom of the tank sags because of the pressure of the water, which is given as $p=\rho g h$ on the bottom of the tank. We can get rid all occurences of $r h o, g$ and h except for the combination $\rho g h$ by replacing π_{2} and π_{4} by π_{4} / π_{2}, leading to

$$
\frac{\delta}{D}=\phi\left(\frac{d}{D}, \frac{E}{h g \rho}\right)
$$

Of course, we could have arrived at this directly if we had the good foresight to replace D by h in the definition of π_{4}. Even better, we could have started out with the five relevant variables D, p, d, E, δ and saved a bit of work.

[^0]
Exercise 2

We start out with the quantities and their dimensions:

$$
\begin{array}{ll}
{[V]=\left[\mathrm{m}^{3}\right],} & {[\rho]=\left[\frac{\mathrm{kg}}{\mathrm{~m}^{3}}\right], \quad[t]=[\mathrm{s}],} \\
{[P]=\left[\frac{\mathrm{kg}}{\mathrm{~ms}^{2}}\right],} & {[\mu]=\left[\frac{\mathrm{kg}}{\mathrm{~ms}}\right],}
\end{array}
$$

From these 5 quantities expressed in 3 dimensions, we expect to extract 5-3 $=2$ independent dimensionless quantities. There are many ways to do this, but for the best correspondence with the original P vs t graphs we should look for two combinations where one contains P but not t, and the other contains t but not P. This produces

$$
\pi_{1}=\frac{\mu t}{V^{2 / 3} \rho}, \quad \pi_{2}=\frac{V^{2 / 3} \rho P}{\mu^{2}} .
$$

Buckingham's theorem states that, if t is a function of the other parameters, this can be written as $\pi_{1}=\phi\left(\pi_{2}\right)$ - so the axes in the unified graph should be π_{2} (horizontal) and π_{1} (vertical).

Oppgave 3

For any of these materials, use the thermal diffusion coefficient $\kappa=\frac{k}{\rho c}$. From our work with the heat equation we know that $[\kappa]=\left[\mathrm{m}^{2} / \mathrm{s}\right]$, and that heat diffuses a distance $\delta \sim \sqrt{\kappa t}$ over a time t.

For simplicity, assume a homogeneous fish consisting of all water, fat or protein. Pick $t=30 \mathrm{~s}$ according to the design criteria for the instrument.

The different substances produces these δ values:

$$
\begin{aligned}
\delta_{\text {water }} & \approx 2.0 \mathrm{~mm} \\
\delta_{\text {fat }} & \approx 1.2 \mathrm{~mm} \\
\delta_{\text {protein }} & \approx 1.9 \mathrm{~mm} .
\end{aligned}
$$

Thus it appears that the heat does not penetrate deeply enough to provide any information beyond the first two millimeters or so.

[^0]: ${ }^{1}$ The first three are sort of obvious, and π_{4} can also be found by inspection: To include E in a dimensionless combination, we need to divide by ρ in order to get rid of all kilograms. Then E / ρ needs to be divided by g to get rid of the seconds, and we're left with a length, so we divide by one of the length parameters.

