Suggested solution Mathematical modelling Exercise 1, autumn 2005

Arne Morten Kvarving / Harald Hanche-Olsen

20. september 2005

Exercise 11 - Rowing

The total volume occupied by the rowers is given by $N V$. Since

$$
\begin{aligned}
{[N V] } & =\left[\mathrm{m}^{3}\right] \\
{[A] } & =\left[\mathrm{m}^{2}\right]
\end{aligned}
$$

a dimensionless combination is given by $\pi_{1}=A /(N V)^{2 / 3}$, and thus $A \propto(N V)^{2 / 3}$.
To show that the resistance force might be given by $F_{d}=\rho U^{2} A$, we once again apply dimensional analysis.

$$
\left[\rho U^{2} A\right]=\left[\frac{\mathrm{kg}}{\mathrm{~m}^{3}}\left(\frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \mathrm{~m}^{2}=\frac{\mathrm{kgm}}{\mathrm{~s}^{2}}\right]=[\mathrm{N}] .
$$

This shows that this is indeed a plausible expression for the resistance force. (Another way to be sure of this is due to the fact that dimensional analysis only gives one dimensionless combination of F_{d}, ρ, U and A).

To find the work required, we use the good old work $=$ force \times distance. This gives another factor U, and thus $W \propto \rho U^{3} A$.

Finally we use energy balance to get the expression given in the book. This reads

$$
\begin{aligned}
N P & \propto \rho U^{3} A \\
N P & \propto \rho U^{3}(N V)^{2 / 3} \\
U^{3} & \propto N^{1-2 / 3} P^{1} \rho^{-1} V^{-2 / 3} \\
\Rightarrow U & \propto N^{1 / 9} P^{1 / 3} \rho^{-1 / 3} V^{-2 / 9}
\end{aligned}
$$

With $P \propto m$ and $V \propto m$ we get $U \propto N^{1 / 9} \rho^{-1 / 3} m^{1 / 9}$, which implies that size is of slight advantage for a rower.

Exercise 12 - Similarity solution to the heat equation

We have been given the problem

$$
\begin{align*}
\frac{\partial T}{\partial t} & =\kappa \frac{\partial^{2} T}{\partial x^{2}}, \quad x>0, \quad t>0, \tag{1}\\
T(x, 0) & =0, \quad T(0, t)=T_{0}>0 .
\end{align*}
$$

The task at hand is to show that this problem has a similarity solution given by

$$
\begin{equation*}
T=T_{0} F\left(\frac{x}{\sqrt{\kappa t}}\right) \tag{2}
\end{equation*}
$$

We start by inserting (2) into (1). After some simplifications this reads

$$
-\frac{\xi}{2} F^{\prime}(\xi)=F^{\prime \prime}(\xi)
$$

where $\xi=x / \sqrt{\kappa t}$. We then let $y=F^{\prime}$, insert this and solve the resulting ordinary differential equation. Its solution is given by

$$
y=C_{0} e^{\xi^{2} / 4}
$$

We then integrate once more to find F. Here we have to apply a substitution given by $s^{\prime}=\frac{\xi}{2}$ in order to get the right hand side to be of the form $\operatorname{erf}(\xi)$. After some rearragements this reads

$$
F=C_{1}+C_{0}^{\prime} \operatorname{erf}(\xi / 2) \Rightarrow T=T_{0}\left(C_{1}+C_{0}^{\prime} \operatorname{erf}(\xi / 2)\right)
$$

We then use the given boundary- and initial conditions to figure out the value of these constants. We get

$$
\begin{gathered}
T(0, t)=T_{0}\left(C_{1}+C_{0} \operatorname{erf}(0)\right)=T_{0} C_{1}=T_{0} \Rightarrow C_{1}=1 \\
T(x, 0)=T_{0}\left(1+C_{0} \lim _{\xi \rightarrow \infty} \operatorname{erf}(\xi / 2)\right)=T_{0}\left(1+C_{0}\right)=0 \Rightarrow C_{0}=-1 .
\end{gathered}
$$

In other words,

$$
F=1-\operatorname{erf}(\xi / 2), \quad T=T_{0}(1-\operatorname{erf}(\xi / 2))=T_{0} \operatorname{erfc}(\xi / 2) .
$$

This is called a similarity solution to the heat equation since both functions only depend on the parameter ξ.

Figur 1: Plot of the function $\operatorname{erfc}(\xi)$ against ξ.

The function decreases rapidly towards 0 until $\xi \approx 1$. This fits nicely with the discussion given at the end of Section 2.2 in the book. If $\xi=1$, we have $x=\sqrt{\kappa t}$. This means that the temperature change has propagated this far into the material and we expect only minor changes.

Exerice 13 - Firewalking

It is a known fact that the heat flux is given by $Q=k \nabla T$. With $T=T_{0} \operatorname{erfc}(x /(2 \sqrt{\kappa t}))$ the heat flux in $x=0$ is given by

$$
Q=-\frac{k T_{0}}{\sqrt{\pi \kappa t}}=-T_{0} \sqrt{\frac{\rho c k}{\pi t}}
$$

(recall that $\operatorname{erfc}^{\prime}(0)=-2 / \sqrt{\pi}$ and $\kappa=k /(\rho c)$). This does not coincide with the solution given in the book. There might be a typographical error. Or perhaps the author thought of the heat flux integrated over one time interval t. If that is the case, we get (omitting the sign)

$$
q=\int_{0}^{t} T_{0} \sqrt{\frac{\rho c k}{\pi \tau}} \mathrm{~d} \tau=2 T_{0} \sqrt{\frac{\rho c k t}{\pi}}
$$

This fits with the solution given in the book, so this is probably what was intended.
If we insert $T_{0}=500 \mathrm{~K}, t=0.5 \mathrm{~s}$ and the given values for wodden coal we end up with $q \approx 80 \mathrm{~kJ} / \mathrm{m}^{2}$.
Let the penetration depth be given by $\delta(\delta=1 \mathrm{~mm})$. A coarse approximation for the temperature change in the foot is given by

$$
\Delta T=\frac{q}{\rho c \delta} \approx 19 \mathrm{~K}
$$

We can do better than this. We can connect two similarity solutions, using the results found in Exercise 12. But we need to generalize the solution to have an initial condition $T(x, 0)=T_{1}$ (with, as before, the boundary condition $\left.T(0, t)=T_{0}\right)$. This gives

$$
T=T_{1}+\left(T_{0}-T_{1}\right) \operatorname{erfc}\left(\frac{x}{2 \sqrt{\kappa t}}\right)
$$

resulting in a heat flux

$$
|Q|=\left|T_{1}-T_{0}\right| \sqrt{\frac{\rho c k}{\pi t}}
$$

We now want to connect two materials with different properties, one with initial temperature given by $T(0)=T_{1}$, and one with intial temperature given by $T(0)=T_{2}$. After (an unknown) time the heat flux between the two materials will be equal and we will have a constant temperature T_{0} at the boundary between them. This occours when

$$
\left(T_{2}-T_{0}\right) \sqrt{\rho_{2} c_{2} k_{2}}=\left(T_{0}-T_{1}\right) \sqrt{\rho_{1} c_{1} k_{1}}
$$

The temperature at the intersection between the materials is given by

$$
T_{0}=\frac{T_{1} \sqrt{\rho_{1} c_{1} k_{1}}+T_{2} \sqrt{\rho_{2} c_{2} k_{2}}}{\sqrt{\rho_{1} c_{1} k_{1}}+\sqrt{\rho_{2} c_{2} k_{2}}} .
$$

We need a value for $k_{\text {foot }}$, we here use the value for water, $k=0.591$ (in SI units). Inserting this value (among others) we get

$$
(\sqrt{\rho c k})_{\mathrm{tre}}=219, \quad(\sqrt{\rho c k})_{\mathrm{fot}}=1575, \quad(\sqrt{\rho c k})_{\text {stål }}=14421 .
$$

This shows that the surface temperature will be

$$
T_{0} \approx 0.88 T_{\text {fot }}+0.12 T_{\text {tre }}
$$

quite close to the foot's initial temperature.
But if we walk on steel, the surface temperature will be

$$
T_{0} \approx 0.1 T_{\mathrm{fot}}+0.9 T_{\text {stål }},
$$

close to the steel's initial temperature. Bad for your feet!

